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Abstract
The analysis of longitudinal data in clinical trials presents a challenge as there are often missing

data points. When binary outcomes variables are involved, the missing data imputation methods
may become complicated. A simulation study illustrates how Generalized Linear Mixed Model
(GLMM), Inverse Probability Weighted (IPW) Generalized Estimation Equation (GEE) method,
multiple imputation and doubly robust method work in practice, especially for binary outcome
variables in terms of efficiency and accuracy, with MAR assumption.
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1. Introduction

Longitudinal data plays an important role in clinical trials, in which same individuals are
measured repeatedly on some important variables according to a pre-determined schedule.
Despite efforts to minimize missing data in the design and conduct of clinical trials, missing
data are still encountered often due to a variety of reasons and a major source of missing
data occurs when subjects drop out of study.

Existing guidelines for the design and conduct of clinical trials, and the analysis of
the resulting data, provide only limited advice on how to handle missing data (National
Research Council, 2010). Thus approaches to the analysis of data with missing values are
still challenging, especially when binary response variables are involved. In this paper, we
focus on approaches applied to monotone missing pattern, which means missingess occurs
only through dropout. We also limited our discussion to missing at random (MAR), where
missingness depends on observed data but not on unoberseved data.

The most popular approach to analyze longitudinal data with binary responses is Gen-
eralized Estimation Equation (GEE) method (Liang and Zeger, 1986). As Liang and Zeger
pointed out, inference with the GEE method is valid only under the stronger assumption
that the data are missing completely random (MCAR), where missingness is independent
of both unobserved and observed data. Therefore, Robins et al. (1995) proposed a class
of weighted estimating equation in which observations have weights inversely proportional
to the probability of being observed. This weighted estimating equation approach, which
has been called the inverse probability weighted (IPW) GEE, is valid under MAR (Preiss-
er et. al., 2002). However, IPW GEE yields bias estimate if the model for probability of
missing (missingness model) is not correctly specified. Doubly robust estimation methods
were developed to remedy this weakness, see Van der Laan and Robins (2003); Bang and
Robins (2005); Seaman and Copas (2009). Doubly robust methods involve both a miss-
ingness model and an imputation model for the expectation of each missing observation,
and are consistent when either is correct. Thus, it offers more protection against model
misspecification than IPW GEE.
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An alternative approach to analysis of incomplete longitudinal data is use of General-
ized linear mixed model (GLMM)(Breslow and Clayton, 1993), which attracted consider-
able attention after SAS’s GLIMMIX procedure became available. GLMM is an extension
to the linear mixed model, which allows response variables with different distributions,
such as binary responses. It can incorporate both fixed and random effects in the model.
By modeling the individual subject variables as a random effect, it allows for the accom-
modation of multiple missing data points.

Another well-known method to handle missing data is multiple imputation (MI), which
was developed by Rubin (1987). The key idea of this procedure is to fist impute missing
data several times, then analyze the resulting complete data with standard methods for
complete data, such as GEE. These analyses generate a set of results that are afterwards
appropriately combined to provide a single estimate of the parameter of interest, together
with standard errors that reflect the uncertainty inherent in the imputation of the missing
data (Fitzmaurice et al. 2011). The basic form of MI requires MAR, though versions under
MNAR have been proposed.

This paper is intended to evaluate the performance of Generalized Linear Mixed Mod-
el, multiple imputation, IPW GEE and Doubly Robust estimation methods, when being
applied to longitudinal data in clinical trial with missing binary responses, to assess safety
or efficacy between two drug products , i.e., test (T) and reference (R).

We organize this paper as follows. In Section 2, an overview of approaches for an-
alyzing longitudinal data with missing binary response variables is given with focus on
generalized linear mixed models, multiple imputation, IPW GEE and doubly robust esti-
mation methods. Section 3 reports simulation results of comparing these four methods in
terms of bias and standard error of the estimates, type-I error control and power. We end
with a discussion of the relative advantages of different approaches in Section 4.

1.1 Background

We consider a longitudinal study with T visits for each individuals. Let Yi = (Yi1, ..., YiT )
′

be the binary response vector for individual i at visit t (i = 1, 2, ..., N ; t = 1, 2, ..., T ).
Likewise, let Xi = (X

′
i1, ..., X

′
iT )

′
represents the corresponding p × n covariates matrix,

where Xit is a p× 1 vector of covariates associated with Yit.
We define Rit = 1 if Yit is observed, and 0 otherwise. Note that under monotone

missing pattern, if Rit = 0, then (Ri,t+1, ..., RiT ) = (0, ..., 0).
Let µi = E(Yi|Xi). We assume that Yi given Xi, follows a generalized linear model

with mean

µi = g−1(X
′
iβ), (1)

where g is the link function and β is a p× 1 vector of unknown parameters of interest.
For example, for a binary outcome following the logistic regression model, g(p) = log p

1−p .

