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Abstract
In the estimation of sensitivity and specificity in diagnostic medicine when a patient or the diagnos-
tic unit is considered as a cluster, the confidence interval of a single proportion is frequently used.
A number of confidence intervals for a single proportion in the case of non-clustered binary data are
proposed in the literature and implemented in standard software packages. However, little attention
has been paid to extending such inferences using clustered binary data. In this study, we consider
several asymptotic procedures, based on parametric and semiparametric models, to construct the
confidence interval for a single proportion based on binary outcome data arising in cluster stud-
ies. We compare the performance of the five proposed methods, in terms of coverage and expected
lengths, with a Monte Carlo simulation study and we illustrate the methodology with an example
from the CTC images study.

Key Words: beta-binomial, clustered binary data, confidence interval, CTC images data, propor-
tion

1. Introduction

In the diagnostic accuracy of CTC angiography (Zhou, 2002), interval estimation of a sin-
gle proportion is frequently used to estimate sensitivity (true positive rate) and specificity
(true negative rate) at the patient level, at the coronary artery level, and at the coronary
artery segment level. For the data of CTC angiography given in Table 1, the observed
variance in the estimated proportion of the colon polyps per patient is 0.1156, while the
predicted variance obtained using a binomial model is 0.0834. This concludes that the
observed variance is 1.39 times larger than the predicted variance. The responses within
the same cluster are correlated and due to this intraclass correlation, the observed variance
of these data exhibit greater or smaller binomial variability. The standard approaches of
analyzing such data that ignore the cluster structure may result in under-estimation of the
true standard error of the estimated risk rate. Furthermore, confidence intervals of a single
proportion based on the binomial model in such data may show lack of coverage. In the
simple binomial model case, several alternative methods for the interval estimation of a
single proportion have been developed and compared. Newcombe (1998) compared seven
interval methods for the binomial proportion and concluded that the Wilson score method
produced reasonable intervals for all parameter values. Brown et al. (2001) compared a
number of methods and concluded that the Wilson method performs quite well in terms of
coverage for π away from 0 or 1 but the interval was unnecessarily long and exceeded that
of the Clopper-Pearson interval when π was close to 0 or 1. They also summarized when
to use which method as follows: (i) do not use the text-book Wald interval for any π; (ii)
confidence intervals for transformations are generally too wide; (iii) the Clopper-Pearson
interval is too conservative; (iv) the likelihood ratio interval was too hard to compute for the
average user; (v) for not so rare events, use the Wilson score interval or Agresti-Coull; and
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Table 1: CAD-enhanced CTC results for detection of colon polyps for reader 1

Patient’s ID xi=number of polyps detected by radiologist ni=total number of polyps
1 1 1
2 2 2
3 2 2
4 1 1
5 2 2
6 2 2
7 1 1
8 1 1
9 1 1
10 1 1
11 2 2
12 0 1
13 2 3
14 2 2
15 1 1
16 1 1
17 1 1
18 2 2
19 1 2
20 0 2
21 1 1
22 2 2
23 2 2
24 2 2
25 0 1

(vi) for rare events, use the Wilson score interval. Although there has been much literature
pertaining to the binomial model, little attention has been paid to developing confidence
interval procedures for a single proportion based on clustered binary data.

For complex survey data, Korn and Graubard (1998) developed four alternative meth-
ods by estimating the variance based on the design effect as well as the effective sample
size. They concluded that the modified Wald interval did not work well for rare events and
the modified logit-transform was too wide, and they recommended the modified Clopper-
Pearson interval using the effective sample size adjusted for the survey’s nominal degrees of
freedom. However, these proposed methods show lack of coverage for small sample sizes
or an extremely small/large estimated proportion (see, Sukasih and Jang, 2005; Chen and
Tipping, 2002). Lui (2004) discussed two versions of Wald-type intervals and the Wilson
score interval based on the same variance in a beta-binomial model and using the ANOVA
estimate of the intraclass correlation. However, the performance coverage properties of
these methods were not investigated nor were the methods compared with other recom-
mended approaches in the literature. Although several works in the literature investigated
the joint estimation of the proportion and intraclass correlation based on parametric and
semiparametric model assumptions for clustered binary data, these approaches were not
extended. In this paper, we focus on extending these approaches to obtain confidence in-
tervals for a single proportion and investigate the performances through simulation studies
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for small to moderate sample sizes in terms of coverage and expected lengths.

2. Parametric and Semiparametric Models

It is well known that there is no unique probability function for clustered binary data. Some
authors (Altham, 1978; Kupper and Haseman, 1978; Efron 1986) proposed some probabil-
ity distributions, such as the beta-binomial model, the correlated binomial model, the mul-
tiplicative binomial model, and the double binomial model. However, the beta-binomial
model is the superior model compared to its competitive models (Paul, 1982; Saha, 2011).
Let x1, x2, . . . , xk be a sample from the beta-binomial distribution with probability mass
function

P (xi|ni, π, ϕ) =

(
ni

xi

) ∏xi−1
r=0 [(1− ϕ)π + rϕ]

∏ni−xi−1
r=0 [(1− π)(1− ϕ) + rϕ]∏ni−1

r=0 [(1− ϕ) + rϕ]

for xi = 0, 1, . . . , ni; 0 ≤ π ≤ 1 and 0 < ϕ < 1. The mean and variance of Xi are
E(Xi) = niπ and var(Xi) = niπ(1 − π)ξ, where ξ = 1 + (ni − 1)ϕ. When ϕ → 0, the
limiting distribution of BB(ni, π, ϕ) becomes Binomial(ni, π).

