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Abstract
Estimation of the effect of a treatment in the presence of unmeasured confounding is a common

objective in observational studies. The Two Stage Least Squares (2SLS) Instrumental Variables (IV)
procedure is frequently used but is not applicable to time-to-event data if some observations are cen-
sored. We develop a simultaneous equations model (SEM) to account for unmeasured confounding
of the effect of treatment on survival time subject to censoring. The identification of the treatment
effect is assisted by IVs and the assumed bivariate distribution underlying the data generating pro-
cess. The methodology is illustrated on data from an observational study of time to death following
endovascular or open repair of ruptured abdominal aortic aneurysm. As the IV and the distributional
assumptions cannot be jointly assessed from the observed data, we evaluate the sensitivity of the
results to these assumptions.

Key Words: Comparative effectiveness research, Instrumental variable, Observational study, Si-
multaneous equations model, Survival analysis

1. Introduction

Instrumental Variable (IV) procedures such as Two Stage Least Squares (2SLS) are fre-
quently used to account for unmeasured confounding, whose presence is a common con-
cern in observational studies, with regard to estimation of the causal effect of treatment.
However, IV procedures are not applicable to time-to-event data if some observations are
censored. Thus, there is a clear need for an IV procedure that can be used with censored
survival data as the exclusion of censored observations is subject to selection bias when-
ever there is differential loss to follow-up (Hernan, Hernandez-Diax, and Robins 2004). On
the other hand, survival time models that ignore unmeasured confounding will yield biased
treatment effects.

Although there recently has been some application of IV methods to survival analy-
sis, they have not accounted for censoring, have employed methods that were not fully
validated, or have provided inexplicit interpretation of treatment effect.

Specifically, Terza, Basu, and Rathouz (2008) showed that, for the nonlinear situations
where 2SLS is less justified, Two Stage Residual Inclusion (2SRI) estimation is consistent
across Weibull models of complete data and other nonlinear models. However, 2SRI does
not account for censoring. In other work, O’Malley et al. (2011a) used a bivariate probit
model (Heckman 1978; Goldman et al. 2001; Zeng et al. 2006; Bhattacharya, Goldman,
and McCaffrey 2006) to jointly model both binary treatment and outcome by a simultane-
ous equation system; the equation for treatment is linked to an equation for the outcome
through both treatment and a selection parameter that reflects the sign and magnitude of
the correlation between the error terms of the two equations. Further, O’Malley, Frank, and
Normand (2011b) modeled the causal effect of a treatment on a continuous outcome using
a simultaneous equations model with IVs, but again censoring was not considered.

In the context of survival data subject to censoring, some studies applied the IV pro-
cedures but just illustrated their approaches through examples not validating whether they
worked in the setting with censored observations: Abbring and van den Berg (2005) exam-
ined the empirical analysis of treatment effects on duration outcome from data including
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instrumental variation in social experiments and considered a binary IV which is random-
ization to a binary treatment; Bosco et al. (2010) considered an IV-like estimation, similar
to Brookhart and Schneeweiss (2007)’s preference-based IV method, by using the logistic
regression in the first step and Cox proportional hazards regression in the second step; Re-
cently, Gore et al. (2010) and Palmer (2013) used the control function approach of which
2SRI is a special case – Gore et al. (2010) applied 2SRI by considering Weibull survival
models in the second stage, and Palmer (2013) employed a nonlinear IV approach in a pro-
portional hazards model with endogeneity whose conditional distribution was assumed to
be a normal distribution. However, these methods were not completely justified although
there were some theories they proved.

As alternatives to the direct application of IVs in survival analysis, Blundell and Powell
(2007) and Chernozhukov, Fernandez-Val, and Kowalski (2011) adopted IVs to account
for unmeasured confounding in duration models, but their methods were based on quan-
tile estimation of censored regression and thus treatment effect is the regression coefficient
of treatment on conditional quantiles of outcome variable. Bijwaard (2009) proposed the
Instrumental Variable Linear Rank Estimation (IVLRE) method for duration models that
adjusts for the possible endogeneity of the intervention. The method used the inverse of
the rank test for the significance of a covariate on the hazard and considered a Generalized
Accelerated Failure Time (GAFT) model, but the causal effect in the GAFT model is de-
fined in terms of shifting the quantiles of the outcome distribution. Furthermore, the IVLR
method assumes that censoring time is (potentially) known in advance even for uncensored
observations. Yu et al. (2012) evaluated a prior event rate ratio (PERR) adjustment method,
and an alternative (PERR-ALT), in a Cox proportional hazards model. However, PERR
and PERR-ALT rely on the availability of survival data from a prior time-period in order to
account for baseline differences between the study groups in the absence of the interven-
tion treatment and do not involve formal use of IVs. In these alternative approaches, the
interpretation of treatment effect is not clearly understandable.

