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Abstract

Count responses often show an excess of zeros under the assumption of a Poisson distribution.
Common modeling solutions include the zero-inflated Poisson model and the hurdle mixture model
(Hu et el (2011); Mullahy (1986); Lambert (1992)). Recently researchers have begun to consider
the modeling options for clustered or correlated count responses with excess zeros (Kassahun et al,
preprint). However, it has yet to be considered whether certain models are preferred for correlated
count responses with excess zeros in the presence of time-dependent covariates. Time-dependent
covariates have been shown to affect parameter estimate bias and efficiency in longitudinal analyses
(Pepe and Anderson (1994); Fitzmaurice (1995); Lai and Small (2007)). In this paper a comparison
is made between the zero-inflated Poisson and the hurdle model for correlated count data with time-
dependent covariates. Consideration is given to parameter estimate bias and hypothesis test results.
An example data set is analyzed, using a longitudinal measure of the number of times of drug use
as response.
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1. Introduction

Count response data are common in applications, and are often modeled using generalized
linear models with assumptions of a Poisson response distribution or a Negative Binomial
response distribution Cameron and Trivedi (1998); McCullagh and Nelder (1989). How-
ever, it is common in practice to see a greater proportion of “zero” values than would be
expected by either a Poisson or a Negative Binomial response distribution. If these zero
responses are not explained, the model can suffer from underdispersion and struggle to
identify significance due to reduced power of standard hypothesis tests.

To account for an excess of zeros in count response data, researchers often turn to joint
generalized linear models that combine two components: one that models the probability
of observing a zero, and a second that models the positive count process (Hu et al. (2011);
Mullahy (1986); Lambert (1992); Welsh et al. (1996)). One option is the Zero-Inflated
Poisson (ZIP) model, that includes a logistic regression model for prediction of a “cer-
tain zero,” and an ordinary Poisson count regression model for prediction of counts. The
distribution can be written,

fZIP (y;π, λ) =


π + (1− π)fP (0;λ) y = 0

(1− π)fP (y;λ) y > 0

Here fP indicates the ordinary Poisson pdf. In this case there are two sources of zeros
in the data. One source is a zero produced as part of the normal Poisson distribution that
describes the count responses. The second source is a “certain zero,” which is produced
with probability π.
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A second option for modeling excess-zero count data is the Hurdle Poisson (HurP)
model, that includes a logistic regression model for prediction of a “certain zero,” and a
zero-truncated Poisson count regression model for prediction of counts (Hu et al., 2011;
Gurmu, 1998). The distribution can be written,

fHurP (y;π, λ) =


π y = 0

(1− π) fP (y;λ)
1−fP (0;λ) y > 0

With the HurP model there is only a single source of zeros in the data, as zeros are only
produced as “certain zeros” with probability π.

Both ZIP and HurP models include two systematic components and link functions corre-
sponding to the two joint models,

logit(π) = Xlβl,

ln(λ) = Xcβc,

where Xl and βl are the design matrix and parameter vector, respectively, corresponding to
the logistic component, and Xp and βp are the design matrix and parameter vector, respec-
tively, corresponding to the count component. Parameters can be estimated by maximizing
the sum of the log-likelihoods of the Bernoulli and Poisson components of each model
(Cameron and Trivedi, 1998; Lambert, 1992).

There is a difference in data assumptions implied by using the ZIP model versus the HurP
model. The ZIP model inherently assumes there are two processes generating the zeros
in the data: there are both “certain zeros” for individuals with specific characteristics, and
there are zeros generated as part of the count process for all individuals. On the other hand,
the HurP model separately describes zero observations and positive counts. This imposes
an assumption that the “certain zeros” are the only zeros possible. If an individual does
not have a certain zero, that individual will have a positive count, described by the positive
Poisson distribution.

In many data situations, responses are clustered according to physical groups (as in
nested or hierarchical data) or according to subject (as in longitudinal or repeated-measures
data). In this case the dependence in the responses violates the assumption of independence
inherent in the likelihood-based estimation for standard ZIP and HurP models. When data
are clustered or longitudinal, models and estimation for excess-zero count responses should
reflect this property of the data.

Correlated counts with excess zeros can be modeled using either conditional (or mixed)
models, or using marginal estimation methods (Min and Agresti, 2005; Dobbie and Welsh,
2001). In the following sections, mixed ZIP and mixed HurP models will be presented and
compared in terms of power and type I error rate; ZIP GEE will be presented and briefly
compared to the mixed model options; concluding remarks and recommendations will be
presented.