An inadequate model assumption for the underlying data distribution may lead to mak-
ing falsely significant inferences and one must be careful when applying the parametric
model assumptions (Nikoloulopoulos and Karlis, 2008). In such cases, a more flexible
model is available that only specifies the mean and variance of the data distribution. This
model assumption has been widely used in many biomedical applications. See, for ex-
ample, Breslow (1984), Moore (1986) and Paul and Saha (2007). Let x1, x2, . . . , xk be
a random sample drawn from a population with the same mean and variance as the beta-
binomial model, that is, E(Xi) = niπ and Var(Xi) = niπ(1− π){1 + (ni − 1)ϕ}.

3. The Confidence Interval Methods

3.1 The ML based interval
The kernel of the beta-binomial log-likelihood is given by

l(π, ϕ) =

k∑
i=1

[
xi−1∑
r=0

ln{(1− ϕ)π + rϕ}+

ni−xi−1∑
r=0

ln{(1− π)(1− ϕ) + rϕ} −
ni−1∑
r=0

ln{(1− ϕ) + rϕ}

]
.(1)

Then the ML estimates π̂ml and ϕ̂ml of π and ϕ are obtained by solving the estimating
equations

∂l

∂π
=

k∑
i=1

{
xi−1∑
r=0

1− ϕ

(1− ϕ)π + rϕ
−

ni−xi−1∑
r=0

1− ϕ

(1− ϕ)(1− π) + rϕ

}
= 0

and

∂l

∂ϕ
=

k∑
i=1

{
xi−1∑
r=1

−π + r

(1− ϕ)π + rϕ
+

ni−xi−1∑
r=0

−(1− π) + r

(1− ϕ)(1− π) + rϕ
−

ni−1∑
r=0

r − 1

(1− ϕ) + rϕ

}
= 0

simultaneously. Based on the expected Fisher information matrix, one can easily obtain an
asymptotic variance of π̂ml as

Var(π̂ml) =
Λ22

Λ11Λ22 − Λ2
12

, (2)
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where the expressions of the quantities, Λ11, Λ12, and Λ22 are given by

Λ11 = (1− ϕ)2
m∑
i=1

(
A

(2,0)
1i +A

(2,0)
2i

)
,

Λ12 =
m∑
i=1

(
A

(2,2)
1i +A

(2,2)
2i −A

(2,2)
3i

)
,

Λ22 = (1− ϕ)
m∑
i=1

(
A

(2,1)
1i −A

(2,1)
2i

)
+

m∑
i=1

(
A

(1,0)
1i −A

(1,0)
2i

)
,

with, for i = 1, ...,m; p = q = 0, 1, 2,

A
(p,q)
1i =

ni∑
j=1

(j − π − 1)q

Ep
j−1

Pr(Xi ≥ j),

A
(p,q)
2i =

ni∑
j=1

(j + π − 2)q

F p
j−1

Pr(Xi ≤ ni − j),

A
(p,q)
3i =

ni∑
j=1

(j − 2)q

Gp
j−1

,

where Ej = (1−ϕ)π+ jϕ, Fj = (1−ϕ)(1−π)+ jϕ, and Gj = 1+ jϕ. An approximate
100(1 - α)% confidence interval for π, based on ML, is then given by

π̂ml − zα/2

√
V̂ar(π̂ml) ≤ π ≤ π̂ml + zα/2

√
V̂ar(π̂ml),

where zα/2 is the100(1- α/2)th percentile of the standard normal distribution and V̂ar(π̂ml)
is the estimated variance of π̂ml obtained from (2) by replacing the parameters π and ϕ by
π̂ml and ϕ̂ml, respectively.

3.2 The EQL based interval

Based on the above semiparametric model, the kernel of the extended quasi-likelihood can
be obtained following Nelder and Pregibon (1987) as

Q+ =
k∑

i=1

−1

2
ln {1 + (ni − 1)ϕ}+

xi ln
(
niπ
xi

)
+ (ni − xi) ln

(
ni{1−π}
ni−xi

)
1 + (ni − 1)ϕ

 .
Then the EQL estimates π̂eql and ϕ̂eql can be obtained by solving the estimating equations

m∑
i=1

(xi − niπ)[1 + (ni − 1)ϕ]−1 = 0

and
m∑
i=1

(ni − 1)

[1 + (ni − 1)ϕ]2

[
xi ln

(
xi
niπ

)
+ (ni − xi) ln

(
ni − xi

ni{1− π}

)
− 1

2
{1 + (ni − 1)ϕ}

]
= 0,

simultaneously. Using the observed Fisher information matrix, an asymptotic variance of
π̂eql is obtained by

Var(π̂eql) =
Υ22

Υ11Υ22 −Υ2
12

, (3)
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Table 2: Coverage probability estimates (expected interval lengths) based on confidence
intervals by the methods with nominal level, 1− α = 95% and fixed litter sizes for sample
size k = 19.

