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Abstract 
A new bivariate control chart denoted by T2

MEDMAD based on the robust estimation as an 

alternative to the Hotelling’s T2 control chart is proposed. The location vector and the 

variance-covariance matrix for the new control chart are obtained using the sample median, 

the median absolute deviation from the sample median, and the comedian estimator. The 

performance of the proposed method in detecting outliers is evaluated and compared with the 

Hotelling’s T2 method using a Monte-Carlo simulation study. To illustrate the application of 

the proposed method we will discuss a numerical example 
 
Keywords: Bivariate control chart; False Alarm; Hotelling’s T2 statistic; Outliers; Robust 

estimation; Simulation Study; Statistical process control.  

 
1.  Introduction 
To monitor the quality characteristics in an industrial process, control charts are the most 

popular tools used in statistical process control (SPC). In many of these industrial processes, 

it is frequently required to monitor several quality characteristics at the same time. For 

example, the quality of a certain type of tablets may be determined by weight, degree of 

hardness, thickness, width and length (Liu, 1995). These quality characteristics are clearly 

correlated and therefore the separate univariate control charts for monitoring individual 

quality characteristics may not be adequate for detecting outliers and changes in the overall 

quality of the product. Thus it is desirable to have control charts that can simultaneously 

monitor multivariate measurements. Because of that, the multivariate control charts are the 

most common tools used in such cases. These control charts can take into account the 

simultaneous nature of the control scheme and the correlation structure between the quality 

characteristics (Alt, 1985). 

 The multivariate control chart is useful when several quality characteristics of a product 

are taken to assess quality. The main objective of a multivariate control chart is to detect the 

presence of special causes of variation and can be used as a tool to detect multivariate 

outliers, mean shifts, and other distributional deviations from the in-control distribution. 

  

1.1 Effect of outliers in Multivariate Quality Control Charts 

In statistical quality control concepts, an outlier is defined as an observation that deviates so 

much from other observations as to arouse suspicion that it was generated by a different 

mechanism (Hawkins, 1980). Outliers have a big influence on resulting estimates and cause 

any out-of-control observations to remain undetected.  

Outliers can be detected by using univariate or multivariate methods. When, there are 

more than one outliers the detection situation becomes more difficult due to masking and 
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swamping (Rousseeuw and van Zomeren, 1990). Masking occurs when we fail to detect the 

outliers while swamping occurs when observations are incorrectly declared as outliers. The 

identification of outliers in multivariate cases is more difficult than in the univariate case. For 

instance, the simple graphical methods that can be used to detect outliers in a single 

dimension are often not available in higher dimensions.  

Outliers can heavily influence the estimation of the variance-covariance matrix and 

subsequently the parameters or statistics that are needed to be derived from it. Hence, a robust 

estimate of the variance-covariance matrix that will not be affected by outliers is required to 

obtain valid and reliable results (Hubert and Engelen, 2007). The modern strategy for dealing 

with masking in the univariate case is to substitute the sample mean and variance with sample 

median, MED, and median absolute deviation from the sample median, MAD, respectively 

(Wilcox and Keselman 2003; Abu-Shawiesh et al., 2009). In multivariate case a popular 

strategy is to make multivariate approaches more robust by replacing the location and the 

scale estimators with measures of central tendency and dispersion that are resistant to outliers. 

1.2 Constructing the control chart using the Hotelling’s T2 Statistic 

The Hotelling T2 statistic has widely been used in constructing the multivariate control charts 

to monitor the individual or subgroups observations. However, it is not robust. In the 

construction of such control charts, Alt (1985) has defined two phases: Phase I and II. In 

Phase I, a historical data set of observations is analyzed to determine whether a process is in-

control and to estimate the parameters of the in-control process, the control limits and to 

identify and eliminate multivariate outliers. In Phase II, the estimations and control limits are 

used to check the data obtained during the industrial process for detecting any departure from 

the parameter estimates and, as noted by Woodall et. al. (2004), it is important to distinguish 

between Phase I and Phase II methods and applications. 