JSM 2014 - Biometrics Section

2094



2. Conditional Models for Counts with Excess Zeros

2.1 Mixed ZIP Models

With longitudinal data it is common to apply mixed models to account for the extra-
variation caused by repeated observation of individuals. Similarly, correlated subjects are
often accounted for using random effects to account for the auto-correlation inherent in
homogenous groups of individuals. For both the ZIP and HurP models, the approach of in-
cluding a random effect to account for auto-correlation has been explored (Min and Agresti,
2005).

The mixed ZIP model can be written as a joint generalized linear mixed model. This
model is simile rot the ordinary ZIP model, which is a joint GLM, except that the response
distribution is conditional on the random grouping effect. The random component can be
written,

Yij |ui ∼ ZIP (π, λ),

ui ∼ N (0, σ2
u),

where the conditional pdf of the response is as given in the previous section. The systematic
components of the two joint models are similarly updated to include random effects,

logit(π) = Xlβl + Zu,

ln(λ) = Xpβp + Zu,

where Z is he random effects design matrix and u is the random effect parameter vector. It
is common for the random effects in both the logistic and count components of the mixed
ZIP model to be identical. This is because the subject repetition or homogenous grouping
in the data should affect both the logistic and count components. The mixed HurP model
can be written similarly to the mixed ZIP model, with random component,

Yij |ui ∼ HurP (π, λ).

ui ∼ N (0, σ2
u),

where the conditional pdf of the response is as given in the previous section. Systematic
components and link functions are identical to those of the mixed ZIP model.

2.1.1 Estimation for Mixed Excess-Zero Models

Estimation of model parameters for both the mixed ZIP and mixed HurP models is typi-
cally performed using likelihood-based methods (Min and Agresti, 2005). For this paper
and the included simulation, the R package MCMCglmm was applied for all model fitting
(Hadfield, 2010). This package uses Markov chain Monte Carlo methods, which address
the integration of the random effects distribution by estimating the marginal mean through
a Markov chain based on an appropriate target distribution.

Alternatively, parameters for correlated ZIP and correlated HurP models can be estimated
using marginal methods. For example, a ZIP GEE method was introduced by Dobbie and
Welsh (2001). These methods will not be pursued in the current paper.
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Table 1: Results of Analyzing EMA Pilot Data

Parameter Mixed ZIP Mixed HurP
βl,0 -0.41304 0.51807
βl,1 -0.46604 -0.21967
βc,0 0.06884 -0.42188
βc,1 0.03532 0.07880

Table 2: Results of Fitting ZIP-Generated Responses

Subjects Relative Bias Relative Bias Error Rate Power Power
S βl βc α̂c βl,1 βc,1

Mixed ZIP
25 0.2289 0.2523 0.3560 1 0.884
50 0.2211 0.1666 0.3720 1 0.988
100 0.2209 0.1530 0.3680 1 1

Mixed HurP
25 0.7928 0.2307 0.3800 0.904 0.688
50 0.7962 0.1475 0.4760 1 0.932
100 0.7989 0.1122 0.3880 1 1

3. Data Analysis and Simulation Study

A simulation study was performed to compare the performance of the mixed ZIP and mixed
HurP models with respect to correlated count responses with time-dependent covariates in
terms of bias, power, and Type I error rates. Analysis of the pilot EMA Marijuana data set
was used to determine parameters for the simulation study.

The interest in the EMA data is to model Marijuana usage using craving and motivation
as predictors. Craving is of primary interest, motivation is treated as a nuisance predictor,
and both are time-dependent covariates. Based on the pilot EMA data, both mixed ZIP
and mixed HurP models were fit using craving as the only predictor in both the logistic
and count components of the model. The following parameter estimates were obtained, as
shown in Table 1.

In addition, the variation in craving was found to be 0.2500, and the subject variation from
the model was estimated as 0.1886. Using these initial values, data were simulated accord-
ing to a mixed ZIP model, and data were simulated according to a mixed HurP model. For
each type (ZIP or HurP) of simulated data, both the mixed ZIP and mixed HurP models
were applied in order to evaluate the consequences of selecting an inappropriate model for
correlated counts with excess zeros. The data were generated as balanced, with complete
T = 10 replicates for each subject, and subject counts of S = 25, S = 50, and S = 100. A
total of M = 250 replicates was used for each combination of sample size and type of data
simulated. For model fitting, the MCMCglmm R Package was applied (Hadfield, 2010),
with prior covariance structures for the random effects taken to be diagonal with variance
0.002.

The results of fitting both the mixed ZIP and the mixed HurP models to the simulated
correlated ZIP responses are shown in Table 2. The Type I error rate is reported only for
the count component of the model.
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Figure 1: Results for ZIP-Generated Data

Based on these values, a few conclusions are evident. The relative bias for the logistic
component is much larger for the incorrect model, and does not improve with increased
sample size. Second, the relative bias for the count component decreases with sample size
for both the correct and the incorrect models. The type I error rates are extremely large.
Finally, both correct and incorrect models have sufficient power, and are probably over-
powered for the logistic component of the model. A plot of the power by sample size
is shown in Figure 1. While the incorrect model shows the lowest power for the count
component, power appears to be sufficient after reaching S = 50 subjects.