ϕ π ML EQL DEQL QEE WA
0.1 0.05 0.986 (0.122) 0.987 (0.132) 0.977 (0.157) 0.988 (0.191) 0.987 (0.104)

0.10 0.984 (0.139) 0.994 (0.143) 0.991 (0.166) 0.987 (0.211) 0.975 (0.136)
0.15 0.959 (0.161) 0.973 (0.171) 0.978 (0.188) 0.967 (0.204) 0.957 (0.160)
0.20 0.949 (0.177) 0.966 (0.198) 0.972 (0.193) 0.953 (0.188) 0.948 (0.175)
0.25 0.947 (0.192) 0.975 (0.238) 0.967 (0.208) 0.945 (0.195) 0.936 (0.190)
0.30 0.956 (0.201) 0.980 (0.251) 0.972 (0.221) 0.960 (0.205) 0.944 (0.200)
0.35 0.957 (0.209) 0.984 (0.273) 0.973 (0.237) 0.954 (0.210) 0.930 (0.207)
0.40 0.961 (0.218) 0.989 (0.295) 0.971 (0.251) 0.963 (0.219) 0.929 (0.214)
0.45 0.939 (0.223) 0.992 (0.317) 0.955 (0.276) 0.934 (0.224) 0.939 (0.216)
0.50 0.933 (0.230) 0.991 (0.332) 0.954 (0.290) 0.929 (0.231) 0.946 (0.216)

0.3 0.05 0.992 (0.147) 0.991 (0.153) 0.972 (0.199) 0.990 (0.165) 0.971 (0.130)
0.10 0.991 (0.167) 0.998 (0.170) 0.998 (0.209) 0.993 (0.245) 0.959 (0.174)
0.15 0.936 (0.192) 0.942 (0.202) 0.971 (0.238) 0.951 (0.295) 0.948 (0.206)
0.20 0.919 (0.215) 0.931 (0.238) 0.949 (0.264) 0.933 (0.371) 0.939 (0.229)
0.25 0.925 (0.235) 0.943 (0.275) 0.954 (0.285) 0.939 (0.261) 0.944 (0.248)
0.30 0.921 (0.250) 0.948 (0.314) 0.954 (0.301) 0.933 (0.272) 0.928 (0.261)
0.35 0.933 (0.261) 0.958 (0.347) 0.959 (0.313) 0.935 (0.278) 0.924 (0.273)
0.40 0.948 (0.270) 0.964 (0.376) 0.959 (0.322) 0.947 (0.273) 0.933 (0.281)
0.45 0.950 (0.275) 0.974 (0.409) 0.975 (0.327) 0.953 (0.279) 0.921 (0.285)
0.50 0.926 (0.279) 0.982 (0.437) 0.961 (0.331) 0.931 (0.282) 0.932 (0.288)

0.5 0.05 0.995 (0.172) 0.995 (0.176) 0.986 (0.225) 0.996 (0.195) 0.962 (0.156)
0.10 0.986 (0.195) 0.994 (0.198) 0.994 (0.245) 0.990 (0.266) 0.940 (0.210)
0.15 0.919 (0.222) 0.923 (0.235) 0.964 (0.275) 0.940 (0.326) 0.937 (0.247)
0.20 0.904 (0.249) 0.911 (0.275) 0.941 (0.306) 0.919 (0.335) 0.927 (0.275)
0.25 0.906 (0.273) 0.919 (0.315) 0.950 (0.335) 0.922 (0.322) 0.932 (0.297)
0.30 0.917 (0.293) 0.936 (0.355) 0.962 (0.357) 0.931 (0.315) 0.928 (0.316)
0.35 0.941 (0.306) 0.952 (0.390) 0.973 (0.373) 0.949 (0.322) 0.934 (0.330)
0.40 0.945 (0.315) 0.966 (0.416) 0.971 (0.383) 0.956 (0.322) 0.936 (0.338)
0.45 0.924 (0.321) 0.957 (0.437) 0.965 (0.389) 0.933 (0.328) 0.927 (0.344)
0.50 0.922 (0.325) 0.962 (0.453) 0.962 (0.394) 0.923 (0.341) 0.941 (0.346)
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where the elements of the observed Fisher information matrix, Υ11, Υ12, and Υ22, are
given by

Υ11 = −∂2Q+

∂π2
=

1

π2(1− π)2

m∑
i=1

2πxi − xi − niπ
2

1 + (ni − 1)ϕ
,

Υ12 = HE
21 = −∂2Q+

∂π∂ϕ
=

1

π(1− π)

m∑
i=1

(πni − xi)(ni − 1)

[1 + (ni − 1)ϕ]2
, and

Υ22 = −∂2Q+

∂ϕ2
=

m∑
i=1

[
2(ni − 1)2

[1 + (ni − 1)ϕ]3

{
xi ln

(nixi

π

)
+ (ni − xi) ln

(
ni(1− π)

ni − xi

)}
− (ni − 1)2

2[1 + (ni − 1)ϕ]2

]
.

The approximate 100(1 - α)% confidence interval of π based on EQL is given by

π̂eql − zα/2

√
V̂ar(π̂eql) ≤ π ≤ π̂eql + zα/2

√
V̂ar(π̂eql),

where V̂ar(π̂eql) is the estimated variance of π̂eql obtained from (3) after replacing the
parameters π and ϕ by π̂eql and ϕ̂eql, respectively.

3.3 The DEQL based interval

From Paul and Saha (2007), we obtain the kernel of the profile double extended quasi-
likelihood which is given by

pv(Q) =
k∑

i=1

[(
xi +

π

δ
− 1

2

)
ln

(
xi +

π

δ

)
+

(
ni − xi +

1− π

δ
− 1

2

)
ln

(
ni − xi +

1− π

δ

)
−
(
ni +

1

δ
− 1

2

)
ln

(
ni +

1

δ

)
+

δ

12(π + δxi)
+

δ

12{1− π + δ(ni − xi)}
− δ

12(1 + δni)

−
(
π

δ
+

1

2

)
ln

(
π

δ

)
−
(
1− π

δ
− 1

2

)
ln[(1− π)/δ] +

(
1

δ
+

1

2

)
ln(1/δ)− δ

12π

− δ

12(1− π)
+

δ

12

]
,

with δ = ϕ(1− ϕ)−1. Then the DEQL estimates π̂de and δ̂de are obtained by solving

k∑
i=1

[
1

δ
ln

(
P1i(1− π)

