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Abstract

Here, we investigate power of tests about fixed effects pafen® in nonlinear mixed models. For
obtaining estimates of unknown model parameters needesbftruction of test statistics, a two-
stage approach is implemented. The tests of interest tldltksh compared are the large-sample
Wald and likelihood ratio tests as well as several approtérfiratests. For the Wald and approxi-
mateF-tests, we modify the test statistics by developing an appration to the large-sample co-
variance matrix of estimates of fixed population paramediased on the Fisher information matrix.
In contrast to previous research in which null propertietesfs were investigated (Burton & Volau-
fova, 2014), our focus here is on comparing power of testsgugarious configurations of fixed
model parameters under the alternative hypothesis. A aiioul study using a one-compartment
pharmacokinetic model is used for illustration.
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1. Introduction

With respect to properties of hypothesis tests about fixed effects pemaniie nonlinear
mixed models, the literature focuses primarily on tests which are constructedefsti-
mates based on some approximation of the marginal likelihood. These testbdwve
shown to have poor properties (e.g., Bertrand, Comets, & MeR@08; Bertrand, Comets,
Chenel, & Mente, 2012; Volaufova, 2014). We focus instead on using a two-stage estima
tion approach that does not rely on the marginal likelihood. We have shmviously that
certain tests, when constructed using two-stage estimates, have faymgisgeties under
the null hypothesis (Volaufova & Burton, 2012; Burton, 2013; Burto@aufova, 2014).
The goal here is to extend this research to include properties of the tesisthe alterna-
tive hypothesis. In particular, we will compare power between the appeigF-tests and
large-sample Wald and likelihood ratio tests.

2. Model and Methods

The nonlinear mixed model considered in this context is a random coeffigieodel for
longitudinal data. Such a model can be defined as a hierarchical modetwuitlevels
(e.g., Davidian & Giltinan, 2003). The first is tirdividuallevel and is defined in terms of
a single subjectfori¢ =1,..., N with responses observed at timgsfor j = 1,...,T;.

Yi=f(0;,Xi)+ei, i=1,...,N. (1)

In model (1),Y; is aT;-dimensional vector of responsék,is a p-dimensional vector of
subject-specific parametertX; is a matrix containing within-subject covariates including
observation timesf(-) is a function that is nonlinear and twice differentiable with repect
to 6;, andg; is a normally distributed’;-dimensional random error vector with mean zero
and covariance matrix?R(¢).

*Pennington Biomedical Research Center, 6400 Perkins Road, BatmeRo0A 70808
tLSU Health Sciences Center, 2020 Gravier Street, New Orleans, LA27011

1954



JSM 2014 - Biometrics Section

The second level of the model is thepulationlevel. Here, the subject-specific param-
eterssd; are defined in terms of variation about a set of fixed population parameters

ezzg(auﬁ)—i_BbZ? Zzlvan (2)

Here,q; is a s-dimensional design vectof, is ar-dimensional vector of unknown fixed
population parameters(-) is a twice differentiable function of, B is ap x ¢ matrix used
to indicate which components 6f are random, and; is ag-vector of normally distributed
random effects with mean zero and covariance ma(x).

In order to obtain the general form of the nonlinear mixed model, these twtslean
be combined by plugging (2) in fak, in (1).

2.1 Two-Stage Estimation

Rather than combining the two levels of the hierarchical model defined in ¢véops sec-
tion, we utilize a two-stage approach to obtain estimates of the unknown modeigizrs.
Before proceeding, we shall make some simplifications to the context in wdakilin-
vestigate. First, we only consider the case in which Egv= O'QITZ.. Second, we shall
assume that the entire vectyris random. Thatisq = p andB = I, = I,. Last, we
shall assume that the relatioship betwégmnd S is linear (i.e.,g(a;, 8) = A;3, where
A; =1 ® al, (e.g., Vonesh & Carter, 1987)).