The lack of an established IV methodology for survival data motivates development
of a new method to account for unmeasured confounding of the causal effect of treatment
on survival time subject to censoring. For this purpose, we propose a structural equations
model (SEM) by linking the survival time and treatment selection equations. We consider a
log-normal survival model and assume the log-survival time and propensity to be “treated”
have an underlying bivariate normal distribution; the method can thus be viewed as an ex-
tension of the bivariate probit model to survival time data. From the perspective of missing
data, the method is a missing-not-at-random (MNAR) procedure as missingness depends
on unobservables. The identification of the treatment effect is assisted by IVs that are re-
lated to treatment but conditional on treatment do not directly affect the outcome. Bayesian
Markov Chain Monte Carlo (MCMC) methods are used for estimation. We suggest the
imputation of censored survival times for computational efficiency in estimation and use a
novel procedure to update estimated censored survival times over the MCMC iterations.

The methodology is illustrated on an example assessing endovascular (endo) repair vs
open surgical (open) repair for patients with ruptured abdominal aortic aneurysm (rAAA),
and compared to existing methods using non-censored samples or ignoring censored sam-
ples. Finite sample properties of the proposed method are investigated through simulation
studies under various settings including strong and weak IVs and different censoring rates.
In addition to when the model holds, we also conduct simulations to examine robustness
under model misspecification.

The outline of this paper is as follows. We present our proposed approach and describe
the estimation procedure in Section 2, apply the method to rAAA data in Section 3, provide
numerical results from simulation studies in Section 4, and conclude in Section 5.
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2. METHODS

2.1 Model Formulation and Notation

We denote the survival time, the right-censoring time, a treatment, a vector of exogenous
covariates, and an unmeasured confounding variable for the i-th of n subjects by Yi,Ci,Wi,
Xi, and Ui, respectively. While (Yi, Ci) may be considered a bivariate random variable,
we only observe Y obs

i = min(Yi,Ci), the followup time, and ∆i = I(Yi ≤ Ci), the status
of Y obs

i . We assume Yi and Ci are independent conditional on Xi and Ui, and we further
assume treatment is binary (e.g. endo versus open surgery) and Y obs

i (i.e., Yi and Ci) to
have undergone a log transformation.

To present our assumed causal model we use potential outcomes notation. Let Yi(W )
denote the potential survival time for subject i under treatment W ∈ {0,1}. The survival
time that would be observed in the absence of censoring satisfies the consistency equation,
Yi =WYi(1) + (1 −W )Yi(0). The causal model for the survival times has the form

E[Yi(W )∣Xi, Ui] = ψW +βTXi + βuUi. (1)

The parameter, ψ, denoting the effect of treatment on survival time is the target of inference.
A defining feature of the model assumed here is that Wi, the observed treatment for subject
i, and Ui are not assumed to be independent.

Next we formalize the dependence of Wi on other variables, often referred to as se-
lection variables, that influence the treatment an individual is assigned. We now introduce
a vector of variables, denoted Zi, that are known as “instruments” as they manipulate
treatment without fully controlling it and affect the outcome only indirectly through their
manipulation of the treatment (Imbens and Angrist 1994). The potential treatment an in-
dividual is assigned can be represented by its own causal model. We specifically assume
Wi(Z) = I(W ∗

i (Z) > 0), where

E[W ∗

i (Z)] = λTZ + θTXi + θuUi, (2)

for Z ∈ R(Z), the set of all possible values of Z. The quantity W ∗

i (Z) represents the
underlying propensity on an unrestricted continuous scale of individual i to be treated (as-
signed Wi = 1) when Zi = Z. The IV Zi is thus assumed to (i) be associated with Wi

conditional onXi and Ui; (ii) have no effect on Yi conditional on Wi,Xi, and Ui; and (iii)
be unrelated to Ui conditional onXi.