 To construct the control chart using Hotelling’s T2 statistic,  let us assume that  

iX , ,...,
1 2

tX X X
i i ip

 
  
   

denote a p x 1 vector that represents the p quality characteristics 

of the ith observation, and i= 1, 2, … , n, where n is the sample size. We also assume that the 

Xij’s are iid )( , 
p

N  when the process is in-control. If the process parameter values are 

unknown, data will be collected when the process in-control. Then, the mean vector  and 

the variance-covariance matrix  will be replaced respectively by x  and S, where x
 

is the 

sample mean vector and S is the sample variance-covariance matrix. 

  The Hotelling’s T2 control chart is then constructed using these estimated parameters. As 

mentioned before, the control chart is first used to test retrospectively whether the process 

was in-control (Phase I), then after the initial control chart has been established, the resulted 

control chart can be used to monitor the process on-line, that is, the values of individual 

observation are plotted one-at-a time on the chart as each new observation is obtained (Phase 

II). In this paper, we will consider control charts in Phase I.  The statistic plotted on the 

Hotelling’s T2 control chart for each initial observations is calculated as follows: 

              

2 1 1,2,3, ...,( ) ( ) ,t i n
i i i

T    x x S x x
                        (1) 

where x  and S are the sample mean vector and sample variance covariance matrix.  

Then the UCL of this control would be:

 

                                
,
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




                              (4) 

where 
,2,1 vvF is the th)1(   percentile point of the F distribution with v1 and v2 degrees 

of freedom, and α is the desired false alarm probability. The lower control limit (LCL) is 

usually set to zero.

  

1.3 Robust Alternatives to Hotelling’s T2 Control Chart 
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Robust estimation has been a useful approach in statistics due to good properties shown under 

some deviations of distributional assumptions and existence of outliers. Johnson (1987) found 

that the traditional Hotelling’s statistic cannot resist the departure from the normal 

distribution. Moreover, Croiser (1988) mentioned that the robustness against the multiple 

outliers is necessary in the multivariate quality control. Likewise, Brooks (1985) took notice 

about the outliers; these data errors increase in case of  the development of manufacturing 

system because of the huge collecting of data. It is now evident that the Hotelling’s T2 

statistic, which is based on the classical estimators, is easily affected by outliers (Rousseeuw 

and Leroy, 2003; Sullivan and Woodall, 1996). There have been many robust methods of 

estimating the variance-covariance matrix of a multivariate data. Such methods include 

Minimum Volume Ellipsoid (MVE), Minimum Covariance Determinant (MCD), S-Estimator, 

M-Estimator and Orthogonalized Gnanadesikan-Kettering (OGK) methods. Using these 

robust methods, various alternatives to Hotelling’s  have been proposed in order to avoid 

the negative effect of outliers on the control chart’s behavior. Oyeyemi and Ipinyomi (2010) 

proposed a robust method for estimating covariance matrix for multivariate data. 

Surtihadi (1994) used the median as a robust location estimator. He constructed a 

robust bivariate control chart based on the bivariate sign tests of Blumen and Hodges. 

Moreover, he found that this control chart needs fewer assumptions than the traditional 

control chart. Also, it needs the underlying distribution to be continuous and symmetric; as a 

result, this control chart has a good protection in the presence of the extreme data error.  

Vargas (2003) proposed a control chart based on robust estimators of location and 

dispersion using the minimum volume ellipsoid (MVE) estimators. Simulation studies showed 

that the robust Hotelling’s statistic that are using the minimum volume ellipsoid (MVE) 

estimators are efficient in detecting the multiple outliers and can deal with the masking effect. 

Jensen et. al. (2007) studied the high breakdown estimation method based on most 

popular robust estimators the minimum volume ellipsoid (MVE) and the minimum covariance 

determinant (MCD). They determined which estimator of them is better to use in the robust 

control charts in terms of detection of multiple outliers.  

Vargas and Lagos (2007) compared four multivariate control charts for process 

dispersion and among the schemes compared, a new control chart based on robust estimation 

of the variance-covariance matrix proved to be very effective in detecting changes in the 

process dispersion matrix. 

