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Abstract 

One of the common assumptions in linear mixed models is that the within-group 

variances are homogeneous. This paper investigates the impact of heterogeneous 

within-group variances on the estimate of a regression coefficient especially when the 

within-group variance depends on a group-level covariate. We also develop a 

diagnostic test based on score statistic to detect heterogeneous within-group 

variances in linear mixed linear models. The method is applied to the data from an 

orthopedic device clinical trial.  
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1. Introduction 

 
This paper is concerned with the problem of testing constant variance assumption in 

linear mixed model. In linear mixed model, there may be two sources of heterogeneity – 

between-group variances and within-group variances. Regarding heterogeneity between 

group variances Heagerty and Kurland (2001) have shown in generalized linear mixed 

models, that there can be bias in the mean regression coefficient if the random effects 

variance depends on a between-subject covariate, and this dependence is not modeled. 

Regarding heterogeneity within-group variances Lin, Raz and Harlow (1997) extended 

linear mixed models to allow for heterogeneous within-cluster variances. They assumed 

that the within-group variances are related to a vector of subject-level covariates. These 

two papers show that when heteroscedasticity occurs in linear mixed models, the 

variances of errors and random effects may depend on subject-level covariates, but more 

generally, it could also depend on other relevant quantities such as time or spatial 

ordering.  

 

In this paper we concentrate on the heterogeneous within-group variances which may be 

more applicable in clinical trials where the within-group variances are often quite 

different across investigational centers. Especially, in medical device trials, site-to-site 

variation can be larger and may lead to more serious problem compared to drug trials.  

The large variation between sites may be due to physician experience and training in 

using or implanting the device (sites with device inventor usually perform better). It may 

also be due to patient population, patient management, and reporting practices. Site 

effects are attributable to random variation. However, the site effects may be larger than 

those which can be attributed to random variation. One of the motivations with this paper 
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is that perhaps this extra variation between sites can be modeled through the variables 

defined for each site. 

 

In Section 2, the linear mixed model with heterogeneous within-group variances will be 

formulated with several expanded models for within-group variances. In Section 3, the 

impact of heterogeneous within-group variances on the estimates of regression 

parameters will be presented using simulated data. It will be shown that the regression 

coefficient may not be correctly estimated if the within-group variance depends on a 

group-level covariate, and this dependence is not modeled properly. In Section 4, we 

propose a diagnostic test for detecting heterogeneous within-group variances based on 

score statistic, and it will be applied to a real example from a medical device trial. 

 

 

2. The Linear Mixed Model with Heterogeneous Within-Group Variances 

 
The linear mixed model can be represented as 

 

                                       (1) 

 

where   is an Nx1 response vector with elements     which denotes the j-th observation 

(the subscript j going from 1 to ni) made within the i-th group (the subscript i going from 

1 to t), X is an N x p known matrix, β is a p x 1 vector of unknown regression parameters 

assumed to be fixed, and U is an N x t design matrix for the random effects, b with 

independent elements   , which are assumed to be distributed,    ~ N(0,   
  ). The errors, 

ϵ is an N x 1 random vector with independent elements,    , which are assumed to be 

distributed ,     ~ N(0,   ). The random effects and error are assumed to be independent. 

Note that we included only one random effect in model (1), but more than one random 

effect can be included. The U = (u1, u2, … , ut) where ui is an N x 1 column vector 

with values one at the position corresponding to the group i and zero elsewhere. The 

model (1) can be generalized to random coefficient model if the column of the U is 

allowed to have independent variables.  
 

One of the assumptions we are interested in the linear mixed model is that within-group 

variance or error variance is constant and that each realization of random variable has 

been drawn from the same normal population. As in any other modelling situation, we 

seek diagnostic methods concerning the plausibility of these assumptions. A standard 

method of deriving diagnostics is through the technique of model expansion, in which a 

model like (1) is embedded in a larger class, and a relatively simple procedure like a 

score test is then used to turn a test into a diagnostic. For model (1), useful expansion can 

be obtained by setting  

 

   (   )                                    (2) 

 

where    is a known q x 1 vector for the i-th group with elements,    =     }, the 

subscript k going from 1 to q, and   is a q x 1 vector of unknown parameters. We assume 

that function      is twice differential with respect to   and there is a unique value    of 

  such that         =1 for all   . Naturally, the null hypothesis for testing homogeneity 

will be   =   . In (2), the expanded model suggests that the within-group variance may 

be non-constant, but explainable through     This kind of model expansion technique was 
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used in Cook and Weisberg (1983) in examining the assumption of constant variance in 

the usual linear regression.   