The two-stage estimation approach begins with obtaining ordinary nonlireestisiguares
(ONLS) estimates of; from (1). For this approach to be viable, there must be a sufficient
number of observationgY) per subject. If this condition is met for subjectve get ONLS
estimates via the objective funtion

Q(0:) = [yi — f(0:, Xi)|'lyi — f(6:, Xi)], 3)

where

0; = argnéin Q(Gl)

Under certain regularity conditions (see Burton (2013) and the refesdherein), we can
assume asymptotic normality and approximate the marginal mean and covarianige ma
of 6, (Burton, 2013) as i

E(6;) ~ A;B 4)

and )
Cov(8;) =~ D(A) + 02 [Z,(8) Zi(B)] ™' = Wi(B.0). (5)

In (5), the covariance matriXV; is a function of both fixed effects parametefsand
variance-covariance parameteérs= (), o2)’. From this marginal distribution af;, then,
we can define the second-stage model as a generalized linear mixed nitbdelm

élelﬁ—i—uZ, izl,...,N, (6)

whereu; is a normally distributed error term with mean zero and covariance m&iix, ).
Using model (6), we can utilize maximum likelihood methodology to estimate the umknow
parameters (see Burton (2013) for details).

2.2 Hypothesis Testing

The focus of this research is investigation of properties of tests of lingabic@ations of
fixed effects parameters. The hypotheses of interest are of form:

Hy: Llﬁ = hgVvs. Hy : Llﬁ 7& ho, (7)

1955



JSM 2014 - Biometrics Section

wherelL is a knownr x ¢ matrix of full column rank. Commonly used tests are the large-
sample Wald test and likelihood ratio test (LRT), both of which are asymptotigally
distributed with degrees of freedamAdditionally, approximaté--tests can be used, with
test statistic

F* = (1/e)(L'B — ho)'[Cov(L'B)) " (L'B — h). ®)

Under the null hypothesi#ly, F* is approximately--distributed with numerator degrees
of freedomc and denominator degrees of freedoddf) denotedv. When constructing
such tests, the key points are the covariance matrix’of (see Section 2.2.1) and the
choice ofv. In the simulation study described in Sectiond8f for the approximaté--
tests investigated are eith&f — ¢, where N is number of subjects anglis number of
random effects (Wolfinger, 2000), or Fai-Cornelius-Satterthwaitedppeoximate degrees
of freedom (Fai & Cornelius, 1996).

The focus here, however, will be on power of the tests. Thus, wewagstigating under
the alternative hypothesis. In this nonlinear setting, the distributions of thet&gistics
underH; are unknown.

2.2.1 Approximate Covariance Matrix gf
Assuming large-sample normality 8f, we can define the Fisher information matrix as

OPli(p|0;)  9%i()0:)

| 0608 060y I Cle)
1 - E = ’ ) 9
) ; 0% (0l0;)  9%4;(]6;) ( C'(¢) B(p) ) ©
oyop’ 00y

where/;(-) is the normal log-likelihoody is the vector of all unknown model parameters,
andJ(y), B(y), andC(y) represent blocks df(y).

Using the Schur complement to invert (9), we get the following expressiotné ap-
proximate covariance matrix of (e.g., Retout, Mené, & Bruno, 2002; Retout & Mengy,
2003; Volaufova & Burton, 2012; Burton, 2013; Burton & Volaufo2814):

Covs(B) & J(0) "' + J(¢) " C(p)Covs (D) C"(B,9)J () 7, (10)

where Coy(4) ~ [B(p) — C'(¢)J () C(p)]~! and the subscrip§ refers to the Schur
complement based approach. The result is similar in nature to what wasndiwedinear
mixed model by Kenward and Roger (1997), such that the covariancimétt consists
of two terms, the second of which accounts for variabilit)@idue to estimating.

