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Abstract 

Osteoporosis is a diffuse skeletal disease that is characterized by bone mass reduction and changes in the 

microarchitecture of the bone which eventually result to fractures, pain and disability. Magnetic 

Resonance Imaging (MRI) techniques, can offer insight into the fat content of the marrow and pore 

structure, which has been associated with osteoporosis. While these techniques are promising, the cost of 

MRI exam makes them an unsustainable choice for screening. We address the question of whether regular 

clinical brain MRI exams, can be used to identify a population at risk of osteoporosis, and allow the 

physician to refer them for further screening. The data set includes an osteoporosis diagnosed and a 

control group.  Important features (texture analysis characteristics) are identified by using robust 

randomization tests for the difference of two means. The ability of these features for detecting 

osteoporosis is investigated by using different classifiers. The use of different statistical criteria provides 

the means of selecting the best classifier according to its performance. 
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1. Introduction 
Osteoporosis is a diffuse skeletal disease that is characterized by bone mass reduction and changes in the 

microarchitecture of the bone. It results in a loss of the mechanical strength of the bone and is clinically 

manifested by bone fractures due to reduced bone density, mostly in the hip and in the spine. It leads to 2 

million fractures per year in the United States alone, with an estimated cost of $19 billion annually. 

Currently, screening is mainly performed by bone mineral density measurements using dual energy X-ray 

absorptiometry (DXA) and quantitative ultrasound, which  has been proposed as a more cost-effective 

and radiation-free surrogate to DXA. 

Magnetic resonance imaging (MRI) techniques, can offer insight into the fat content of the marrow and 

pore structure, which has been associated with osteoporosis. In particular, T1-weighted MRI images have 

been shown to be able to detect osteoporosis, as they have the potential of detecting alterations in the 

structure of the trabecular bone. 
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2. Motivation 
While all these techniques show the promise of MRI for osteoporosis diagnosis and monitoring, the cost 

of the MRI exam makes them an unsustainable choice for screening. However, MRI is prescribed 

routinely as a diagnostic procedure for a variety of neurological and orthopedic conditions, both of which 

affect patients in the age range of interest for osteoporosis screening. Based on this, we addressed the 

question of whether regular clinical brain MRI exams, already obtained as part of the normal clinical care 

for a concomitant, but unrelated condition, can be used to identify a population at risk for osteoporosis, 

and allow the physician to refer them for further testing using the established osteoporosis diagnostic 

techniques.  

3. Data 
Data used for this study were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (adni.loni.ucla.edu).  ADNI’s medical history data set consists of 32 female subjects of whom 16 

are patients (reported osteoporosis diagnosis-MEAN (SD) age: 74.6 (6.1)) and 16 are controls (did not 

report osteoporosis diagnosis- MEAN (SD) age: 78.2 (7.3)). 

4. Imaging 
MPRAGE (magnetization prepared rapid gradient echo sequence) images considered here are one of the 

most popular sequences for brain imaging in clinical and research studies. Such sequences capture high 

spatial resolution with whole brain coverage in short time.  In an attempt to observe texture changes in the 

superior part of the cerebral spine, MPRAGE images will be used to detect alterations in the structure of 

the trabecular bone. The marrow, which fills the pores of the matrix, is a heterogeneous fluid-like 

substance, which is the origin of the MRI signal. 

5. Texture analysis 
Texture is an innate property of all surfaces and contains important information about its structural 

arrangement. Since the textural properties of images carry useful info for discrimination purposes, it is 

important to develop features for texture. Prior work has shown the usefulness of such textural features 

for categorizing images. Texture analysis refers to the statistical analysis of voxel intensities within a 

defined neighborhood, indicating patterns of small-scale variations in image intensity in a particular 

region. 

Prior research (Herlidou et al.), detected texture analysis based changes in images of the calcaneus bone.  

However, a dedicated image of the calcaneus is a financially non-viable option for osteoporosis diagnosis.  

Brain MRIs are routinely prescribed for a variety of conditions, especially in middle-aged and elderly 

adults. 

