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Abstract
Here, we investigate power of tests about fixed effects parameters in nonlinear mixed models. For
obtaining estimates of unknown model parameters needed forconstruction of test statistics, a two-
stage approach is implemented. The tests of interest that shall be compared are the large-sample
Wald and likelihood ratio tests as well as several approximate F-tests. For the Wald and approxi-
mateF-tests, we modify the test statistics by developing an approximation to the large-sample co-
variance matrix of estimates of fixed population parametersbased on the Fisher information matrix.
In contrast to previous research in which null properties oftests were investigated (Burton & Volau-
fova, 2014), our focus here is on comparing power of tests using various configurations of fixed
model parameters under the alternative hypothesis. A simulation study using a one-compartment
pharmacokinetic model is used for illustration.
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1. Introduction

With respect to properties of hypothesis tests about fixed effects parameters in nonlinear
mixed models, the literature focuses primarily on tests which are constructed from esti-
mates based on some approximation of the marginal likelihood. These tests havebeen
shown to have poor properties (e.g., Bertrand, Comets, & Mentré, 2008; Bertrand, Comets,
Chenel, & Mentŕe, 2012; Volaufova, 2014). We focus instead on using a two-stage estima-
tion approach that does not rely on the marginal likelihood. We have shownpreviously that
certain tests, when constructed using two-stage estimates, have favorableproperties under
the null hypothesis (Volaufova & Burton, 2012; Burton, 2013; Burton &Volaufova, 2014).
The goal here is to extend this research to include properties of the tests under the alterna-
tive hypothesis. In particular, we will compare power between the approximateF-tests and
large-sample Wald and likelihood ratio tests.

2. Model and Methods

The nonlinear mixed model considered in this context is a random coefficients model for
longitudinal data. Such a model can be defined as a hierarchical model withtwo levels
(e.g., Davidian & Giltinan, 2003). The first is theindividual level and is defined in terms of
a single subjecti for i = 1, . . . , N with responses observed at timestij for j = 1, . . . , Ti.

Yi = f(θi, Xi) + εi, i = 1, . . . , N. (1)

In model (1),Yi is aTi-dimensional vector of responses,θi is a p-dimensional vector of
subject-specific parameters,Xi is a matrix containing within-subject covariates including
observation times,f(·) is a function that is nonlinear and twice differentiable with repect
to θi, andεi is a normally distributedTi-dimensional random error vector with mean zero
and covariance matrixσ2R(φ).
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The second level of the model is thepopulationlevel. Here, the subject-specific param-
etersθi are defined in terms of variation about a set of fixed population parameters.

θi = g(ai, β) +Bbi, i = 1, . . . , N, (2)

Here,ai is a s-dimensional design vector,β is a r-dimensional vector of unknown fixed
population parameters,g(·) is a twice differentiable function ofβ, B is ap× q matrix used
to indicate which components ofθi are random, andbi is aq-vector of normally distributed
random effects with mean zero and covariance matrixD(λ).

In order to obtain the general form of the nonlinear mixed model, these two levels can
be combined by plugging (2) in forθi in (1).

2.1 Two-Stage Estimation

Rather than combining the two levels of the hierarchical model defined in the previous sec-
tion, we utilize a two-stage approach to obtain estimates of the unknown model parameters.
Before proceeding, we shall make some simplifications to the context in which we will in-
vestigate. First, we only consider the case in which Cov(εi) = σ2ITi

. Second, we shall
assume that the entire vectorθi is random. That is,q = p andB = Iq = Ip. Last, we
shall assume that the relatioship betweenθi andβ is linear (i.e.,g(ai, β) = Aiβ, where
Ai = I ⊗ a′i, (e.g., Vonesh & Carter, 1987)).

The two-stage estimation approach begins with obtaining ordinary nonlinear least squares
(ONLS) estimates ofθi from (1). For this approach to be viable, there must be a sufficient
number of observations (Ti) per subject. If this condition is met for subjecti, we get ONLS
estimates via the objective funtion

Q(θi) = [yi − f(θi, Xi)]
′[yi − f(θi, Xi)], (3)

where
θ̃i = argmin

θi
Q(θi).