Alfaro and Ortega (2008) proposed a new alternative robust Hotelling’s   

controlled charts to the traditional Hotelling’s   control charts. They replaced the sample 

mean vector in the traditional Hotelling’s  statistic by the trimmed mean vector, and the 

variance covariance matrix by the trimmed variance covariance matrix to construct the 

alternative robust Hotelling’s  statistic. They concluded that the new robust Hotelling’s 

statistic is more effective in detection outliers.  

Alfaro and Ortega (2009) has  developed four alternatives robust Hotelling’s  

charts to the traditional Hotelling’s chart, these proposed control charts used minimum 

volume ellipsoid (MVE) estimator, minimum covariance determinant (MCD) estimator, 

reweighted  MCD estimator and the trimmed mean estimator. They concluded that the robust 

alternatives Hotelling’s  charts behaved better than the traditional Hotelling’s  charts in 

the presences of outliers. Furthermore, they recommended using the Robust Hotelling’s  

charts that depend on the trimmed mean and the modified of the MCD estimators when the 

amount of outliers is small. They also recommended using the other two robust Hotelling’s 

 statistic of MVE and MCD  when the detection of outliers is more important. 

     Abu-Shawiesh and Abdullah (2001) developed a new robust Shewart-type control chart 

for monitoring the location of a bivariate process and examine its behavior based on the 

Hodges-Lehamnn and Shamos-Bickel-Lehmann estimators. A numerical example is given to 

illustrate the use of the proposed method. Its performance was investigated using a simulation 

study.  

JSM 2014 - Quality and Productivity Section

2007

http://scialert.net/fulltext/?doi=jas.2011.56.65&org=11#5546_b
http://scialert.net/fulltext/?doi=jas.2011.56.65&org=11#5546_b
http://scialert.net/fulltext/?doi=jas.2011.56.65&org=11#592349_ja


 

 

 

     Abu-Shawiesh et al. (2012) proposed a new bivariate control chart for m sub-groups based 

on the robust estimators as an alternative to the Hotelling’s T2 control chart. The location 

vector and the variance-covariance matrix for the new control chart are obtained using the 

sample median, the median absolute deviation from the sample median, and the comedian 

estimator. The performance of the proposed method in detecting outliers is evaluated and 

compared with the Hotelling’s T2 method by using a Monte-Carlo simulation study.  

 

   In some industrial setting we come across with individual observations. This situation 

occurs frequently in the chemical and process industries. Since these industries frequently 

have multiple quality characteristics that must be observed, multivariate control chart with 

individual observation would be of interest in these situations (Montgomery, 2009).  Since 

Alfero and Ortega (2009)  suggested MVE and MCD among four methods and Abu-Shewiesh 

et al. (2012) proposed 
2

MEDMADT  for m sub-groups,  this paper make an attempt to consider 

several bivariate control charts, namely, Hotelling’s T2, 
2

MEDMADT , 
2

MVET  and 
2

MCDT   to monitor 

individual observations. The organization of the paper is as follows. The proposed bivariate 

robust control chart along with the other two methods are discussed in section 2.  To compare 

the performance of the proposed robust control chart, a simulation study has been conducted 

in section 4. To illustrate the use of the proposed methods, two real life data examples are 

analyzed in section 4. Section 5 ends up with some conclusions. 

 

2.  Bivariate Robust Control Charts 

In this section we will review several bivariate control charts, namely, Hotelling’s T2, 
2

MEDMADT , 
2

MVET  and 
2

MCDT   to monitor individual observations. 

 

2.1 The proposed Robust Bivariate Robust Control Chart  

Following Abu-Shawiesh et al.  (2012), we present the algorithm for the robust bivariate 

control chart. We assume that the process characteristics (X1, X2) are generally correlated and 

follow some symmetric and continuous bivariate distribution. The null hypothesis, H0, 

represents the state of statistical control. In particular, the hypothesis of interest would be:  