A simpler approach to finding an expression for the covariance matf®fo ignore
the dependence of (5) gh(e.g., Mielke & Schwabe, 2010; Mielke, 2011). Doing so results
in a second-stage model that has the form of a typical linear mixed model:

0i= A +uj, ui~N(0,D%), i=1... N, (1)

where D* is some positive definite matrix that is a function only of variance-covariance
parameters. From (11) we get
-1

; 12)

COVA(ﬁ) =~

N
ZA;D*—lAZ-
i=1

where subscrip#l is short foralternative
Estimates of both matrices (10) and (12) needed for calculating WaIdAamd>d1]n|ate
F-test statistics can be obtained by plugging in maximum likelihood estinfaaesl).
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Table 1. Descriptions and legend labels of tests investigated.

Label Cov. Approx. Statistic df Distribution
Wald Covg(B) Wald(= cF}) c X2
LRT N/A LRT c X2
Wolf Covg(B) F:  (Wolfingen) N —q F(¢, N —q)
Satt Covs(B) F% (Satterthwaiteys F(e,vg)
A Cova(p) F%  (Satterthwaite) 4 F(e,va)

3. Simulation Study

In order to investigate the power of the tests of interest constructed timeléwo-stage
estimation scheme, we use a simulation study. We first define our null andasitern
hypotheses:

Ho:L'B=0vs.H, : L'B#0. (13)

In this study, data are generated under various parameter configaratider the alter-
native hypothesis, empirical power is estimated for each test, and reselt®m@pared
graphically.

3.1 One-Compartment Pharmacokinetic M odel

For illustration of the methodology described here, we carry out a simulatidp stwhich
data are generated from a one-compartment pharmacokinetic (PK) modelifdravenous
(IV) bolus. Theindividual level of the two-stage model is defined

cly;

d — -
Yy = e <Vi)t”+sij,izl,...,N,jzl,...,Ti. (14)

i

In this model, the subject-specific parameters@e= ¢’ andV; = €%, which are PK
parameters representing clearance and volume of distribution. They@oremtiated in
order to ensure positive values. Other model components are drug dase pointst;;,
and mutually independent error terms ~ N (0, o).

For this simulation study, we are comparing two populations. We can defimmthe
lation level of the two-stage model, for the first population:

01i = B1 + b1y O = Bo + bo; (15)
and, for the second population:
01; = 1+ 01+ b1y O = Po + o + by (16)

Using these definitions for our two populations, we caniset d; = 0 to generate data
under the null hypothesis. Values f6r and g, are the same in both populations and take
valuesf; = log(1.25) and 32 = log(10) as in Hartford and Davidian (2000). For the

covariance matrix ob;,
0.086 0.052
D) = < 0.052 0.086 > ’

The dosel = 100 is the same for all subjects, and two valuesdfare used, 1.0 and 2.0.
In order to generate data under the alternative hypothesis, sevaraenmvalues of;
are specified. Assigning a non-zero value to this parameter represifiesence between
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Table 2: Adjusted empirical power of investigated tests.

(nl, ng) O‘2 (51 Wald LRT Wolf Satt A

0.1 0.092 0.111 0.080 0.082 0.094
0.2 0.196 0.260 0.155 0.161 0.211
0.3 0.399 0.495 0.327 0.337 0.416
0.4 0.615 0.714 0.537 0.548 0.632
0.5 0.824 0.879 0.766 0.776 0.811
0.6 0.934 0.960 0916 0.919 0.916
0.7 0.984 0.986 0.991 0.991 0.971
0.8 0.999 0.990 1.000 1.000 0.991
0.1 0.069 0.091 0.059 0.062 0.093
0.2 0.133 0.194 0.107 0.113 0.176
0.3 0.254 0.363 0.201 0.208 0.321
0.4 0.417 0.553 0.337 0.348 0.495
0.5 0.618 0.743 0.536 0.546 0.654
0.6 0.768 0.858 0.713 0.722 0.807
0.7 0.883 0.932 0.853 0.857 0.902
0.8 0.950 0.967 0.946 0.947 0.951
0.1 0.107 0.148 0.100 0.101 0.156
0.2 0.388 0.497 0.358 0.358 0.474
0.3 0.746 0.852 0.726 0.727 0.808
0.4 0.953 0.976 0.951 0.951 0.963
0.5 0.999 0.986 1.000 1.000 0.996
0.6 1.000 0.987 1.000 1.000 1.000
0.7 1.000 0.987 1.000 1.000 1.000
0.8 1.000 0.987 1.000 1.000 1.000
0.1 0.086 0.124 0.082 0.083 0.115
0.2 0.252 0.376 0.226 0.228 0.357
0.3 0.535 0.694 0.508 0.509 0.638
0.4 0.799 0.912 0.780 0.780 0.864
0.5 0.960 0.982 0.959 0.959 0.967
0.6 1.000 0.991 1.000 1.000 0.994
0.7 1.000 0.992 1.000 1.000 0.998
0.8 1.000 0.993 1.000 1.000 1.000