Under certain regularity conditions (see Burton (2013) and the references therein), we can
assume asymptotic normality and approximate the marginal mean and covariance matrix
of θ̃i (Burton, 2013) as

E(θ̃i) ≈ Aiβ (4)

and
Cov(θ̃i) ≈ D(λ) + σ2

[

Zi(β)
′Zi(β)

]−1
≡ Wi(β, ϑ). (5)

In (5), the covariance matrixWi is a function of both fixed effects parametersβ and
variance-covariance parametersϑ = (λ, σ2)′. From this marginal distribution of̃θi, then,
we can define the second-stage model as a generalized linear mixed model with form

θ̃i = Aiβ + ui, i = 1, . . . , N, (6)

whereui is a normally distributed error term with mean zero and covariance matrixWi(β, ϑ).
Using model (6), we can utilize maximum likelihood methodology to estimate the unknown
parameters (see Burton (2013) for details).

2.2 Hypothesis Testing

The focus of this research is investigation of properties of tests of linear combinations of
fixed effects parameters. The hypotheses of interest are of form:

H0 : L
′β = h0 vs.H1 : L

′β 6= h0, (7)
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whereL is a knownr × c matrix of full column rank. Commonly used tests are the large-
sample Wald test and likelihood ratio test (LRT), both of which are asymptoticallyχ2

distributed with degrees of freedomc. Additionally, approximateF-tests can be used, with
test statistic

F ∗ = (1/c)(L′β̂ − h0)
′[Ĉov(L′β̂)]−1(L′β̂ − h0). (8)

Under the null hypothesisH0, F ∗ is approximatelyF-distributed with numerator degrees
of freedomc and denominator degrees of freedom (ddf) denotedν. When constructing
such tests, the key points are the covariance matrix ofL′β̂ (see Section 2.2.1) and the
choice ofν. In the simulation study described in Section 3,ddf for the approximateF-
tests investigated are eitherN − q, whereN is number of subjects andq is number of
random effects (Wolfinger, 2000), or Fai-Cornelius-Satterthwaite typeapproximate degrees
of freedom (Fai & Cornelius, 1996).

The focus here, however, will be on power of the tests. Thus, we are investigating under
the alternative hypothesis. In this nonlinear setting, the distributions of the test statistics
underH1 are unknown.

2.2.1 Approximate Covariance Matrix of̂β

Assuming large-sample normality ofθ̃i, we can define the Fisher information matrix as

I(ϕ) = −
N
∑

i=1

E











∂2ℓi(ϕ|θ̃i)

∂β∂β′

∂2ℓi(ϕ|θ̃i)

∂β∂γ′

∂2ℓi(ϕ|θ̃i)

∂γ∂β′

∂2ℓi(ϕ|θ̃i)

∂γ∂γ′











=

(

J(ϕ) C(ϕ)
C ′(ϕ) B(ϕ)

)

, (9)

whereℓi(·) is the normal log-likelihood,ϕ is the vector of all unknown model parameters,
andJ(ϕ), B(ϕ), andC(ϕ) represent blocks ofI(ϕ).

Using the Schur complement to invert (9), we get the following expression for the ap-
proximate covariance matrix of̂β (e.g., Retout, Mentŕe, & Bruno, 2002; Retout & Mentré,
2003; Volaufova & Burton, 2012; Burton, 2013; Burton & Volaufova,2014):

CovS(β̂) ≈ J(ϕ)−1 + J(ϕ)−1C(ϕ)CovS(ϑ̂)C
′(β, ϑ)J(ϕ)−1, (10)

where CovS(ϑ̂) ≈ [B(ϕ)− C ′(ϕ)J(ϕ)−1C(ϕ)]−1 and the subscriptS refers to the Schur
complement based approach. The result is similar in nature to what was donein the linear
mixed model by Kenward and Roger (1997), such that the covariance matrix of β̂ consists
of two terms, the second of which accounts for variability inβ̂ due to estimatingϑ.