Together, the causal models in Equations 1 and 2 define the data generating mechanism
under which (i) individuals are assigned (or select) a treatment and (ii) the observed and
unobserved selection factors together with treatment affect outcomes. In order to estimate
the parameters of these equations, and in particular ψ, in the presence of censoring we
embed these causal equations in the following SEM:

Yi = ψWi +βTXi + ε1,i and W ∗

i = λTZi + θTXi + ε2,i, (3)

where Wi=I(W ∗

i >0), εi=(ε1,i, ε2,i)=(βuUi+δ1,i, θuUi+δ2,i), and (δ1,i, δ2,i) is a bivariate
vector of independent random variables (independent of all other variables). Because εi
depends on Ui it follows that Cov(Wi, ε1,i) ≠ 0, which violates the conditions under which
least squares or other methods for estimating linear regression models are valid.

To complete the specification of the model we assume

εi = ( ε1,i
ε2,i

) ∼ N (( 0
0

) ,( σ2
1 ρσ1

ρσ1 1
)) , (4)

where σ2
1 is interpreted as the residual variance of the survival time distribution. Because

we only observe the binary treatment Wi, not the underlying propensity to be treated W ∗

i ,
the restriction var(ε2,i) = 1 is imposed in order to identify model parameters. The quantity
ρ represents the net effect of unmeasured confounding by characterizing the extent to which
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unobserved factors (Ui) affecting W ∗

i are correlated with those affecting Yi. A positive
correlation (ρ > 0) indicates (in our case) endo-favorable selection because unobserved
factors that make subjects more likely to receive endo increase survival time.

This model formulation is in similar fashion to the models by Chib and Hamilton (2000,
2002) assuming a multivariate normal distribution for continuous underlying treatment and
potential outcomes whose observations are binary treatment and continuous outcomes.

The primary role of the log-normal assumption for survival time and other distributional
restrictions in the bivariate normal distribution is to account for censoring and unmeasured
confounding simultaneously in identification of the causal effect of treatment on survival
time. Note that accounting for unmeasured confounding is also supported by the IVs in-
cluded in the SEM.

2.2 Likelihood

Bayesian methods are used for estimation, so we must specify both the likelihood function
for the observed data (this subsection) and a prior distribution for the unknown parameters
(the next subsection).

For each subject we observe Y obs
i ,∆i and Wi conditional on Xi and Zi. Therefore,

the likelihood function of the model parameters (ψ,β,λ,θ, σ2
1, ρ) given these observations

is the product over i = 1, . . . , n of terms of the form:
f(Y obs

i ,∆i,Wi∣Xi,Zi)

= [φ(Y obs
i ;µy,i, σ

2
1 ∣Wi,Xi,Zi)Φ(µw∣y,i∣Xi,Zi)

Wi(1 −Φ(µw∣y,i∣Xi,Zi))
1−Wi]

∆i

× [S(Y obs
i ∣Wi,Xi,Zi)f(Wi∣Xi,Zi)]

1−∆i

, (5)

which are obtained by integrating the density of models (3) and (4) over W ∗

i (i.e. integrat-
ing over ε2,i). The components of (5) are given by:

µy,i = ψWi +βTXi, µw∣y,i =
λTZi + θTXi + ρ(Y obs

i − µy,i)/σ1√
1 − ρ2

, (6)

S(Y obs
i ∣Wi,Xi,Zi)=P (Yi≥Y obs

i ∣Wi,Xi,Zi)=∫
∞

Y obs
i

φ(Yi;µy,i, σ2
1 ∣Wi,Xi,Zi)dYi, and

f(Wi∣Xi,Zi)=Φ(µw∗,i∣Xi,Zi)
Wi(1−Φ(µw∗,i∣Xi,Zi))

1−Wiwith µw∗,i=λTZi+θTXi,

where φ(v;µ,σ2) and Φ(v) denote the probability density function of N(µ,σ2) and the
cumulative density function of N(0,1), respectively, evaluated at v, for ρ ≠ 1.

2.2.1 Parameter expansion to censored survival times

The estimation procedure based on the likelihood (5) is complicated due to the joint prob-
lem of censoring and unmeasured confounding: in survival analysis, a censored subject (i.e.
Y obs
i =Ci and ∆i = 0) contributes to the likelihood through survival probability at the ob-

served censoring time; with unmeasured confounding, the survival function S(Y obs
i ∣Wi,Xi,

Zi) in (5) is obtained by integrating its conditional survival function over unmeasured con-
founders; when the function does not have a closed form, this integration becomes too
complex and computationally intensive like our SEM. Therefore, instead of using survival
probability, we propose to impute censored survival times truncated by the corresponding
observed censoring times, described in Section 2.4.1, which simplifies the computation
which would have been done by the original complicated estimation procedure.