1.0

(10,8)

2.0

1.0

(20, 25)

2.0

the two populations in the fixed parametgr. For each alternative hypothesis configura-
tion, the value assigned @ ranges from 0.1 to 0.8. Samples are generated with equal
observation times per subject using the ve¢tee (0.25,0.5,1,2,4,8,12,24)". Two sam-
ple size optiongni,n2) = (10,8) and (n1,n2) = (20,25) are used. For each model
configuration, 5000 replications are generated.

Table 1 details each test investigated and assigns a corresponding labalged for
identification in the figures.

3.1.1 Power

For each model configuration, power was defined as the proportiptvaliies from each
test less than the nominal significance level 0.05. Because these testifferemt em-

1958



JSM 2014 - Biometrics Section

Power
Power

(a) Change in &,, n=(10,8), 62=1 (b) Change in §,, n=(10,8), 62=2

Power
Power

0 02 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

(c) Change in §,, n=(20,25), 62 =1 (d) Change in 6,, n=(20,25), 02=2

Figure 1. Adjusted power of tests constructed using parameter estimates obtainedvia tw
stage estimation scheme.

pirical type | error rates, estimated power was adjusted such that eadtasepower of

0.05 underH,, making the comparisons more meaningful. For each test, this was done by
adjusting estimated power for all model configuration undetby the difference between
estimated power undéd¥, and 0.05.

3.2 Reaults

In Figure 1, subfigures (a) and (b) represent adjusted empiricapmywves for tests under
the smallest sample size settifig;, n2) = (10, 8). For subfigure (a), data was generated
with error variancer? = 1. Here, the LRT has the highest adjusted power. The two approx-
imate F-tests, Wolf andSatt have the lowest adjusted power among the tests investigated
and perform very similar to one another. Between are the Wald test angrtiogianater-
testA, which also perform very similarly in terms of adjusted power. Looking bfigure
(b) in which error variance? = 2, all of the curves are shifted to the right. This indicates
that the power is lower for the same change$iwhenc? is increased from 1 to 2.

In the two lower subfigures (c) and (d), adjusted power curves aptagtsd for the
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larger sample size settin@,n2) = (20,25). In comparison to the empirical adjusted
power curves for the tests under the smaller sample size setting, the careespproach
1.0 (100% power) more rapidly. That is, all of the tests are able to detangels iny; with
higher power when sample size is increased. The ordering of the tesihighest power
to lowest power remains the same as observed in the smaller sample size settieg. H
however, the Wald test performs more similarly to approxinfatestsWolf andSatt and
the approximaté&-testA is more similar in terms of adjusted power to the LRT.

Estimates of adjusted power under each model configuration investigaide ¢aund
in Table 2.

4. Discussion

The research presented here is an extension of Burton and Vola{#0%4), in which
properties of the Wald test, likelihood ratio test, and approxirkatests were investigated
under the null hypothesis. The conslusions about power of these tésiitésl to a single
simulation study (see Section 3). In order to draw more concrete concyusidditional
simulation studies are required in which a broader range of model coafiigus and addi-
tional models are explored. Based solely on the model and model cotitbgnsraxplored
here, the likelihood ratio test appears to be most powerful in all settingsei@lyrinvesti-
gations are underway to determine properties of these tests under thiypeull érror rate,
accuracy of p-values) and alternative (power) hypotheses in a neorerg framework.
Here, we make simplifications with respect to the covariance matrix of theexctore;.
It may be more meaningful to determine these properties under a genecalistrfor this
matrix which will require a different estimation method for developing the sectage
model (6).