πP2i

)
+

P1i − P2i

2P1iP2i

(
1 +

δP3i

6P1iP2i

)
+

2π − 1

2π(1− π)

(
1 +

δ

6π(1− π)

)]
= 0

and

k∑
i=1

[
π

δ2
ln

(
πP2i

P1i(1− π)

)
+

1

δ
ln

(
(1− π)P3i

P2i

)
+

π

2P1i

(
1

δ
+

1

6P1i

)

+
1− π

2P2i

(
1

δ
+

1

6P2i

)
− 1

2P3i

(
1

δ
+

1

6P3i

)
− 1

2δ
− 1− π(1− π)

12π(1− π)

]
= 0,

where P1i = π+δxi, P2i = 1−π+δ(ni−xi) and P3i = 1+δni. The DEQL estimate of ϕ
is ϕ̂de = δ̂de(1 + δ̂de)

−1. Using the observed Fisher information, we obtain the asymptotic
variance of π̂de, which is given by

Var(π̂de) =
Ψ22

Ψ11Ψ22 −Ψ2
12

, (4)

where Ψ11, Ψ12, and Ψ22 are the elements of the observed Fisher information matrix given
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Table 3: Coverage probability estimates (expected interval lengths) based on confidence
intervals by the methods with nominal level, 1− α = 95% and fixed litter sizes for sample
size k = 73.

ϕ π ML EQL DEQL QEE WA
0.1 0.05 0.951 (0.043) 0.961 (0.053) 0.963 (0.057) 0.096 (0.117) 0.941 (0.043)

0.10 0.942 (0.058) 0.946 (0.060) 0.957 (0.069) 0.955 (0.134) 0.932 (0.059)
0.15 0.937 (0.069) 0.957 (0.077) 0.955 (0.080) 0.950 (0.076) 0.943 (0.071)
0.20 0.945 (0.078) 0.976 (0.096) 0.969 (0.087) 0.942 (0.081) 0.948 (0.079)
0.25 0.932 (0.085) 0.982 (0.126) 0.953 (0.094) 0.935 (0.085) 0.935 (0.086)
0.30 0.945 (0.090) 0.996 (0.147) 0.965 (0.098) 0.948 (0.090) 0.950 (0.090)
0.35 0.939 (0.094) 0.998 (0.162) 0.957 (0.102) 0.938 (0.094) 0.937 (0.094)
0.40 0.943 (0.096) 1.000 (0.187) 0.955 (0.104) 0.943 (0.096) 0.938 (0.097)
0.45 0.970 (0.099) 1.000 (0.201) 0.979 (0.107) 0.975 (0.099) 0.951 (0.098)
0.50 0.938 (0.101) 1.000 (0.227) 0.955 (0.110) 0.939 (0.101) 0.943 (0.098)

0.3 0.05 0.968 (0.061) 0.950 (0.058) 0.852 (0.108) 0.979 (0.070) 0.930 (0.060)
0.10 0.917 (0.074) 0.915 (0.075) 0.975 (0.096) 0.948 (0.092) 0.939 (0.083)
0.15 0.925 (0.092) 0.940 (0.100) 0.971 (0.117) 0.942 (0.129) 0.943 (0.100)
0.20 0.934 (0.105) 0.958 (0.122) 0.974 (0.131) 0.947 (0.122) 0.947 (0.112)
0.25 0.941 (0.115) 0.970 (0.143) 0.982 (0.142) 0.951 (0.125) 0.953 (0.121)
0.30 0.936 (0.123) 0.978 (0.167) 0.975 (0.149) 0.942 (0.126) 0.949 (0.128)
0.35 0.936 (0.129) 0.987 (0.199) 0.969 (0.155) 0.938 (0.131) 0.948 (0.133)
0.40 0.943 (0.133) 0.989 (0.221) 0.977 (0.159) 0.939 (0.135) 0.949 (0.137)
0.45 0.967 (0.136) 1.000 (0.257) 0.985 (0.161) 0.965 (0.137) 0.953 (0.140)
0.50 0.943 (0.137) 0.998 (0.275) 0.977 (0.162) 0.944 (0.138) 0.953 (0.141)

0.5 0.05 0.973 (0.072) 0.957 (0.065) 0.967 (0.112) 0.988 (0.085) 0.935 (0.075)
0.10 0.909 (0.089) 0.908 (0.088) 0.968 (0.114) 0.944 (0.102) 0.945 (0.103)
0.15 0.906 (0.109) 0.926 (0.117) 0.966 (0.138) 0.934 (0.131) 0.943 (0.123)
0.20 0.922 (0.125) 0.954 (0.143) 0.976 (0.157) 0.942 (0.154) 0.954 (0.138)
0.25 0.942 (0.137) 0.965 (0.167) 0.979 (0.171) 0.954 (0.148) 0.952 (0.149)
0.30 0.930 (0.147) 0.970 (0.189) 0.979 (0.182) 0.934 (0.155) 0.950 (0.158))
0.35 0.938 (0.155) 0.984 (0.212) 0.982 (0.190) 0.932 (0.161) 0.956 (0.164)
0.40 0.956 (0.160) 0.990 (0.237) 0.989 (0.195) 0.955 (0.165) 0.955 (0.169)
0.45 0.962 (0.163) 0.991 (0.262) 0.990 (0.198) 0.965 (0.168) 0.954 (0.172)
0.50 0.939 (0.164) 0.988 (0.283) 0.981 (0.199) 0.947 (0.169) 0.952 (0.173)
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by