1.2 Inverse Probability Weighted Generalized Estimating Equations Approach

The IPW-GEE weights each individual’s contribution to the GEE by the inverse probability
of being observed up to a certain timepoint. Using a similar notation to Fitzmaurice at
al. (2011), the IPW-GEE estimate of the parameters β are the solution from the following
weighted estimating equations:

N∑
i=1

δµi

δβ′ V
−1
i Wi(Yi − µi) = 0, (2)
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where Vi is a T ×T working covariance matrix of Yi and Wi is a T ×T diagonal matrix
of the occasion-specific weights, Wi = diag(Ri1wi1, ..., RiTwiT ), which will be described
below (see equation (3)).. Note that the weights is given by wit for observed responses and
0 for unobserved responses.

In practice, the IPW GEE estimate can be obtained from the following two-step proce-
dure:

Step 1: fit a model for πit = Pr{Rit = 1|Ri1 = ... = Ri,t−1 = 1, Xi1, ..., Xit, Yi1, ...,
Yi,t−1}, for example, using logistic regression (the missingness model). The weights at
observed visits is computed as the inverse of the cumulative conditional probabilities of
remaining in the study:

wit = (πi1 × ...× πit)
−1. (3)

Step 2: apply GEE model using PROC Genmod with weight statement (the final anal-
ysis model).

It was proved that IPW GEE gives unbiased estimates under MAR when both the miss-
ingness model and the final analysis model are correctly specified. If the missingness model
is misspecified, the resulting estimates may be biased.

1.3 Doubly Robust Estimation Method

There are many possible ways of obtaining a doubly robust estimation in the literature.
Here we use the doubly robust method developed by Hernandez et. al. (2014), as it can
be implemented using standard SAS procedures. Hernandez et. al. (2014) extended the
idea from Vansteelandt et al. (2010) to longitudinal data, since the doubly robust estimate
method proposed by Vansteelandt et al. (2010) can be applied to non-longitudinal data
only.

Before considering a doubly robust estimate, Hernandez et. al. (2014) divided all the
covariates X into two sets: The first set Z contains covariates whose coefficients we wish
to estimate (e.g., treatment, time); these variables are to be included in the final analysis
model. The second set F explains the relationship between the response variable Y and
the missingness in the data. These variables should be included in the missingness and
imputation models but not the final analysis model. Following Vansteelandt et al. (2010),
Hernandez et. al. (2014) developed a three-stage approach to obtain doubly robust esti-
mates as below:

Step 1: fit a logistic regression model for the probability of being observed as a function
of F and Z (Missingness model). Let πit denote the fitted probability and calculate the wit

as in (3) .
Step 2: fit a generalized linear model to the response Y using all covariates F and Z for

the data where Y is observed with Weight statement (imputation model).
Step 3: replace the values of the response Y with the fitted values m∗(F,Z) as calculat-

ed in step 2. Fit another generalized linear model for all subjects (both fully observed and
those that had a missing outcome) to the new response m∗(F,Z) using only the covariates
Z (final analysis model).

Since the response values from the final analysis generalized linear model (step 3) are
the predicted values from the previous weighted GLM (step 2), the true variance is underes-
timated. Thus, the standard error and p-value of the estimated treatment effect are obtained
using the bootstrap procedure. The resulting coefficient estimates will be consistent if ei-
ther the missingness model in step 1 or the imputation model in step 2 is correctly specified,
provided that the final analysis model in step 3 is correctly specified.
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1.4 Generalized Linear Mixed Model

A generalized linear mixed model is given by:

g[E(Y |X)] = Xβ + Zγ + ϵ, (4)

where γ is an unknown vector of random parameters with design matrix Z and ϵ ∼
N(0, σ2). Unlike the linear mixed model, estimation of the GLMM using maximum like-
lihood requires an iterative process. One method is called restricted pseudo-likelihood,
which estimates a pseudo-response by maximizing the residual log pseudo-likelihood with
a first-order Taylor series expansion around the solutions of the best linear unbiased predic-
tors of the random effects (Wolfinger and OConnell, 1993; SAS Institute Inc., 2011). Due
to the pseudo-likelihood estimation of the marginal population-average fixed effects, the
logistic regression GLMM assumes data are MCAR. Although GEE and GLMM both re-
quire MCAR, if data is MAR and the correlation structure of the repeated measurements are
correctly specified, the logistic regression GLMM generally provides a less bias estimate
of the fixed effects than GEE (Zeger, Liang and Albert,1988).