For this imputation, we expand parameters to be estimated by treating the censored
survival time as a range restricted unknown parameter denoted Y ∗

i . Then, the conditional
complete data likelihood function for (ψ,β,λ,θ, σ2

1, ρ, Y
∗

i ∣Yi = Y ∗

i ≥ Ci) is given by:
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[φ(Yi;µy,i, σ2
1 ∣Wi,Xi,Zi)Φ(µw∣y,i∣Xi,Zi)

Wi(1 −Φ(µw∣y,i∣Xi,Zi))
1−Wi]∆i

× [φ(Y ∗

i ;µY ∗,i, σ
2
1 ∣Wi,Xi,Zi)Φ(µw∣y∗,i∣Xi,Zi)

Wi(1 −Φ(µw∣y∗,i∣Xi,Zi))
1−Wi]1−∆i

= φ(Y a
i ;µY a,i, σ

2
1 ∣Wi,Xi,Zi)Φ(µw∣ya,i∣Xi,Zi)

Wi(1 −Φ(µw∣ya,i∣Xi,Zi))
1−Wi

, (7)

where Y a
i = Y ∆i

i (Y ∗

i )(1−∆i), µY ∗,i and µw∣y∗,i have Y ∗

i in place of Yi in (6), and µY a,i and
µw∣ya,i have Y a

i in place of Yi in (6).

2.3 Prior and Posterior Distribution

The posterior distribution of the parameters Θ = (ψ,β,λ,θ, σ2
1, ρ,Y

∗) in (7) is given by

P (Θ∣Data) = P (Data∣Θ)P (Θ)
∫ P (Data∣Θ)P (Θ)dΘ

= P (Data∣Θ)P (Θ)
P (Data) ∝ P (Data∣Θ)P (Θ). (8)

To further reduce computational complexity, we re-parameterize λ, θ, and ρ in (6) to pa-
rameters for which closed-form posterior distributions are more accessible via:

λ̃ = λ√
1 − ρ2

, θ̃ = θ −βρ/σ1√
1 − ρ2

, and ρ̃ = ρ

σ1

√
1 − ρ2

. (9)

Then, we specify priors for the censored survival outcome (Y ∗

i ), three original param-
eters (ψ,β, σ2

1), and three transformed parameters (λ̃, θ̃, ρ̃). We assume diffuse priors
for Y ∗

i and the model parameters other than ρ. Because we are interested in sensitivity
to unmeasured confounding, prior distributions for ρ of varying precision are used. Non-
informative flat priors are assumed for Y ∗

i over [Ci,∞), ψ, β, λ̃ and θ̃. The Inverse
Gamma prior, which is a conjugate prior for the normal distribution, is assumed for σ2

1 .
Specifically, p(Y ∗

i )∝ 1, p(ψ)∝ 1, p(β)∝ 1, p(λ̃)∝ 1, p(θ̃)∝ 1, and σ2
1 ∼ IG(υ1, υ2),

where υ1 and υ2 are chosen such that the variance far exceeds the mean. We assume a Beta
prior for ρ∗ = (ρ + 1)/2, (i.e. ρ∗ ∼ Beta(ν1, ν2)), which expands to a Beta-type prior for ρ
over (−1,1). Thus, ρ has the prior density:

p(ρ;ν1, ν2) = (1

2
)
ν1+ν2−1

1

B(ν1, ν2)
(1 + ρ)ν1−1(1 − ρ)ν2−1,

where B(ν1, ν2) = Γ(ν1)Γ(ν2)/Γ(ν1 + ν2). Therefore, ρ̃ has the prior,

p(ρ̃, ν1, ν2)=(
1

2
)
ν1+ν2−1

1

B(ν1, ν2)
σ1√

1+ρ̃2σ2
1

(1+ ρ̃σ1√
1+ρ̃2σ2

1

)
ν1−1

(1− ρ̃σ1√
1+ρ̃2σ2

1

)
ν2−1

. (10)

In the special case where ν1=ν2=1, ρ and ρ̃ follow uniform(−1,1) and t with 2 degrees of
freedom, respectively. The conditional posterior distributions needed for the computation
described in Section 2.4 are given in Appendices. We refer to the model given in (3) and
(4) and the above prior distributions as the Bayesian structural equations model (BSEM).