Texture features 

All participants had a 3.0T brain MRI, including a MPRAGE sequence.  The texture analysis 

characteristics were calculated by Haralick et al (17).  Examples of these texture features are: 
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Difference entropy 
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Where p(i, j) is the (i, j)th entry in a normalized gray-tone spatial-dependence matrix,   (i)=-∑       
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Average values of all texture features were calculated over the marked ROIs. Subsequently, the values 

were analyzed for group differences. 

 

6. Methods 
Due to the small sample size, sampling process and lack of prior knowledge as to the distribution, group 

differences were tested using two sample randomization tests, which are non-parametric. Under the 

assumption of indifference, all possible permutations of the observations are equally likely (18). For each 

variable, 5000 randomizations were used; the difference between the means of the two groups was 

calculated and the distribution of the differences was created. A p-value from this distribution is the 

probability that we would observe a result as extreme as the actual mean difference if there is no 

difference between the two groups. Therefore, p-values were calculated by determining how rare the 

observed mean difference is compared to the generated randomization distribution; after Bonferroni 

correction, alpha value was set to 0.0014.  Such a randomization distribution, also indicating the p-value 

cutoff point (red vertical line) is shown in Figure 1. 

Figure 1: Randomization test p-value 

 

This process indicated 10 significant texture features shown in Table 1 below. 

Table 1: Variable significance (feature selection) 

 Orientation for gray level co-occurrence matrix 

calculation 
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Texture Feature 0° 45° 90° 135° 

ASM 0.01649441

6 

0.01521135

5 

0.01402776

6 

0.01052187

4 

Contrast 0.89602249

1 

0.95494874

1 

0.88921400

5 

0.82670831

5 

Correlation 0.42368053 0.42872054 0.39672375 0.41336468 

Inv. Diff. Moment 0.00115950 0.00114224 0.00161861 0.00078460 

Sum Average 0.26072260 0.26237919 0.76275894 0.76919203 

Sum Entropy 0.00146901 0.00131373 0.00132503 0.00152634 

Entropy 0.00116655 0.00097130 0.00105667 0.00104268 

Diff. Variance 0.00347146 0.00247795 0.00218208 0.00184461 

Diff. Entropy 0.00180069 0.00168697 0.00162634 0.00125261 

Table 1: p-values from randomization tests (5000 repetitions) between 

participants with and without osteoporosis. Bonferroni-corrected statistically 

significant results in bold. 

 

In order to estimate the potential of the proposed texture analysis methodology for osteoporosis detection, 

three classifiers were built. Those were linear discriminant analysis (LDA), Support Vector Machines 

(SVM) and a tree classification model. These classifiers were trained on the available data, and tested 

using a leave-two-out strategy, i.e. for every trial, the classifier was trained based on data from all but two 

participants, one patient and one control. This leave-one-out cross-validation approach provided an 

estimate for the test error rate. Excluded participants changed for every trial. 

To study classifier performance we first consider the classifier as a mapping of instances to predicted 

images (21). For a classifier and an instance, there are four possible outcomes that are summarized in a 

confusion table, which includes true positives (TP), true negatives (TN), false positives (FP) and false 

negatives (FN). Out of those, one can define several performance metrics for a classifier. In this paper we 

have used the following metrics: 

 Accuracy    
     

   
, where P corresponds to the total number of positives and N to the total 

number of negatives 

 Precision    
  

     
 

 Sensitivity    
  

 
 

 Specificity   =
  

     
 and 

 Matthews Correlation Coefficient    
               

√                               
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The MC (22) is mainly used in machine learning and expresses the type of association between the 

observed and the classified values. Its values range from -1 to 1, with a value of 1 corresponding to 

perfect agreement between the observed and the classified values. Similarly, a value of zero is equivalent 

to a classifier that randomly guesses and a value of -1 reveals total disagreement between prediction and 

observation.  