Acknowledgements

This research was supported in part (JHB, RAB, WDJ) by 1 U54 GM404from the National Institute
of General Medical Sciences of the National Institutes of Health, whiddgithe Louisiana Clinical and
Translational Science Center. The content is solely the responsibility efuthers and does not necessarily
represent the official views of the National Institutes of Health.

REFERENCES

Bertrand, J., Comets, E., & Me#trF. (2008). Comparison of model-based tests and selection straiegies
detect genetic polymorphisms influencing pharmacokinetic paramefergnal of Biopharmaceutical
Statistics, 181084-1102.

Bertrand, J., Comets, E., Chenel, M., & MantF. (2012). Some alternatives to asymptotic tests for the analysis
of pharmacogenetic data using nonlinear mixed effects moBametrics, 68146—-155.

Burton, J.H. (2013).Improved hypothesis tests of linear combinations of fixed effects psesmie nonlin-
ear random coefficients modelnpublished doctoral dissertation). Louisiana State University Health
Sciences Center, New Orleans, LA, USA.

Burton, J.H. & Volaufova, J. (2014). Approximate testing in two-stagi@inear mixed modelslournal of Sta-
tistical Computation and Simulatio®dvance online publication. doi:10.1080/00949655.2014.948442

Davidian, M. & Giltinan, D. (2003). Nonlinear models for repeated mearsent data: An overview and
update Journal of Agricultural, Biological, and Environmental Statistic§48 387—-419.

Fai, A. & Cornelius, P. (1996). Approximate F-tests of multiple degre&ed#dom hypotheses in general-
ized least squares analyses of unbalanced split-plot experindenisial of Statistical Computation and
Simulation, 54363-378.

Hartford, A. & Davidian, M. (2000). Consequences of misspecifyasgumptions in nonlinear mixed effects
models.Computational Statistics and Data Analysis, 339-164.

1960



JSM 2014 - Biometrics Section

Kenward, M. & Roger, J. (1997). Small sample inference for fixiéelés from restricted maximum likelihood.
Biometrics, 583), 983—997.

Mielke, T. & Schwabe, R. (2010). Some considerations on the Fishemiation in nonlinear mixed effects
models. In A. Giovagnoli, A.C. Atkinson, B. Torsney, & C. May (Ed®joceedings of the 9th Interna-
tional Workshop in Model-Oriented Design and Analydi29-136). Bertinoro, Italy: Springer, Physica
Verlag Heidelberg.

Mielke, T. (2011). Approximation of the fisher information and design in nonlinear mixed effaogels
Retrieved from: http://www.math.uni-magdeburg.de/institute/imsstgvabe/preprints/20132.pdf.
Retout, S., Menf, F., & Bruno, R. (2002). Fisher information matrix for nonlinear ndixaffects models:
Evaluation and application for optimal design of Enoxaparin populatiomnpeokinetics.Statistics in

Medicine, 21 2623-2639.

Retout, S. & Mente, F. (2003). Further developments of the fisher information matrix iimear mixed
effects models with evaluation in population pharmacokinetiosirnal of Biopharmaceutical Statistics,
13, 209-227.

Volaufova, J. & Burton, J.H. (2012Note on hypothesis testing in mixed modedper presented at LINSTAT
2012/21st IWMS, Bedlewo, Poland.

Volaufova, J. (2014). Approximate small sample tests in nonlinear nedkls.Communication in Statistics
- Simulation and Computation, 48, 2117-2137.

Vonesh, E., Carter, R. (1987). Efficient inference for randamfficient growth curve models with unbalanced
data.Biometrics, 483), 617-628.

Wolfinger, R.D. (2000) Fitting nonlinear mixed models with the new NLMIXED proced{echnical report
287). Cary, NC: SAS Institute.

1961