                            H0 : (, ) = (0, 0)     vs      H1 : (, )  (0, 0)                        (3) 

where (, ) is the median estimator of the process. We also assume, without loss of 

generality, that the in-control median (0,0) = (0, 0). Our proposed control chart constitutes 

the plotting of the 
2

MEDMADT  statistic computed from successive random samples from the 

process. The process is in-control if the plots are within the control region defined by the 

acceptance region of the test. This control region is specified by an upper control limit, UCL, 

where UCL is defined as the (1- )100th percentile of the associated statistic under the null 

hypothesis and  is the probability of a false alarm. For our proposed method, the null 

hypothesis, H0, is rejected if the value of the statistic 
2

MEDMADT  is too large. That is, for the 

significance level , H0 is rejected if 
2

MEDMADT  T  where T  is the (1- )100th percentile of 

the statistic 
2

MEDMADT  under the null hypothesis, H0, and it will represent the UCL value. This 

value will be determined later by a simulation study for different values of sample size n and 

significance level . Suppose that we have p variables X1, X2, ... , Xp. Each variable consists 

of n observations.  In this paper the value of p considered 2, then using individual observation 

we do the following: 

1. Calculate the MED estimators as follows: 

  2,1,
12

 jMEDMED
xj  

2. Calculate the MAD estimators as follows: 

  1.4826 X ,   1,2,.., ;  j=1,2j ij jMAD med X med i n    

3. The 2-by-2 sample variance-covariance matrix for the two variables X1 and X2 can be 

constructed as follows: 
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which is robust and positive definite matrix. The diagonal elements are the square of 

the MAD of Xj, that is, jjj MADMAD 2
  and  

COM(X1 , X2) = MED[(X1i – MED{X11, X12, …, X1n})( X2i – MED{X21, X22, …, X2n})]   . 

4. Calculate the inverse of the matrix 
MADS , that is, 

1

MADS
. 

5. Determine the statistic,  
2 1( ) ( )

i

t

MEDMAD i MAD iT x MED S x MED   , i=1,2,..,n 

6. The control limits will be determined through a Monte-Carlo simulation study. 

7. Plot the values of the statistic 
2

iMEDMADT  on the control chart. 

8.  If any value of 
2

iMEDMADT  is falling outside the control limits, then the process is 

considered to be an out of control. 

2.2  Robust MVE Control Chart 

Following Jensen et al. (2007) and Vergas (2003), a robust alternative to Hotelling T2 statistic 

is defined as 

i

2 t -1

MVE i MVE MVE i MVET =(x -x ) S (x -x )  

where  
MVEx  and  

MVES  are MVE mean vector and scale estimators respectively. The 

statistical software R is used to  calculate MVE estimates based on a genetic algorithm.  The 

computing program is available from the authors upon request.  More details on MVE  

method  we refer Vergas (2003), Jensen et al (2007) and Alfaro and Ortega (2009) among 

others. 

 

2.2  Robust MCD Control Chart 

 

Following  Jensen et al. (2007)  and Vergas (2003), a robust alternative to  Hotelling T2 

statistic is defined as 

i

2 t -1

MCD i MCD MCD i MCDT =(x -x ) S (x -x )  

where  
MCDx  and  

MCDS  are MDC location and scale estimators respectively.  The statistical 

software R is used to  calculate MVE estimates based on a genetic algorithm.  The computing 

program is available from the authors upon request.  More details on MCD method  we refer 

Vergas (2003), Jensen et al (2007) and Alfaro and Ortega (2007) among others. 

3.  The Simulation Study 

Since, the distributions of  T2
MEDMAD, T2

MVE  T2
MCD are not known, a theoretical comparison 

among different methods are  not possible, a simulation study has been conducted to compare 

the performance of the three robust methods. We used the R software to conduct this 

simulation. 

3.1 The General Simulation and Results 
The simulation series considered the bivariate normal distribution for sample sizes     n = 25, 

50 and 100. Moreover, we considered the bivariate contaminated normal distribution (10% 

and 20%). Each simulation run consisted of 5000 replications of size n. The control limits  

were determined from the 5000 simulations, such that the false alarm probability is 0.05, 

which is widely used level of significance. We will consider the mean vector  









0

0
 and 

the variance-covariance matrix 










1 0

0 1
.     The simulated upper control limits (UCL) for 

all methods are given in Table 1.  The lower control limits for all methods are set to zero. 