The optimization method in SAS GLIMMIX is specified with NLOPTIONS TECH-
NIQUE=NRRIDG. PROC GLIMMIX does not have a REPEATED statement; however,
covariance structures are modeled with the RANDOM statement, using the RSIDE option
(Davis 2014). When the model does not converge with an unstructured covariance pattern,
other covariance structure might be considered and a supportive model should be run by
adding EMPIRICAL option to obtain the empirical sandwich estimator.

1.5 Multiple Imputation

Several imputation methods for binary response variables are provided in SAS procedure
PROC MI, such as logistic regression and Markov Chain Monte Carlo (MCMC). Since
MCMC is mainly used for arbitrary missing data, we introduce multiple imputation with
the logistic regression method. Multiple imputation can be carried out with a three-step
procedure as well:

Step 1: impute the missing response using the imputation model for a number of times
(M ) and produces M imputed datasets. With monotone missing pattern where Yi1 is fully
observed, missing values in the second response Yi2 can be imputed by fitting an appropri-
ate model (e.g., a logistic regression model) to predict Yi2 from Yi1 and Xi. Then missing
values in the third response Yi3 can be imputed based on an appropriate model to predict
Yi3 from Yi1, Xi and both observed and imputed values of Yi2. Imputation of remaining
missing values can continue in a similar way until all of the missing values have been filled
in (Fitzmaurice et. al., 2011). In the next section of simulation study, 20 imputed datasets
were generated.

Step 2: analyze each of the M imputed datasets separately with the GEE model (final
analysis model).

Step 3: pool the analysis results obtained from step 2 from the M imputed datasets into
one single reference. The combined point estimate and variance of the parameter of interest
β are given by

β̂ =
1

M

M∑
m=1

β̂M and V = W + (
M + 1

M
)B, (5)

where

W =
M∑

m=1

Wm

M
and M =

M∑
m=1

(β̂M − ¯̂
β)(β̂M − ¯̂

β)
′

M − 1
, (6)
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Table 1: Mean Response of Active and Control

Case Treatment E(Y)
1 Active (0.40, 0.45, 0.50, 0.55, 0.60)

Control (0.40, 0.45, 0.50, 0.55, 0.60)
2 Active (0.40, 0.41, 0.42, 0.44, 0.45)

Control (0.40, 0.45, 0.50, 0.55, 0.60)

with W denoting the average within imputation variance and B the between imputation
variance (Rubin, 1987; Birhanu et. al., 2011).

For the multiple imputation method to be valid, all covariates that are needed to en-
sure that the response is MAR should be included in the imputation model. Omitting one
variable could introduce bias in parameter estimates and result in poor estimates. For final
analysis model fitted to imputed datasets, it can include only covariates of interest.

2. Simulation Study

2.1 Data Generation

We constructed a simulation experiment to compare the above four methods under different
conditions pertaining to significance of parameter of interest and the amount of missing-
ness. In the simulated data, 400 individuals received one of the two treatments with ratio
1 : 1, e.g., active and control. For each individual, a vector of correlated binary responses
from five visits Yi = (Yi1, ..., Yi5)

′
were generated with common correlation ρ = 0.5 using

an algorithm developed by Park et. al. (1996). The responses between individuals were
assumed independent. Two cases in Table 1 were considered for the mean binary responses
E(Y ).

Case 1: no difference between active and control. Empirical type-I error was examined
as the proportion of not detecting the difference at visit 5 from 500 simulations.

Case 2: significant difference of mean binary response at visit 5 between active and
control. Empirical power was calculated as the proportion of detecting the difference at
visit 5 among 500 simulations.

The missingness process was assumed to be MAR, and the probability of being ob-
served at visit t for each treatment was modeled by a logistic regression of the form

logit(P (Rit = 1)) = α+ β ∗ Yi,t−1 + γ ∗Base stati, t = 2, .., 5, (7)

where Base stat is a categorical variable with random values from (1, 2, 3), which is in-
dependent to the response variable. Different sets of α, β and γ values for each treatment
were determined to yield four scenarios of dropout rate in table 2.