7. Results 
Table 1 shows the p-values resulting from the group comparison between patients and controls. Even after 

correction for multiple comparisons, several different texture features showed significant group 

differences or strong trends, indicating that the osteoporosis pathogenesis may affect them.   

Table 2 compares the performance of the three classifiers, using the metrics discussed in the previous 

section. For the calculations in this table, a threshold value equal to 0.5 is used to identify true positive 

values (correctly classified patients). LDA outperforms the other two classifiers based on specificity and 

sensitivity.  It is also the classifier which yields the smallest test error rate as shown in Table 3.  

 

 

Table 2: Performance of classifiers 

 LDA SVM Tree 

Model 

Accuracy 0.8438 0.7813 0.8750 

Precision 0.7895 0.8462 0.8750 

Sensitivity 0.9375 0.6875 0.8750 

Specificity 0.9231 0.7368 0.8750 

MCC 0.7000 0.5727 0.7500 

 

Table 3: Estimating the test error rate 

Classifier LOOCV 

LDA 6.4375 

SVM 7.2500 

Tree Model 7.0000 

 

Classification performance can be visually evaluated by a Receiver Operator Characteristic (ROC) curve 

shown in Figure 2. It also indicates high performance of the LDA classifier compared to SVM. To justify 

this statement in a quantitative way, the Area Under the Curve (AUC), value, is also calculated. Its value 

indicates the probability that the particular classifier will rank a positive case higher than a negative case. 
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Figure 2: ROC curves for LDA and SVM 

 

8. Conclusions and discussion 
In this study, we have shown that texture analysis derived features, can be used in order to distinguish 

patients with osteoporosis from an age-matched group of individuals without an osteoporosis diagnosis.  

There are two possible mechanisms by which osteoporosis pathogenesis can influence texture on T1-

weighted MRI. The first one is changes in bone microarchitecture. Osteoporosis is related to both pore 

enlargement and changes in the trabeculae, with loss of horizontal trabeculae and thickening of the 

vertical ones.(5) Such changes in trabecular bone structure have been previously associated with aging 

and osteoporosis development,(26–28) and are known to relate to bone strength(29) and therefore fracture 

probability.  

Furthermore, osteoporosis is known to change bone marrow composition. Marrow fat content is increased 

in both male (30) and female (31) patients with osteoporosis. This change in fat content will decrease the 

average T1 value of the marrow, leading to changes in the appearance in the T1-weighted MPRAGE 

images used in the study.   

There are several shortcomings to the study that need to be addressed before any definite conclusions can 

be reached. The main drawback stems from the multicenter character of the ADNI study, which results in 

slightly different acquisition protocols as well as different hardware at different sites introducing extra 

variation.  

Furthermore, there is a degree of uncertainty related to the health status, with respect to osteoporosis, of 

the study participants. The patient group was selected based on the mention of osteoporosis diagnosis 

during the medical screening interview. However, no information is available as to the severity of the 

disease or the presence of micro-fractures that may have interfered with the results of the study. Similarly, 

the fact that controls for the study did not report an osteoporosis diagnosis at the time of their enrollment 

in the ADNI study does not mean that they do not have osteoporosis. This is a shortcoming of a 

retrospective analysis based on limited data that can only be overcome with a prospective study including 

bone density measurements.  

With the limitations taken into account, the study results support the initial hypothesis that osteoporosis-

induced changes in the bone affect texture analysis based features in T1 weighted MRI, and that they can 

be detected from T1 weighted MPRAGE images of the brain, which include the superior part of the 

cerebral spine. These results confirm those by Herlidou et al (14) that detected texture analysis based 
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changes in T1-weighted images of the calcaneus. However, whereas a dedicated MRI of the calcaneus is a 

financially non-viable option for osteoporosis diagnosis, brain MRIs are routinely prescribed for a variety 

of conditions. This is especially true in middle-aged and elderly adults, which are in increased risk for 

osteoporosis development, making it a financially reasonable initial screening test for this population if 

the MRI is already available. Further studies may be warranted to establish a relationship between bone 

density and textural characteristics of the bone on MPRAGE images.  
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