From Table 1 we observed that as sample size increase the control limits for all robust 

methods decrease, while the UCL for Hotelling’s T2 remain almost the same.  For very large 
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sample size, one may expect a constant UCL for all methods. However, the upper limit of 

T2
MEDMAD is close to Hotelling T2 than MCD and MVE. The limits of T2

MCD and T2
MVE are 

very close to each other.   It can also be noticed that the control limit of T2
MEDMAD  is between 

control limits of T2 and T2
MCD/ T2

MVE 

 Table 1: The Simulated UCL for all  T2 Control Charts  

 

Sample Size (n) T2 T2
MCD T2

MVE T2
MEDMAD 

 

25 

 

5.989 

 

13.488 

 

14.257 

 

7.724 

 

50 

 

5.987 

 

9.271 

 

9.656 

 

6.705 

 

100 

 

5.96 

 

7.57 

 

7.77 

 

6.28 

 

3.2 Simulation with Outliers  

The probability of detecting a change depends on the values of 
1 , 0 and 1 but it does not 

depend on the value of 
0 , therefore, we can, without loss of generality, use 










0

0
0 .  We 

consider the proportion of outliers (ε) as  0, 0.1 and 0.2.  We use 5000 replications for 

different sample sizes where n = 15, 25, 50 and 100. We have used α=0.05 for the simulation 

study. We calculated the percentage of detection of all outliers and the percentage of false 

alarms in parentheses which is estimated as the proportion of statistic values that are above 

the control limits in the 5000 replications. To perform the simulation study with outliers, we 

consider the following three cases: 

(a)  Independent Variables 

In this case, the two variables (Quality Characteristics) X1 and X2 are assumed to be 

independent. The contaminated normal model considered is as follows: 

                                            )I,()I (0,)1( 212  NNCN                                (4) 

where we consider 1 to be a vector of size 2. Its elements are all 0 (there is no change) or 3 

or 5 and 2I  is the identity matrix of size 2, that is, there are different sized changes in the 

average of the two independent variables X1 and X2. The results of this simulation study are 

given in Table 2.  

 

From Table 2 we observe that  if the variables are assumed to be independent and the outliers 

are present, the proposed robust method,  T2
MCD  and T2

MVE  perform better than  the 

Hotelling’s T2 control chart in the sense of high power. The Hotelling’s T2 has the lower false 

alarm rate compare to MCD and MVE. However, its power is the worse among four methods.  

Our proposed robust  method T2
MEDMAD has the lowest false alarm rate while keeping high 

power similar to T2
MVE and T2

MCD. 

(b) Correlated Variables 

In this case,  two variables,  X1 and X2 are assumed to be correlated. The contaminated 

normal model considered is as follows: 

                                           ),() (0,)1( 010   NNCN                               (5) 

where we consider
1 to be a vector of size 2 where the elements of the vector are all 0 (there 

is no change) or 5, which shows outliers (observations out of control) in the two variables, 

and 0  to be a matrix of size 2 given as  0 









19.0

9.01
. This value of 0  is used in order 
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to analyze whether the correlation coefficient level affects the detection probability. The 

results of this simulation study are given in Table 3.  

 

 Table 2: Percentage of Detection of all Outliers and the Percentage 

of False  Alarms (within parenthesis) for all methods 

 

 

Sample 

Size (n) 

 

Ɛ 

 

µ1 

 

T2 

 

T2
MCD 

 

T2
MVE 

 

T2
 MEDMAD 

 

 

25 

0 (0,0) 4.92  5.04 4.96 4.88 

0.1 

 

(3,3) 

(5,5) 

44.5(2.7) 

57.2(2.2) 

73.3(3.4) 

98.9(3.5) 

74.2(3.4) 

99.5(3.4) 

73.9(2.7) 

98.9(2.5) 

0.2 

 

(3,3) 

(5,5) 

19.5(2.4) 

23.2(2.0) 

57.8(2.4) 

96.9(2.1) 

59.6(2.6) 

96.9(2.2) 

46.8(1.3) 

87.3(1.1) 

 

 

50 

0 0,0) 4.99  5.11 5.14 4.91 

0.1 

 

(3,3) 

(5,5) 

49.6(2.3) 

67.7(1.8) 

85.6(3.2) 

100(3.4) 

88.1(3.3) 

100(3.5) 

83.8(2.3) 