 

 

One of the useful functions for   would be exponential since it is not only continuously 

differentiable and recovers constant variance when     , but also due to its monotone 

feature we can find a direction such that the variance increases in that direction. Our first 

choice of    would be  

 

                  .     (3) 

 

Here    can be considered as a vector of covariates for group i, and often it is appropriate 

to choose the variables from the column of X. The model (3) says that the within-cluster 

variance depends on group covariates,    through a function of   with  , unknown 

parameter. We often observe that the sample variance of clinical outcome varies across 

sites. This model may also be used in repeated measurement or longitudinal data where it 

is common for the variance of the observations to increase as the magnitude of numbers 

increases. Sometimes heteroscedasticity can be detected when     are taken usual 

transformation such as square or log before it is multiplied to  . When the variance may 

depend on the expected response, we take function   to be of the form  

 

                .     (4) 

 

 

3. Impact of Heteroscedasticity on Parameter Estimates 
  

As Heagerty and Kurland (2001) and Lin, Raz and Harlow (1997) pointed out, there may 

be bias in the regression parameter estimates of linear mixed model if there exists 

heteroscedasticity in the data, and it is not correctly modeled. The heteroscedasticity in 

linear mixed model may arise in several forms, but in this paper, we will consider a case 

where within-group variance depends on group covariate such as one in (3). In (3) we are 

interested in finding out the impact of      on point estimates and confidence intervals 

of parameters. A simulation study was conducted in the balanced case to investigate such 

impact. The values of   will be varied with the other parameter values fixed. The 

responses     (the clinical outcome from unit j in group i) were generated from the 

following model. 

 

                                         (5) 
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The values of   was varied from -2 to 2 (-2, -1, 0, 1, 2) with the other parameter values 

fixed: .,,,, 1 and 1110 22

10   b
The number of groups (t) was fixed as 

20, and the number of units per group (ni) as 10. The    ’s were randomly assigned 

with either 1 for treatment or 0 for control. The    ’s were generated from 

standard normal distribution.  The two hundred data sets were generated for each set of 

parameter values, and the maximum likelihood estimates were calculated. The numerical 

algorithms such as Newton-Raphson and Levenberg-Marquardt methods were used to 

obtain maximum likelihood estimates of parameters. The SAS PROC IML (Version 9.3) 

was used as programming language. Here we report the estimates of treatment effect ( ̂) 

and its standard error. Figure 1 shows the six box plots, each describing the distribution 

of 200 treatment effects ( ̂’s). And, above each box plot, the minimum, maximum, and 

average of 200  ̂’s are displayed. The first box plot was drawn from 200 treatment effect 

estimates, each of which was obtained from the correctly specified within-group variance 

(                      ) with   = -2. The label “Correct Lambda (-2)” implies that 

the model for the within-group variance is correct and the lambda ( ) is -2. And, the 

second box plot with the label with “Incorr.Lambda (-2)” implies that the model for the 

within-group variance is incorrect (that is, (              in the sense that it ignores 

the heterogeneous within-group variances and the lambda ( ) is -2. The rest of the box 

plots may be interpreted in a similar way. We may notice from this Figure that the two 

box plots are almost identical when   = 0. When    , however, the box plots are more 

spread when the within-group variance is incorrectly specified.  

 

From this six box plots in Figure 1, we may conclude that the standard errors of treatment 

effect estimates may be larger when the within-group variance is not correctly specified, 

which is shown in Figure 2.    