2.2 Simulation Results

Simulation results are summarized in Tables 3 to 6. Tables 3 and 4 presents the results of
cases 1 and 2, where everything is correctly specified in all methods. The type-I error for
doubly robust estimate seems to be inflated in certain scenarios. For example, the empirical
type-I error rate is 0.068 when dropout rate is within the range of 15 − 20% and 25 −
30% for active and control treatment respectively. Therefore, the doubly robust estimate is
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Table 2: Drop Out Rate

Scenario Active Control
1 15-20% 15-20%
2 15-20% 25-30%
3 25-30% 15-20%
4 25-30% 25-30%

Table 3: Simulation Result of Case 1 with Correct Models

Empirical Type I error 95% CI Coverage Bias of Log(OR) Estimate
Scenario GLMM MI IPW DR GLMM MI IPW DR GLMM MI IPW DR

1 0.044 0.052 0.044 0.058 0.96 0.94 0.95 0.94 0.00 0.00 -0.03 -0.03
2 0.048 0.046 0.054 0.068 0.95 0.95 0.94 0.93 -0.01 -0.01 -0.09 -0.09
3 0.052 0.050 0.048 0.054 0.95 0.95 0.95 0.95 0.00 0.00 0.04 0.04
4 0.050 0.054 0.048 0.044 0.95 0.95 0.94 0.96 -0.01 0.00 -0.02 -0.02

not considered further. Though some type-I error rates from GLMM, multiple imputation
and IPW GEE methods are higher than 0.05 (maximum 0.054) due to the variation from
simulation, we consider these three methods are able to control type-I error at level 0.05.
In addition, IPW GEE method generates larger bias than GLMM and multiple imputation
in both cases, though it seems to be more powerful.

Tables 5 and 6 report results when some models are misspecified, in the sense that
variable base stat is omitted from the missingness model in IPW GEE, imputation model
in multiple imputation and GLMM. The results from GLMM appears still reasonable. The
performance of IPW GEE becomes unstable with much less power in scenario 2 but more
power in other scenarios in case 2. Moreover, it yields relative lower confidence interval
coverage and much larger bias in both cases. Multiple imputation is consistently more
conservative in both cases. Though it produces minor bias in case 1, the observed bias in
case 2 is even larger than IPW GEE in two scenarios.

3. Discussion

Through our simulation study, GLMM seems to perform very well in all cases and is rec-
ommended as primary analysis in clinical trial with missing binary response. However,
cautions should be taken when using SAS PROC GLIMMIX since the results could be
quite different with different options in PROC GLIMMIX and type-I error could be inflat-

Table 4: Simulation Result of Case 2 with Correct Models

Empirical Power 95% CI Coverage Bias of Log(OR) Estimate
Scenario GLMM MI IPW DR GLMM MI IPW DR GLMM MI IPW DR

1 0.78 0.80 0.82 0.80 0.96 0.96 0.95 0.94 -0.01 -0.01 -0.08 -0.05
2 0.78 0.78 0.76 0.72 0.96 0.94 0.95 0.95 0.00 0.00 0.00 0.02
3 0.81 0.81 0.88 0.88 0.96 0.95 0.93 0.92 -0.01 -0.01 -0.12 -0.12
4 0.82 0.80 0.84 0.84 0.96 0.96 0.94 0.95 0.00 0.00 -0.05 -0.04
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Table 5: Simulation Result of Case 1 with Incorrect Models

Empirical Type I error 95% CI Coverage Bias of Log(OR) Estimate
Scenario GLMM MI IPW GLMM MI IPW GLMM MI IPW

1 0.042 0.024 0.044 0.96 0.98 0.96 0.00 -0.01 -0.04
2 0.044 0.028 0.110 0.96 0.97 0.89 0.00 -0.01 -0.16
3 0.050 0.028 0.066 0.95 0.97 0.93 0.00 0.00 0.11
4 0.054 0.030 0.056 0.95 0.97 0.94 0.00 -0.01 -0.02

Table 6: Simulation Result of Case 2 with Incorrect Models

Empirical Power 95% CI Coverage Bias of Log(OR) Estimate
Scenario GLMM MI IPW GLMM MI IPW GLMM MI IPW

1 0.79 0.58 0.85 0.96 0.96 0.92 -0.01 0.13 -0.12
2 0.78 0.64 0.61 0.96 0.95 0.94 0.00 0.11 0.08
3 0.82 0.65 0.97 0.96 0.96 0.82 -0.01 0.11 -0.27
4 0.81 0.72 0.86 0.96 0.96 0.94 0.00 0.09 -0.06

ed with incorrect covariance structure.
Both IPW GEE and multiple imputation could be good candidates for sensitivity anal-

ysis, if done carefully. IPW GEE with a correctly specified missing model is generally less
efficient than multiple imputation with a correctly specified imputation model (Seaman and
White, 2011). However, when both models are misspecified, multiple imputation becomes
too conservative and may produce more bias than IPW GEE in some cases.

Though doubly robust estimation methods are promising theoretically, some of these
methods are difficult to implement in SAS or other standard software and it seems that there
is a risk of Type-I error inflation through our simulation study. Therefore, Type-I error rates
should be examined with simulation before considering doubly robust estimation methods.
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