100(2.4) 

0.2 

 

(3,3) 

(5,5) 

19.4(2.2) 

23.6(1.9) 

73.3(2.0) 

99.8(2.3) 

76.1(2.2) 

99.9(2.4) 

55.6(1.0) 

96.3(0.9) 

 

100 

0 0,0) 5.04 5.15 5.17 5.17 

0.1 

 

(3,3) 

(5,5) 

53.0(2.3) 

74.6(1.9) 

92.5(3.8) 

100(3.9) 

93.4(3.8) 

100(3.9) 

87.7(2.4) 

100(2.3) 

0.2 (3,3) 

(5,5) 

20.0(2.1) 

22.2(1.9) 

83.9(2.6) 

100(3.0) 

86.7(2.6) 

100(2.9) 

62.1(0.9) 

99.2(0.8) 

 

 

Table 3: Percentage of Detection of all Outliers and the Percentage 

of False  Alarms for all methods Methods 

 

Sample 

Size (n) 

 

Ɛ 

 

µ1 

 

T2 

 

T2
MCD 

 

T2
MVE 

 

T2
 MEDMAD 

 

 

25 

0 (0,0) 5.0 5.0 4.9 4.0 

0.1 

 

(3,3) 

(5,5) 

31.8(3.1) 

50.1(2.5) 

43.4(3.7) 

89.1(3.4) 

43.1(3.7) 

91.1(3.4) 

54.4(2.3) 

94.8(2.4) 

0.2 

 

(3,3) 

(5,5) 

15.8(2.6) 

21.2(2.1) 

28.8(2.9) 

78.7(2.2) 

29.3(3.0) 

80.4(2.5) 

33.2(1.1) 

78.1(1.2) 

 

 

50 

0 0,0) 4.9 4.8 4.9 4.2 

0.1 

 

(3,3) 

(5,5) 

36.1(2.7) 

56.5(2.1) 

54.7(3.4) 

96.5(3.4) 

56.4(3.5) 

97.4(3.4) 

64.0(2.2) 

98.1(2.1) 

0.2 

 

(3,3) 

(5,5) 

16.3(2.5) 

21.1(2.1) 

36.0(2.3) 

91.2(2.2) 

37.4(2.5) 

93.5(2.2) 

38.3(1.0) 

88.3(0.8) 

 

100 

0 0,0) 5.0 5.2 5.2 4.0 

0.1 

 

(3,3) 

(5,5) 

38.9(2.6) 

63.2(1.9) 

61.6(3.6) 

99.3(3.8) 

64.4(3.7) 

99.1(3.9) 

67.4(2.0) 

99.3(2.1) 

0.2 

 

(3,3) 

(5,5) 

17.3(2.5) 

20.8(1.9) 

42.3(2.4) 

97.0(2.8) 

43.8(2.5) 

98.5(2.8) 

43.1(0.8) 

94.2(0.7) 
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From Table 3 we observe that  if the variables are assumed to be correlated and the outliers 

are present, the T2
MEDMAD,  T2

MCD  and T2
MVE  perform better than  the Hotelling’s T2 control 

chart in the sense of high power. The Hotelling’s T2 has the lower false alarm rate compare to 

MCD and MVE. However, its power is the worse among four methods.  For small 

contamination, T2
MEDMAD,  method has the lowest false alarm rate and the highest power. 

However, in other situations the powers are comparable to MVE and MCD. 

(c) Correlated Variables and Regression Outliers 

Here, the two variables X1 and X2 are assumed to be correlated and regression outliers are 

introduced. The contaminated normal model considered is as follows: 

                                           ),() (0,)1( 110   NNCN ,                              (6) 

where we consider 0 to be a matrix of size 2 given as 0 









19.0

9.01
and 

1 to be a vector 

of size 2 where the elements of the vector are all 0 (there is no change) or 5, or a vector of 

size 2 with a -1.5 and for the other values, which shows regression outliers, and 1  to be a 

matrix of size 2 given as  1 









1.00

01.0
. This case of comparison is known as regression 

outliers. Results of this simulation study are given in Table 4.  