A simpler approach to finding an expression for the covariance matrix ofβ̂ is to ignore
the dependence of (5) onβ (e.g., Mielke & Schwabe, 2010; Mielke, 2011). Doing so results
in a second-stage model that has the form of a typical linear mixed model:

θ̃i = Aiβ + u∗i , u∗i ∼ N(0, D∗), i = 1, . . . , N, (11)

whereD∗ is some positive definite matrix that is a function only of variance-covariance
parameters. From (11) we get

CovA(β̂) ≈

[

N
∑

i=1

A′
iD

∗−1Ai

]−1

, (12)

where subscriptA is short foralternative.
Estimates of both matrices (10) and (12) needed for calculating Wald and approximate

F-test statistics can be obtained by plugging in maximum likelihood estimatesβ̂ andϑ̂.
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Table 1: Descriptions and legend labels of tests investigated.

Label Cov. Approx. Statistic df Distribution
Wald ĈovS(β̂) Wald(= cF ∗

S) c χ2

LRT N/A LRT c χ2

Wolf ĈovS(β̂) F ∗
S (Wolfinger)N − q F (c,N − q)

Satt ĈovS(β̂) F ∗
S (Satterthwaite)νS F (c, νS)

A ĈovA(β̂) F ∗
A (Satterthwaite)νA F (c, νA)

3. Simulation Study

In order to investigate the power of the tests of interest constructed underthe two-stage
estimation scheme, we use a simulation study. We first define our null and alternative
hypotheses:

H0 : L
′β = 0 vs.H1 : L

′β 6= 0. (13)

In this study, data are generated under various parameter configurations under the alter-
native hypothesis, empirical power is estimated for each test, and results are compared
graphically.

3.1 One-Compartment Pharmacokinetic Model

For illustration of the methodology described here, we carry out a simulation study in which
data are generated from a one-compartment pharmacokinetic (PK) model for an intravenous
(IV) bolus. Theindividual level of the two-stage model is defined

Yij =
d

Vi
e
−
(

Cli
Vi

)

tij + εij , i = 1, . . . , N, j = 1, . . . , Ti. (14)

In this model, the subject-specific parameters areCli = eθ1i andVi = eθ2i , which are PK
parameters representing clearance and volume of distribution. They are exponentiated in
order to ensure positive values. Other model components are drug dosed, time pointstij ,
and mutually independent error termsεij ∼ N (0, σ2).

For this simulation study, we are comparing two populations. We can define thepopu-
lation level of the two-stage model, for the first population:

θ1i = β1 + b1i; θ2i = β2 + b2i (15)

and, for the second population:

θ1i = β1 + δ1 + b1i; θ2i = β2 + δ2 + b2i. (16)

Using these definitions for our two populations, we can setδ1 = δ2 = 0 to generate data
under the null hypothesis. Values forβ1 andβ2 are the same in both populations and take
valuesβ1 = log(1.25) andβ2 = log(10) as in Hartford and Davidian (2000). For the
covariance matrix ofbi,

D(λ) =

(

0.086 0.052
0.052 0.086

)

.

The dosed = 100 is the same for all subjects, and two values ofσ2 are used, 1.0 and 2.0.
In order to generate data under the alternative hypothesis, several non-zero values ofδ1

are specified. Assigning a non-zero value to this parameter represents adifference between
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Table 2: Adjusted empirical power of investigated tests.

(n1, n2) σ2 δ1 Wald LRT Wolf Satt A

(10, 8)

1.0

0.1 0.092 0.111 0.080 0.082 0.094
0.2 0.196 0.260 0.155 0.161 0.211
0.3 0.399 0.495 0.327 0.337 0.416
0.4 0.615 0.714 0.537 0.548 0.632
0.5 0.824 0.879 0.766 0.776 0.811
0.6 0.934 0.960 0.916 0.919 0.916
0.7 0.984 0.986 0.991 0.991 0.971
0.8 0.999 0.990 1.000 1.000 0.991

2.0

0.1 0.069 0.091 0.059 0.062 0.093
0.2 0.133 0.194 0.107 0.113 0.176
0.3 0.254 0.363 0.201 0.208 0.321
0.4 0.417 0.553 0.337 0.348 0.495
0.5 0.618 0.743 0.536 0.546 0.654
0.6 0.768 0.858 0.713 0.722 0.807
0.7 0.883 0.932 0.853 0.857 0.902
0.8 0.950 0.967 0.946 0.947 0.951

(20, 25)