The results of fitting both the mixed ZIP and the mixed HurP models to the simulated
correlated HurP responses are shown in Table 3. The Type I error rate is reported only for
the count component of the model.

Based on the values generated, a few conclusions can be made. The relative bias for both
components of the model is quite large for the incorrect mixed ZIP model and does not
decrease with sample size, while the corresponding smaller relative bias for the correct
model does decrease with sample size. The type I error rates are again extremely large,
and the logistic component appears to be overpowered. A plot of the power by sample size
is shown in Figure 2. The count component does not show sufficient power for smaller
sample sizes when using the incorrect model. Overall the incorrect model is much worse
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Table 3: Results of Fitting Hurdle-Generated Responses

Subjects Relative Bias Relative Bias Error Rate Power Power
S βl βc α̂c βl,1 βc,1

Mixed HurP
25 0.2324 0.0365 0.4120 1 0.876
50 0.2196 0.0300 0.3400 1 0.980
100 0.2054 0.0093 0.3240 1 0.996

Mixed ZIP
25 2.8636 0.6887 0.4160 0.904 0.580
50 2.8146 0.6501 0.5120 0.991 0.808
100 2.8388 0.6512 0.6000 1 0.952

for mixed HurP data than for mixed ZIP data. In other words, fitting the mixed ZIP model
comes with more significant consequences if that model is incorrect.
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Figure 2: Results for Hurdle-Generated Data

4. Concluding Remarks

Considering the results of the limited simulation study in the previous section, a number of
conclusions can be made. When modeling correlated counts with excess zeros described
according to the EMA pilot data, both the mixed ZIP and mixed HurP models are extremely
liberal when performing hypothesis tests on time-dependent covariates. Specifically, the
logistic component of the model is over-powered, rarely failing to reject the null hypothesis.
This may be compounded by the omission of a confounding variable in this component of
the simulated data. In addition, the type I error rates for the count component of the model
were inflated greatly, with unacceptable levels of incorrect rejection. It seem the models
struggle to detect variables that are not significant. This suggests there may still be an
over dispersion problem in these models when time-dependent covariates are present, as a
reduction in parameter estimator standard errors could explain the power and type I error
rate issues.

In terms of selecting an appropriate model according the data-generating process, it seems
that the mixed HurP model is a “safer” choice than the mixed ZIP model. While the mixed
HurP model did suffer some effects from being applied to correlated ZIP data, the conse-
quences of applying the mixed ZIP model to correlated HurP data were much more dra-
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matic. Incorrectly applying the mixed ZIP model leads to great increases in parameter
estimate bias in both components of the model, along with reduced power.

One consideration in selecting between a ZIP and HurP model is the intentions of the
investigator. The ZIP and HurP models are constructed under different assumptions about
the response distribution, and consequently are associated with slightly different parameter
interpretations. Within any Hurdle model, it is inherently assumed that zero counts are
produced only as certain zeros. If a response is not to be a zero (and the “hurdle” is cleared)
then the response will be strictly positive. Thus the parameters in the logistic component
of a Hurdle model represent effects on the probability of an observed zero, and are the only
components of the model directly related to observed zeros. The parameters in the count
component of a Hurdle model represent effects on the positive counts observed. The Hurdle
model also allows the researcher to model a deflation of zeros in the response, while the
ZIP model does not.

On the other hand, any ZIP model allows zeros to be generated as certain zeros and also
as part of the Poisson distribution that also describes the positive observations. While the
parameters of the logistic component of a ZIP model represent effects on the probability of
an observed zero, similar to the Hurdle model, the parameters of the count component of a
ZIP model represent effects on any count. Philosophically, the Hurdle models assume that
zero counts are associated with different processes and populations than positive counts.
The ZIP model allows that zero counts do not necessarily define a separate population.

A final consideration when selecting between the ZIP and HurP models is software avail-
ability. The mixed ZIP and mixed HurP models can both be fit using either SAS or R. In
SAS, PROC NLMIXED can be used to estimate parameters for both ZIP and HurP and also
mixed ZIP and HurP models. However, expressions for the log-likelihoods are required
and must be entered. Correspondingly, in R, both the MCMCglmm Package and the glm-
mACMB Package can be used to fit mixed ZIP and HurP models. These packages have the
ZIP and Hurdle distributions built in, and allow for specification of prior distributions on
the dispersion components of the models.
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