 

 

Figure 1. Distribution of treatment effect estimates ( ̂) from 200 simulated datasets  
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Figure 2 shows the two box plots describing the distribution of the standard errors of 

treatment effect estimates (      ̂ ) – the first box plot is when the within-group variance 

is correctly specified, and the second one, incorrectly specified. Both of them are when 

the Lambda (   = 2. Above each box plot, the minimum, maximum, and average of 200 

      ̂ ’s are shown. We can see by comparing the two box plots, the values of       ̂  

are generally smaller when the variance structure is correctly specified. In fact, the 

average magnitude of       ̂  is 0.2147 when the within-group variance is correctly 

modeled, and 0.2524 when the within-group variance is incorrectly modeled. This finding 

confirms the result from the Figure 1. 

 

 

Figure 2: Distribution of       ̂  from 200 simulated datasets  

 
  

 

4. A Diagnostic Test for Detecting Heterogeneous Within-Group Variances 
 

The linear mixed model in (1) may be rewritten for the response vector for group i as 

follows:  

 

                                                          (6) 

 

where    denotes an ni x 1 response vector with elements     (the clinical outcome from 

unit j in group i) with the subscript i going from 1 to t. And, the heterogeneous within-

group variance will be modeled as in (2). That is,  

 

   (   )                               (7) 

 

Our interest is to develop a diagnostic test for detecting heterogeneous within-group 

variance by testing the null hypothesis, H0:   =    versus the alternative hypothesis, H1:  

  ≠   . A likelihood ratio test (LRT) can be useful for testing this hypothesis, but it 

requires the maximum likelihood estimate of  . Moreover, the closed form solution for 

the m.l.e. of λ is not available. On the other hand, score statistic (a second order large-

sample equivalent to LRT ) does not require the m.l.e. of   under the null. 
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Before we derive score test, we let         to denote a probability density function of     

in (6) with η, the unknown parameter vector, and assume that it satisfies the regularity 

conditions stated in Serfling (1980, P. 144). The unknown parameter vector, η will be 

decomposed into   and   with   = (     
      . For a given set of t independent response 

vectors on   , say,   ,        , denote                                  a 

log-likelihood, where                    . We are interested in testing  

   

H0:   =    versus H1:    ≠   .                                             (8) 

 

The score vector,    can be obtained by taking the first derivative of        with respect 

to   and the information matrix,      by taking the second derivative of        with 

respect to  . The    and     are evaluated at the restricted maximum likelihood estimates 

of        . The score statistic can then be defined as in Cox and Hinkley (1974) by  

  

.ˆ)ˆˆˆˆ(ˆ
 dJJJJdS T 11       (9) 

 

Under the null distribution the score statistic in (9) is asymptotically distributed as Chi-

square with the degrees of freedom equal to the dimension of  . 

  

Denoting the variance of     as    (   )           , and the covariance matrix of    

as                , the matrix    can be written as           
   (    )    

  with  

    
     and     

 indicating the identity matrix with the dimension of   , and the log-

likelihood of data can be written as    
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In the balanced case, the score test statistic is simplified as follows:  
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5. Applications to Orthopedic Trial Data 
 
The score test statistic in (9) was applied to the analysis of data from an orthopedic 

clinical trial, which was a prospective, multicenter, randomized controlled trial conducted 

in the Unites States. The data was a little bit modified to be used for this example. The 

new device was to treat chronic low back pain. The effectiveness was assessed using 

mobility score, which was measured 5, 10, 15, 20, 25 weeks after surgery to implant a 

device. A total of 215 subjects were enrolled in 16 investigational sites, and 108 subjects 

were randomized to treatment and 107 to control group. In addition to the treatment 

effect, it was of interest to find out whether the treatment effect varies from week to 

week, and the interaction term (Treatment by Weeks) was included in the model. The 

following linear mixed model was fit with baseline mobility score (B_Score) as covariate 

and treating investigational site as random effect.  