2.4 Bayesian Computation

We briefly outline the Markov Chain Monte Carlo (MCMC) procedure used to fit the
BSEM. For the n0 ≤ n subjects with right-censored survival times, let Y ∗

0 denote a n0 × 1
vector of censored survival outcomes with the j-th element, Y ∗

0,j , j = 1, . . . , n0. (Recall that
Y ∗

i ≥ Ci denotes the parameter for the censored survival outcome for subject i if ∆i = 0.)
The MCMC procedure first selects initial values (Y ∗(0)

0 = (Y ∗(0)
0,1 , . . . , Y

∗(0)
0,n0

), ψ(0),β(0),
λ(0),θ(0), σ

2(0)
1 , ρ(0)). They are updated to obtain Y ∗(1)

0,1 , . . . , Y
∗(1)

0,n0
,β(1), σ

2(1)
1 , (λ(1),θ(1), ρ(1)),

and ψ(1). For (λ(1),θ(1), ρ(1)), their transformed counterparts (λ̃(1), θ̃(1), ρ̃(1)) are jointly
updated and then transformed back to update the original parameters.β(1) andσ2(1)

1 are di-
rectly generated from their corresponding conditional posteriors, a normal and an Inverse-
Gamma distribution, respectively, using Gibbs sampling. Candidate values for Y ∗(1)

0,1 , . . . ,
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Y
∗(1)

0,n0
, (λ̃(1), θ̃(1), ρ̃(1)), and ψ(1)are generated from the corresponding conditional posteri-

ors by the Metropolis-Hastings (M-H) algorithm and each current value is updated with the
newly generated value if its candidate is accepted based on the M-H acceptance probability.
Otherwise, the current value is retained. The procedure is then iterated.

We found that 40,000 samples following burn-in of 10,000 samples were sufficient by
studying and evaluating trace plots of the MCMC procedure, the Gelman-Rubin diagnos-
tic, and the Geweke criterion for monitoring convergence of the MCMC procedure. The
estimates of the parameters are the posterior means of the M(= 40,000) samples.

2.4.1 Imputing censored survival times

In Section 2.2.1 we represented the censored survival times as range restricted unknown
parameters to avoid computing their marginal survival probabilities, S(Y obs

i ∣Wi,Xi,Zi),
which are computationally demanding. In the course of our MCMC algorithm we use a
novel procedure to update the parameter Y ∗

i , representing the true value of Yi. We now
justify this procedure.

When the survival time for the i-th subject is observed (Y obs
i = Yi), the joint marginal

density for (Yi,Wi) evaluated at (Y obs
i ,Wi) given in (5) is

f(Y obs
i ,Wi∣Xi,Zi)

= φ(Yi;µy,i, σ2
1 ∣Wi,Xi,Zi)Φ(µw∣y,i∣Xi,Zi)

Wi(1 −Φ(µw∣y,i∣Xi,Zi))
1−Wi

. (11)

When the i-th subject is censored (Y obs
i = Ci), Y ∗

i , the realization of the survival time
Yi that would have been observed in the absence of censoring, is left-truncated by Ci.
Given (11), Y ∗

i ≥ Ci, and based on an improper uniform prior for Y ∗

i we approximate the
conditional posterior distribution for Y ∗

i given in Appendix A and use the approximate dis-
tribution to propose candidate draws of Y ∗

i in the MCMC algorithm used to fit the BSEM.
To update Y ∗

i we use the truncated normal distribution, f(Y ∗

i ∣Wi,Xi,Zi)∝φ(Y ∗

i ;µY ∗,i,

σ2
1 ∣Wi,Xi,Zi)I(Y ∗

i ≥ Ci), as a candidate generating density and apply the M-H algo-
rithm. Since µY ∗,i = ψWi +βTXi does not depend on Y ∗

i , at each iteration the candidates
are drawn independently of the current value of Y ∗

i (an independence chain, Tierney 1994),
in contrast to a random walk chain. Under this strategy, the probability of accepting a new
candidate value Y ∗,new

i is given by

min{1,
Φ(µw∣y∗,new,i∣Xi,Zi)

Wi(1 −Φ(µw∣y∗,new,i∣Xi,Zi))
1−Wi

Φ(µw∣y∗,i∣Xi,Zi)
Wi(1 −Φ(µw∣y∗,i∣Xi,Zi))

1−Wi
}.