Table 4: Percentage of Detection of all Outliers and the Percentage 

of False  Alarms for all methods  

 

Sample 

Size (n) 

 

Ɛ 

 

µ1 

 

T2 

 

T2
MCD 

 

T2
MVE 

 

T2
 MEDMAD 

 

 

25 

0 (0,0) 4.8 4.8 4.8 4.7 

0.1 

 

(3,3) 

(5,5) 

59.7(2.0) 

63.2(2.0) 

98.8(3.4) 

100(3.4) 

98.9(3.4) 

100(3.4) 

98.6(2.6) 

100(2.7) 

0.2 

 

(3,3) 

(5,5) 

29.4(1.9) 

28.0(1.8) 

98.0(2.0) 

99.2(2.1) 

98.2(2.0) 

99.2(2.2) 

96.5(1.1) 

99.8(1.1) 

 

 

50 

0 0,0) 5.0 5.2 5.2 5.1 

0.1 

 

(3,3) 

(5,5) 

63.8(1.8) 

71.3(1.6) 

99.4(3.2) 

100(3.4) 

99.3(3.4) 

100(3.5) 

99.2(2.3) 

100(2.3) 

0.2 

 

(3,3) 

(5,5) 

30.6(1.7) 

29.0(1.7) 

99.3(2.2) 

100(2.2) 

99.3(2.3) 

100(2.2) 

98.0(0.8) 

100(0.8) 

 

100 

0 0,0) 5.1 5.5 5.3 5.2 

0.1 (3,3) 

(5,5) 

67.2(1.7) 

78.8(1.6) 

99.3(4.1) 

100(4.0) 

99.4(4.0) 

100(4.0) 

99.1(2.3) 

100(2.4) 

0.2 

 

(3,3) 

(5,5) 

31.3(1.7) 

28.9(1.7) 

99.2(2.9) 

100(2.9) 

99.2(2.9) 

100(2.8) 

98.4(0.7) 

100(0.7) 

From Table 4 we observe that if the variables are assumed to be correlated and the 

outliers are present, the T2
MEDMAD, T2MCD and T2

MVE perform better than the Hotelling’s T2 

control chart in the sense of high power. The Hotelling’s T2 has the lower false alarm rate 

compare to MCD and MVE. However, its power is the worse among four methods.  For all 

possible conditions, our proposed robust method, T2
MEDMAD has the lowest false alarm rate 

and the highest power.  

4. Applications 

To illustrate the procedure of the robust bivariate control charts, we will consider two real life 

data examples in this section. 

4.1 Example 1 

Consider a production process data given by Quesenberry (2001). The original data consists 

of 11 quality variables (characteristics) and measured on 30 products form a production 
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process. For our comaprison purposes we consider 25 observarions from the first two 

variables and provided them in  Table 5.  The first and fourth columns are the production 

numbers and  second, third, fifth and sixth  columns are the observed values of production 

quality variables (X1, X2). The sample mean vectors and sample covarinace matrices for all 

methods are given in Table 6. 

 

                   Table 5: Variable 1 ans 2 of Quesenberry (2001) data set.                    

Product 

Number 

X1 X2 Product 

Number X1 X2 

1 0.567 60.6 14 0.458 61.1 

2 0.538 56.3 15 0.554 59.8 

3 0.53 59.5 16 0.469 58.6 

4 0.562 61.1 17 0.471 59.6 

5 0.483 59.8 18 0.457 59.7 

6 0.525 60.2 19 0.565 60.9 

7 0.556 60.8 20 0.664 60.2 

8 0.586 59.8 21 0.6 60.5 

9 0.547 60.2 22 0.586 58.4 

10 0.531 60.6 23 0.567 60.2 

11 0.581 59.8 24 0.496 60.2 

12 0.585 59.7 25 0.485 59.5 

13 0.54 60.5    

 

Table  6: Sample mean vector and covariance matrix 

 

Method Mean vector Covarinace  matrix 

Hotelling 

T2 
0.540

59.90

 
 
 

 
0.0015 0.0025

0.0025 1.0470

 
 
 

 

T2
MEDMAD 0.547

60.15

 
 
 

 
0.0025 0.0032

0.0032 0.4159

 
 
 

 

T2
MVE 0.536

60.08

 
 