 

):

):

:

w

:

)w*(γwβ

i

ii

2

2

ijk

210

N(0,~error

N(0,~effect) (random  site

subject for  (B_Score) scoremobility  baseline

 weeks)25 20, 15, 10, (5,  weeksofvector         

subject for  assigned (TRT)  treatment: 

 site within subject in    week from outcome clinical

 







ijk

bk

i

i

ijkkiiijk

kb

ix

iT

kijY

bxTTY





 

 

The interaction of Treatment-by-Week (T *w) turned out to be non-significant, and 

therefore the interaction term was removed. Table 1 below shows the output from SAS 

PROC Mixed after removing the interaction term. The P-value for the treatment effect 

(TRT) is 0.1206, which seems to indicate that there is no statistically significant 

treatment effect. 

 

   Table 1. SAS output from PROC Mixed 

Effect Week Estimate StdErr DF tValue Probt 

Intercept _ 18.3425 2.8678 15 6.40 <.0001 

TRT _ 2.8601 1.8409 1053 1.55 0.1206 

Week 5 -11.2988 1.2002 1053 -9.41 <.0001 

Week 10 2.7238 1.2002 1053 2.27 0.0234 

Week 15 2.6849 1.2002 1053 2.24 0.0255 

Week 20 1.3424 1.2002 1053 1.12 0.2636 

Week 25 0 . . .  .  

B_Score _ 0.7789 0.06216 1053 12.53 <.0001 

 
Now we consider the expanded model for the within-subject variance (error variance) 

using the form of             . The possible candidates for    were age, BMI (body mass 

index), investigational site, and baseline mobility score. The score test statistic was 
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calculated for these variables, and they are shown in Table 2. The third column shows the 

approximate P-value for the score statistic based on the Chi-square distribution with the 

degrees of freedom equal to one.  

 

            Table 2. Score statistic for subject-level covariate     

Subject-level covariate (  ) 
Score statistic P-value based on     

  

age group   2.252    > 0.10 

BMI   2.936    > 0.05 

site   0.471    > 0.30 

baseline mobile score 15.202   < 0.001 

 

The score statistic shows that the error variance may be a function of baseline mobility 

score, which is confirmed from the plot of residuals against baseline mobility scores. 

Figure 3 below shows the plot of residuals against four groups of baseline mobility score. 

The plot indicates that the error variance may decrease as baseline mobility score 

increases. 

 
Figure 3. Plot of residual against baseline mobility score group  

 
 
 

More accurate estimate of treatment effect may be obtained when we use the expanded 

model for the within-group variance,               with baseline mobility score as   . 

However, it involves calculating the maximum likelihood estimate of   which may be 

difficult with the commercially available software. Instead, we used the Group option in 

PROC Mixed which is often used to handle the heterogeneity problem.  When we use the 

JSM 2014 - Section on Medical Devices and Diagnostics

2041



 

Group option, we obtain the following SAS output from PROC Mixed in Table 3. The P-

value for the treatment effect (0.0402) indicates that the treatment effect is now 

statistically significant at the significance level of 5%.    

 

  Table 3. SAS output from PROC Mixed with Group Option 

Effect Week Estimate StdErr DF tValue Probt 

Intercept _ 15.8948 2.8318 15 5.61 <.0001 

TRT _ 3.4886 1.6980 1053 2.05 0.0402 

Week 5 -10.5932 1.1891 1053 -8.91 <.0001 

Week 10 2.9775 1.1891 1053 2.50 0.0124 

Week 15 2.8714 1.1891 1053 2.41 0.0159 

Week 20 1.4452 1.1891 1053 1.22 0.2245 

Week 25 0 . . .  .  

B_Score _ 0.8025 0.06245 1053 12.85 <.0001 

 

 

6. Conclusion 

 
In linear mixed models, the homogeneity for the error structure is almost automatically 

taken for granted, and little attention has been devoted to checking the impact of the 

incorrect correlation structure on the parameter estimates.  

We’ve shown that the standard error of the regression coefficient may be over-estimated 

if the within-cluster variance depends on a cluster-level covariate and this dependence is 

not modeled. We developed a diagnostic test based on score statistic, and it appears that it 

can be useful in detecting heterogeneous within-cluster variances. The future work may 

include investigating the small-sample behaviour of the null distribution of score statistic 

developed in this paper. 
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