Ψ11 = −∂2pv(Q)

∂π2
=

m∑
i=1

[
2P1i − δ

2δP 2
1i

− 2

δP1i
− 2

δP2i
+

2P2i − δ

2δP 2
2i

+
δ

6P 3
1i

− δ

6P 3
2i

]

+m

[
2

πδ
− 2π − δ

2π2δ
+

2

(1− π)δ
− 2(1− π)− δ

2(1− π)2δ
+

δ

6π3
+

1

6(1− π)3

]
,

Ψ12 = HD
21 = −∂2pv(Q)

∂π∂δ
=

m∑
i=1

[
1

δ2
ln

(
P1i

δ

)
+

2π

δ2P1i
+

2P1i − 2δ

δP1i
− π(2P1i − δ)

2δ2P 2
1i

− 1

δ2
ln

(
P2i

δ

)

−2(1− π)

2δ2P1i
− 2P2i − δ

2δ2P2i
+

(1− π)(2P2i − δ)

2δ2P 2
2i

+
π

6P1i3
− 1

12P 2
1i

+
1− π

P 3
2i

+
1

12P 2
2i

]

+m

[
1

δ2
ln

(
1− π

δ

)
− 1

δ
ln

(
π

δ

)
− 1

12π2
+

1

12(1− π)2

]
, and

Ψ22 = −∂2pv(Q)

∂δ2
=

m∑
i=1

[
− 2π3

δ3P1i
− 2π

δ3
ln

(
p1i
δ

)
− 2(1− π)

δ3
ln

(
p2i
δ

)
+

π

6δP 2
1i

+
1− π

6δP 2
2i

+
2P3i − δ

δ3P3i
+

2

δ3P3i
+

1

6δP 3
3i

+
2

δ3
ln

(
p3i
δ

)
− 2P3i − δ

2δ3P 2
3i

− π2

6δP 3
1i

− (1− π)2

6δP 3
2i

− 2(1− π)2

δ3P2i

− 1

6δP 2
3i

− 2π(2P1i − δ)

2δ3P1i
− 2(1− π)(2P2i − δ)

2δ3P2i
+

π2(2P1i − δ)

2δ3P 2
1i

+
(1− π)2(2P2i − δ)

2δ3P 2
2i

]

+
2mπ

δ3
ln

(
π

δ

)
− 2m

δ3
ln

(
1

δ

)
− 2m

δ3
+

m(2π − δ)

2δ3
+

2m(1− π)−mδ

2δ3
− m(2− δ)

2δ3

+
2mπ

δ3
+

2m(1− π)

δ3
+

2m(1− π)

δ3
ln

(
1− π

δ

)
,

where P1i, P2i, and P3i are defined above. Then, the 100(1 - α)% confidence interval of π,
based on the DEQL, is

π̂de − zα/2

√
V̂ar(π̂de) ≤ π ≤ π̂de + zα/2

√
V̂ar(π̂de),

where V̂ar(π̂de) is the estimated variance of π̂de obtained from (4) after replacing the pa-
rameters π and ϕ by π̂de and δ̂de, respectively.

3.4 The QEE based interval

Using the above semi-parametric model, the optimal quadratic estimating equations (QEE)
of Crowder (1987) for the parameters π and ϕ are given by

Uπ =
∑m

i=1[Φiπ(zi − π) + ∆iπ{(zi − π)2 − σ2
iλ}] = 0 and

Uϕ =
∑m

i=1[Φiϕ(zi − π) + ∆iϕ{(zi − π)2 − σ2
iλ}] = 0,

where zi = xi/ni, λ = (π, ϕ), σ2
iλ = π(1 − π){1 + (ni − 1)ϕ}/ni = µ2i, Φiπ =

[−(γ2iλ + 2) + γ1iλ(1 − 2π)σλ/π(1 − π)]/σ2
iλγiλ, ∆iπ = [γ1iλ − (1 − 2π)σλ/π(1 −

π)]/σ3
iλγiλ, Φiϕ = γ1iλπ(1 − π)(ni − 1)/niσ

3
iλγiλ, ∆iϕ = −π(1 − π)(ni − 1)/niσ

4
iλγiλ

and γiλ = γ2iλ +2− γ21iλ, with γ1iλ and γ2iλ being the skewness and kurtosis measures of
xi, respectively. In practice, γ1iλ and γ2iλ are unknown. However, one can estimate these
parameters using the 3rd and 4th order moments of the beta-binomial model, which are
µ3i = µ2i(1−2π){1+(2ni−1)ϕ}/ni(1+ϕ) and µ4i = µ2i[{1+(2ni−1)ϕ}{1+(3ni−
1)ϕ}{1− 3π(1− π)}+ (ni − 1)(1− ϕ){ϕ+3niµ2i}]/[(1 + ϕ)(1 + 2ϕ)n2

i ], respectively.
The QEE estimates π̂qee and ϕ̂qee are the solutions to the above equations. Following the
results of Inagaki (1973), the sandwich variance, as k → ∞, of π̂qee can be obtained as
Var(π̂qee) = Γ11, where Γ11 is the 1st diagonal element of the variance-covariance matrix
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Table 4: Coverage probability estimates (expected interval lengths) based on confidence
intervals by the methods with nominal level, 1 − α = 95% and ED litter sizes for sample
size k = 20.