 

 
0.0019 0.0127

0.0127 0.3343

 
 
 

 

T2
MCD 0.551

60.16

 
 
 

 
0.0021 0.0038

0.0038 0.4006

 
 
 

 

 

Using 0.05,   the upper control limits for the all  T2 , T2
MEDMAD,  T2

MVE  and T2
MCD control 

charts from Table 1  are found to be 5.989, 7.724, 14.257 and 13.480 respectively. The 

resulting control charts are given in Figure 1. From Figure 1, we can see that the sample 

number 2 is out of control by all methods. However, the sample number 22 is out of control 

by MEDMAD and MVE methods. The sample number 20 is out of control by Hotelling T2 

statistic. 
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Figure 1 The Control Charts for production process data (Quesenberry 2011)using the 

Hotelling's T2 , T2
MEDMAD, T2

MVE and T2
MCD Methods. 

 

4.2 Example 2  

 

Consider a production process data given by Montgomerry  (2009, p.520). The original data 

consists of 4 quality variables (characteristics) and measured on 30 products form a 

production process. For our comaprison purposes we consider first  25 observarions from the 

first two variables and provided  them in  Table 7.  The first and fourth columns are the 

production numbers and  second, third, fifth and sixth  columns are the observed values of 

production quality variables (X1, X2).  The sample mean vectors  and sample covarinace 

matrices for all methods are given in Table 8. 
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Table 7:  Variable 1 ans 2 of Montgomery  (2009) data set 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table  8: Sample mean vector and covariance matrix 

 

Method Mean vector Covarinace  matrix 

Hotelling T2 10 

20

 
 
 

 
1.752  1.318

1.318  1.195

 
 
 

 

T2
MEDMAD  9.97 

20.03

 
 
 

 
1.407  0.800

0.800  1.407

 
 
 

 

T2
MVE   9.965

20.035

 
 
 

 
1.051   0.956

0.956  0.984

 
 
 

 

T2
MCD  9.965

20.035

 
 
 

 
1.051   0.956

0.956  0.984

 
 
 

 

 

Using 0.05,   the upper control limits for the T2, T2
MEDMAD, T2MVE and T2

MCD control 

charts from Table 1 are found to be 5.989, 7.724, 14.257 and 13.480 respectively. The 

resulting control charts are given in Figure 2. From Figure 2, we can see that the sample 

number 24 and 25 are out of control by all methods. 

Product 

Number 

X1 X2 Product 

Number X1 X2 

1 10 20.7 14 10 19.8 

2 10.5 19.9 15 8.5 19.2 

3 9.7 20 16 9.7 20.1 

4 9.8 20.2 17 8.3 18.4 

5 11.7 21.5 18 11.9 21.8 

6 11 20.9 19 10.3 20.5 

7 8.7 18.8 20 8.9 19 

8 9.5 19.3 21 9.9 20 

9 10.1 19.4 22 8.7 19 

10 9.5 19.6 23 11.5 21.8 

11 10.5 20.3 24 15.9 24.6 

12 9.2 19 25 12.6 23.9 

13 11.3 21.6    
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Figure 2 The Control Charts for production process data (Montgomerry , 2009) using the 

Hotelling's T2 , T2
MEDMAD, T2

MVE and T2
MCD Methods. 

 

 

5. Conclusions and Further Research 

This paper compared several bivariate control charts which are based on robust estimators as 

an alternative to the Hotelling’s T2 control chart. Since a theoretical comparison is not 

possible, we have done simulation for three cases: (i) independent variables (ii) correlated 

variables and (iii) correlated variables and regression outliers. From the simulation study we 

observed that the robust methods, T2
MEDMAD, T2

MVE and T2
MCD have much higher powers than 

the Hotelling T2. Both Hotelling T2 and T2
MEDMAD have the lower false alarm rate compared to 

T2
MVE and T2

MCD. However, the proposed robust method, T2
MedMAD has the lowest false alarm 

rate while having the highest power.  The research in this paper is limited with two variables 

and the application of individual observations.  The processes with more than two variables 

and with sub groups might be of interest for the practitioners.  Such research possibilities are 

under our current investigation.  
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