1.0

0.1 0.107 0.148 0.100 0.101 0.156
0.2 0.388 0.497 0.358 0.358 0.474
0.3 0.746 0.852 0.726 0.727 0.808
0.4 0.953 0.976 0.951 0.951 0.963
0.5 0.999 0.986 1.000 1.000 0.996
0.6 1.000 0.987 1.000 1.000 1.000
0.7 1.000 0.987 1.000 1.000 1.000
0.8 1.000 0.987 1.000 1.000 1.000

2.0

0.1 0.086 0.124 0.082 0.083 0.115
0.2 0.252 0.376 0.226 0.228 0.357
0.3 0.535 0.694 0.508 0.509 0.638
0.4 0.799 0.912 0.780 0.780 0.864
0.5 0.960 0.982 0.959 0.959 0.967
0.6 1.000 0.991 1.000 1.000 0.994
0.7 1.000 0.992 1.000 1.000 0.998
0.8 1.000 0.993 1.000 1.000 1.000

the two populations in the fixed parameterβ1. For each alternative hypothesis configura-
tion, the value assigned toδ1 ranges from 0.1 to 0.8. Samples are generated with equal
observation times per subject using the vectorti = (0.25, 0.5, 1, 2, 4, 8, 12, 24)′. Two sam-
ple size options(n1, n2) = (10, 8) and (n1, n2) = (20, 25) are used. For each model
configuration, 5000 replications are generated.

Table 1 details each test investigated and assigns a corresponding label tobe used for
identification in the figures.

3.1.1 Power

For each model configuration, power was defined as the proportion ofp-values from each
test less than the nominal significance level 0.05. Because these tests havedifferent em-
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Figure 1: Adjusted power of tests constructed using parameter estimates obtained via two-
stage estimation scheme.

pirical type I error rates, estimated power was adjusted such that each test has power of
0.05 underH0, making the comparisons more meaningful. For each test, this was done by
adjusting estimated power for all model configuration underH1 by the difference between
estimated power underH0 and 0.05.

3.2 Results

In Figure 1, subfigures (a) and (b) represent adjusted empirical power curves for tests under
the smallest sample size setting(n1, n2) = (10, 8). For subfigure (a), data was generated
with error varianceσ2 = 1. Here, the LRT has the highest adjusted power. The two approx-
imateF-tests,Wolf andSatt, have the lowest adjusted power among the tests investigated
and perform very similar to one another. Between are the Wald test and the aprroximateF-
testA, which also perform very similarly in terms of adjusted power. Looking at subfigure
(b) in which error varianceσ2 = 2, all of the curves are shifted to the right. This indicates
that the power is lower for the same changes inδ1 whenσ2 is increased from 1 to 2.

In the two lower subfigures (c) and (d), adjusted power curves are displayed for the
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larger sample size setting(n1, n2) = (20, 25). In comparison to the empirical adjusted
power curves for the tests under the smaller sample size setting, the curves here approach
1.0 (100% power) more rapidly. That is, all of the tests are able to detect changes inδ1 with
higher power when sample size is increased. The ordering of the tests from highest power
to lowest power remains the same as observed in the smaller sample size setting. Here,
however, the Wald test performs more similarly to approximateF-testsWolf andSatt, and
the approximateF-testA is more similar in terms of adjusted power to the LRT.

Estimates of adjusted power under each model configuration investigated can be found
in Table 2.

4. Discussion

The research presented here is an extension of Burton and Volaufova(2014), in which
properties of the Wald test, likelihood ratio test, and approximateF-tests were investigated
under the null hypothesis. The conslusions about power of these tests islimited to a single
simulation study (see Section 3). In order to draw more concrete conclusions, additional
simulation studies are required in which a broader range of model configurations and addi-
tional models are explored. Based solely on the model and model configurations explored
here, the likelihood ratio test appears to be most powerful in all settings. Currently investi-
gations are underway to determine properties of these tests under the null (type I error rate,
accuracy of p-values) and alternative (power) hypotheses in a more general framework.
Here, we make simplifications with respect to the covariance matrix of the errorvectorεi.
It may be more meaningful to determine these properties under a general structure for this
matrix which will require a different estimation method for developing the second stage
model (6).
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