ϕ π ML EQL DEQL QEE WA
0.1 0.05 0.985 (0.100) 0.988 (0.099) 0.961 (0.130) 0.987 (0.153) 0.975 (0.085)

0.10 0.976 (0.114) 0.991 (0.119) 0.988 (0.136) 0.980 (0.170) 0.939 (0.113)
0.15 0.947 (0.134) 0.973 (0.153) 0.967 (0.155) 0.950 (0.148) 0.946 (0.134)
0.20 0.952 (0.148) 0.970 (0.187) 0.966 (0.168) 0.951 (0.155) 0.950 (0.148)
0.25 0.954 (0.162) 0.983 (0.201) 0.965 (0.181) 0.955 (0.164) 0.945 (0.161)
0.30 0.955 (0.172) 0.992 (0.237) 0.967 (0.189) 0.954 (0.173) 0.937 (0.170)
0.35 0.951 (0.180) 0.991 (0.251) 0.966 (0.217)) 0.954 (0.181) 0.941 (0.178)
0.40 0.950 (0.186) 0.997 (0.267) 0.961 (0.231) 0.951 (0.187) 0.923 (0.180)
0.45 0.951 (0.193) 1.000 (0.293) 0.967 (0.258) 0.955 (0.194) 0.929 (0.184)
0.50 0.930 (0.197) 1.000 (0.327) 0.957 (0.283) 0.933 (0.198) 0.923 (0.185)

0.3 0.05 0.988 (0.128) 0.994 (0.126) 0.943 (0.204) 0.995 (0.147) 0.962 (0.118)
0.10 0.972 (0.147) 0.982 (0.152) 0.984 (0.191) 0.976 (0.178) 0.942 (0.158)
0.15 0.904 (0.173) 0.916 (0.191) 0.954 (0.219) 0.919 (0.270) 0.932 (0.189)
0.20 0.906 (0.196) 0.935 (0.232) 0.951 (0.243) 0.925 (0.231) 0.930 (0.211)
0.25 0.918 (0.215) 0.948 (0.274) 0.956 (0.263) 0.927 (0.225) 0.938 (0.228)
0.30 0.927 (0.232) 0.966 (0.292) 0.964 (0.280) 0.930 (0.238) 0.936 (0.243)
0.35 0.940 (0.241) 0.971 (0.323) 0.966 (0.289) 0.941 (0.246) 0.934 (0.251)
0.40 0.951 (0.247) 0.984 (0.342) 0.969 (0.294) 0.950 (0.251) 0.930 (0.257)
0.45 0.950 (0.252) 0.987 (0.374) 0.971 (0.299) 0.955 (0.256) 0.942 (0.262)
0.50 0.927 (0.255) 0.994 (0.397) 0.964 (0.302) 0.925 (0.260) 0.929 (0.263)

0.5 0.05 0.995 (0.154) 0.999 (0.149) 0.979 (0.232) 0.997 (0.181) 0.955 (0.149)
0.10 0.972 (0.174) 0.978 (0.179) 0.986 (0.226) 0.989 (0.217) 0.944 (0.194)
0.15 0.891 (0.205) 0.905 (0.225) 0.959 (0.257) 0.921 (0.324) 0.933 (0.231)
0.20 0.886 (0.232) 0.908 (0.271) 0.946 (0.289) 0.908 (0.267) 0.917 (0.258)
0.25 0.894 (0.256) 0.920 (0.315) 0.951 (0.315) 0.907 (0.322) 0.919 (0.279)
0.30 0.925 (0.275) 0.953 (0.361) 0.965 (0.337) 0.933 (0.293) 0.936 (0.297)
0.35 0.935 (0.288) 0.955 (0.389) 0.970 (0.352) 0.945 (0.302) 0.929 (0.309)
0.40 0.939 (0.296) 0.965 (0.413) 0.975 (0.360) 0.943 (0.307) 0.928 (0.317)
0.45 0.932 (0.303) 0.967 (0.443) 0.971 (0.367) 0.940 (0.314) 0.930 (0.322)
0.50 0.918 (0.307) 0.970 (0.477) 0.959 (0.371) 0.919 (0.316) 0.932 (0.323)
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Γ given by

Γ =

[
Γ11 Γ12

Γ21 Γ22

]
= [A(π̂, ϕ̂)]−1B(π̂, ϕ̂){[A(π̂, ϕ̂)]−1}′.

The expressions for the elements of the 2 × 2 matrix A(π̂, ϕ̂) in the variance-covariance
matrix Γ are obtained by

Aππ(π̂, ϕ̂) = E (−∂Uπ/∂π) =
m∑
i=1

[Φiπ +Ψiπ(1− 2π){1 + (ni − 1)ϕ}/ni]

Aπϕ(π̂, ϕ̂) = E (−∂Uπ/∂ϕ) =
m∑
i=1

[Ψiππ(1− π)(ni − 1)/ni]

Aϕπ(π̂, ϕ̂) = E (−∂Uϕ/∂π) =
m∑
i=1

[Φiϕ +Ψiϕ(1− 2π){1 + (ni − 1)ϕ}/ni] and

Aϕϕ(π̂, ϕ̂) = E (−∂Uϕ/∂ϕ) =
m∑
i=1

[Ψiϕπ(1− π)(ni − 1)/ni] .

Similarly, we obtain the expressions for the elements of the 2 × 2 matrix B(π̂, ϕ̂) in the
variance-covariance matrix Γ by

Bππ(π̂, ϕ̂) = E(UπUπ) =
m∑
i=1

[
Φ2
iπµi2 + 2ΦiπΨiπµ3i +Ψ2

iπ(µ4i − µ2
2i)
]

Bπϕ(π̂, ϕ̂) = E(UπUϕ) =
m∑
i=1

[
ΦiπΦiϕµi2 +ΦiπΨiϕµ3i +ΦiϕΨiπµ3i +ΨiπΨiϕ(µ4i − µ2

2i)
]

= Bϕπ(ϕ̂) and

Bϕϕ(π̂, ϕ̂) = E(UϕUϕ) =
m∑
i=1

[
Φ2
iϕµi2 + 2ΦiϕΨiϕµ3i +Ψ2

iϕ(µ4i − µ2
2i)
]
,

where Φiπ, Ψiπ, Φiπ, Ψiπ, µ2i, µ3i, and µ4i are defined above. Then, the approximate
100(1 - α)% confidence interval for π based on the QEE method is given by

π̂qee − zα/2

√
V̂ar(π̂qee) ≤ π ≤ π̂qee + zα/2

√
V̂ar(π̂qee),

where V̂ar(π̂qee) is the estimated variance of π̂qee obtained from Var(π̂qee) after replacing
the parameters π and ϕ by π̂qee and ϕ̂qee, respectively.

3.5 The Wald interval

From the above semiparametric model, one can obtain an unbiased estimate of π as the
sample proportion π̂ =

∑k
i xi/

∑k
i ni = x./n.. The variance of π̂ is given by Var(π̂) =

π(1 − π)ξ/n.. Using the central limit theorem, we can show that π̂ follows the normal
distribution with mean π and variance π(1 − π)ξ/n., as k → ∞. Then, an approximate
100(1− α)% Wald confidence interval for π is given by

π̂ − zα/2

√
π̂(1− π̂)ξ̂/n. ≤ π ≤ π̂ + zα/2

√
π̂(1− π̂)ξ̂/n..

Note that we use the ML estimate of ϕ in the equation for ξ̂ above and denote this interval
by WA.
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Table 5: Coverage probability estimates (expected interval lengths) based on confidence
intervals by the methods with nominal level, 1 − α = 95% and ED litter sizes for sample
size k = 50.

ϕ π ML EQL DEQL QEE WA
0.1 0.05 0.957 (0.060) 0.956 (0.059) 0.943 (0.078) 0.975 (0.074) 0.942 (0.052)

0.10 0.958 (0.070) 0.969 (0.072) 0.971 (0.083) 0.970 (0.132) 0.943 (0.071)
0.15 0.948 (0.084) 0.967 (0.093) 0.967 (0.097) 0.955 (0.090) 0.949 (0.085)
0.20 0.960 (0.094) 0.990 (0.118) 0.982 (0.106) 0.966 (0.097) 0.954 (0.095)
0.25 0.942 (0.103) 0.986 (0.127) 0.959 (0.114) 0.938 (0.104) 0.940 (0.104)
0.30 0.945 (0.108) 0.992 (0.145) 0.954 (0.119) 0.944 (0.109) 0.940 (0.109)
0.35 0.936 (0.113) 0.999 (0.172) 0.952 (0.122) 0.936 (0.113) 0.931 (0.113)
0.40 0.934 (0.117) 1.000 (0.187) 0.949 (0.126) 0.931 (0.117) 0.932 (0.116)
0.45 0.954 (0.120) 1.000 (0.206) 0.965 (0.130) 0.957 (0.121) 0.946 (0.118)
0.50 0.934 (0.123) 1.000 (0.237) 0.951 (0.134) 0.931 (0.123) 0.949 (0.119)

0.3 0.05 0.983 (0.075) 0.967 (0.072) 0.884 (0.127) 0.989 (0.086) 0.942 (0.073)
0.10 0.934 (0.091) 0.932 (0.092) 0.982 (0.117) 0.952 (0.1020 0.944 (0.101)
0.15 0.912 (0.110) 0.922 (0.119) 0.965 (0.140) 0.922 (0.203) 0.930 (0.120)
0.20 0.935 (0.126) 0.957 (0.147) 0.969 (0.158) 0.953 (0.308) 0.951 (0.136)
0.25 0.925 (0.138) 0.971 (0.173) 0.975 (0.170) 0.937 (0.144) 0.943 (0.146)
0.30 0.924 (0.148) 0.973 (0.202) 0.972 (0.179) 0.925 (0.152) 0.934 (0.155)
0.35 0.939 (0.155) 0.980 (0.231) 0.970 (0.187) 0.937 (0.159) 0.944 (0.162)
0.40 0.952 (0.160) 0.988 (0.257) 0.977 (0.191) 0.948 (0.163) 0.951 (0.166)
0.45 0.962 (0.164) 0.992 (0.283) 0.984 (0.195) 0.963 (0.166) 0.952 (0.169)
0.50 0.953 (0.165) 0.998 (0.317) 0.978 (0.195) 0.947 (0.167) 0.948 (0.170)

0.5 0.05 0.988 (0.089) 0.985 (0.082) 0.983 (0.142) 0.997 (0.105) 0.932 (0.091)
0.10 0.928 (0.107) 0.917 (0.107) 0.987 (0.139) 0.964 (0.123) 0.955 (0.124)
0.15 0.916 (0.131) 0.929 (0.141) 0.972 (0.166) 0.947 (0.174) 0.954 (0.148)
0.20 0.917 (0.150) 0.938 (0.173) 0.973 (0.189) 0.932 (0.178) 0.938 (0.167)
0.25 0.929 (0.165) 0.956 (0.201) 0.975 (0.206) 0.949 (0.183) 0.952 (0.180)
0.30 0.940 (0.177) 0.973 (0.228) 0.980 (0.219) 0.944 (0.187) 0.951 (0.191)
0.35 0.930 (0.186) 0.972 (0.256) 0.972 (0.228) 0.931 (0.194) 0.941 (0.199)
0.40 0.957 (0.193) 0.984 (0.285) 0.988 (0.235) 0.964 (0.199) 0.957 (0.205)
0.45 0.953 (0.196) 0.988 (0.313) 0.988 (0.239) 0.962 (0.202) 0.947 (0.208)
0.50 0.943 (0.197) 0.987 (0.334) 0.984 (0.240) 0.942 (0.203) 0.965 (0.209)
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4. A Simulation Study

We investigated the performance of the five interval procedures discussed in Section 3
(ML=maximum likelihood, EQL=extended quasi-likelihood, DEQL=double extended quasi-
likelihood, QEE=quadratic estimating equations, and WA=Wald) by way of simulation.
Using a pre-assigned confidence level of 95% we examined their coverage probabilities
(CPs) and expected lengths (ELs) using ten values of the population proportion π = 0.05,
0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 and three values measuring the lack of inde-
pendence among observations within the same cluster ϕ = 0.1, 0.3, 0.5 to simulate data
from the beta-binomial distribution. We used four different configurations of cluster sizes:
(i) the low dose treatment group (k = 19) of the data in Table 1 of Paul (1982); (ii) the
control group (k=73) for the data in Table 3 of Paul and Saha (2007); and random sizes
from the empirical distribution (ED) of 523 litter sizes quoted by Kupper et al. (1986) for
k=20 and 50. Based on 1000 samples, we computed the empirical coverage probabilities as
the number of times the confidence interval contained the true value divided by 1000 and
the expected coverage length as the mean of the 1000 lengths. The results are reported in
Tables 2-5 from which we make the following observations:

• The CP and EL results between fixed and ED litter sizes for all five methods are in
remarkable agreement for similar sample sizes. Specifically, the CPs and ELs for all
five methods are virtually the same across all combinations of π and ϕ in the cases
of fixed litter size with k=19 and ED litter size with k=20. The same is true in the
cases of fixed litter size k=73 and ED litter size k=50.

• For all five methods, the ELs increase as the true proportion π increases; the ELs
decrease as sample size k increases; and the ELs increase as the deviation from
independence ϕ increases.

• The ML, QEE, and WA methods tend to have similar ELs which are smaller than the
ELs of the EQL and DEQL methods.

• The ML method has among the lowest ELs which in many situations is at the expense
of under-coverage whereas good coverage properties of the QEE method tend to be
at the expense of larger ELs. Both methods show inconsistent coverage properties
for small values of π.

• The ML method shows inconsistent coverage with over-coverage for small values of
π and under-coverage for larger values of π, except when ϕ = .1 where the CPs tend
to be near goal.

• The EQL and DEQL methods show severe over-coverage across the board whereas
the CPs for the QEE and WA methods are either at goal or show slight under-
coverage.

• The WA method produced inconsistent coverage, namely, under-coverage for small
sample sizes, especially for large values of π, but good coverage for large sample
sizes.

5. CTC Images Data Example

Computed tomography colonography (CTC) is an imaging test that can detect polyps be-
fore they develop into cancer. Investigators have developed a computer algorithm, called
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computer aided detection (CAD), to help radiologists detect polyps on the CTC. Two hun-
dred seventy patients from six institutions were compiled in the retrospective design. These
patients had undergone CTC for several medical reasons. In order to assess the reader per-
formance, 30 patients were randomly selected from the 119 test cases. In this study, there
were actually multiple polyps in some patients and 25 of 30 patients had from 1 to 3 polyps.
Hence the detection capabilities for each patient may be correlated. The data for reader 1
are displayed in Table 1. The purpose of this study was to assess the reader accuracy of
CAD-enhanced CTC for detecting polyps. In this case, we considered the above confi-
dence interval procedures to estimate the sensitivity of CAD-enhanced CTC for detecting
polyps. The point estimates (standard errors) π̂ml, π̂eql, π̂de, and π̂qee are given by 0.8464
(0.0633), 0.8473 (0.1458), 0.8456 (0.0777), and 0.8433 (0.0685), respectively. Also, the
point estimates ϕ̂ml, ϕ̂eql, ϕ̂de, and ϕ̂qee are given by 0.3426, 0.1919, 0.2371, and 0.2873,
respectively. Then, the 95% confidence intervals for π using the ML, EQL, DEQL, QEE,
and WA methods are given by (0.7223, 0.9705), (0.5614, 1.0), (0.6933, 0.9978), (0.7090,
0.9776), and (0.7192, 0.9736), respectively.

6. Discussion

We proposed five confidence intervals for estimating a population proportion based on bi-
nary outcome data taken from clusters assuming a beta-binomial distribution and compared
their confidence probabilities and expected lengths using a simulation study and real-life
application. Generally speaking, the results of the simulation study in Section 4 suggest
the maximum likelihood method produced the shortest intervals followed by the quadratic
estimating equations and Wald methods. However, all three suffer to some extent from
under/over coverage, especially when the true proportion is small, and Wald’s method re-
quires the estimation of a nuisance parameter using iterative methods. The extended quasi-
likelihood and double extended quasi-likelihood procedures produced much longer inter-
vals indicating their severely conservative nature. When applied to CTC images data, the
results were consistent with the simulation study in that the maximum likelihood method
produced the shortest interval followed closely by Wald and then the quadratic estimating
equations method. As expected, the extended quasi-likelihood and double extended quasi-
likelihood methods gave longer intervals with the former producing a profoundly longer
interval.

All five methods rely on the asymptotic normality distribution assumption which may
not be valid, especially for small sample sizes or small parameter values. This, and the
estimation of the asymptotic standard error, may explain the lack of coverage problems
of these asymptotic confidence intervals. Further study using alternative distributional ap-
proximations may alleviate these issues.
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