We found the acceptance rate to be very high (around 0.9), which implies the shape of the
truncated normal distribution used to generate posterior samples is close to the shape of the
true conditional posterior for Y ∗

i .
To examine the predictability of Y ∗

i determined by the fitted model, we performed sim-
ulations and drew a plot of the density of log(estimated incremental survival time beyond
censoring time) by treatment over censored observations from a simulated data set (Fig-
ure 1). The vertical lines in Figure 1 indicate the average of log(true incremental survival
time beyond censoring time) over the censored observations in the corresponding treatment
group. Figure 1 shows that, within each treatment group, the estimated log(incremental sur-
vival times beyond censoring times) are centered around the average of corresponding true
values suggesting the imputations are well calibrated in terms of bias.

3. APPLICATION TO VASCULAR SURGERY DATA

In this section, the BSEM is illustrated with a clinical example using vascular surgery data
and compared to the results under the standard survival analysis ignoring confounding and
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Figure 1: Density plot of log(estimated incremental survival time beyond censoring time). Vertical
line indicates the average log(true incremental survival time beyond censoring time) for censored
observations within treatment group, solid and dottd lines denote treatment and control treatment
group, respectively, n = 5000, censoring rate = 30%, the number of MCMC posterior samples =
40000, ψ = 2, ρ = 0.2, and a vague prior for ρ was assumed.

the 2SLS procedure only applied to the non-censored subset of observations. As the stan-
dard survival analysis, we fit the log-normal accelerated failure time (AFT) model which
has the same interpretation of treatment effect as the ones in the other methods.

Endovascular (endo) repair was introduced in 1999 as a less invasive alternative to
elective open surgical (open) repair of AAA, which was traditionally performed to prevent
ruptures. We evaluate its effectiveness on survival of patients with rAAA cases, one of the
most fatal surgical emergencies, compared to that of open repair.

Medicare claims data were used to identify all open and endo repairs of rAAA that
occurred during 2001–2008. To be eligible for analysis, patients were required to have at
least 2 years of prior Medicare enrollment. This restriction ensured that comorbidities that
might influence the choice of approach and outcomes of rAAA repair could be measured
equitably for all patients. A total of 2,853 ruptured cases met the criteria for analysis,
yielding 2,201 (77.15%) and 652 (22.85%) patients who underwent endo and open repair,
respectively. The proportion of censored survival times is high (66.28%). Patients in endo
group could have been followed up an average of 1578.53 days (SD=779.91) while those in
open repair group could have been followed up an average of 1854.24 days (SD=886.56).

The survival time is evaluated as the number of days from procedure date to death.
Treatment is coded 1 for endo and 0 for open repair. Based on a prior study (O’Malley et
al. 2011a), we adjusted for the following observed confounders on which both treatment
selection and survival may depend: gender, race, age at procedure, seven indicators of
specific comorbidities (previous renal failure, congestive heart failure, chronic pulmonary
disease, peripheral vascular disorders, vascular disease, neurovascular disease, and prior
AAA diagnosis), two procedural factors (year of procedure and urgent case – defined as
emergency department charges of $50 or more), and total number of AAA procedures over
the prior 365 days at the hospital where the procedure was performed. There are suspected
to be unmeasured confounders that influence choice of procedure.

The proportion of endo cases over the prior 365 days of each procedure at the hospital
the patient attended is used as an IV. The rationale behind this choice is that the likelihood
a rAAA patient receives endo is likely to increase with the proportion of endo cases per-
formed at the hospital over the prior 365 days but, conditional on the patient’s treatment

JSM 2014 - Health Policy Statistics Section

1899



Table 1: Results of estimates of ψ, the effect of endovascular (endo) versus open surgical repair
(open) for the treatment of ruptured abdominal aortic aneurysm (rAAA), in the Medicare population
over 2001–2008.

Treatment effect (ψ)
Censored data Procedure Estimate Std Err Interval
Exclude AFT model .230 .060 ( .112, .347)

2SLS .213 .135 (- .052, .477)
BSEM .283 .135 ( .034, .577)
BSEM w/o IV 1.168 .189 ( .793, 1.529)

Include AFT model .076 .063 (- .048, .200)
BSEM - .112 .129 (- .353, .145)
BSEM w/o IV - .122 .238 (- .529, .333)

Note: The BSEM used a vague extended Beta prior with parameters=(1,1)
for ρ (i.e. E[ρ]=0 and Var[ρ]= .33) over a range (-1,1) which is same as
unif(-1,1).

and other covariates including the total number of AAA cases and the date of their proce-
dure, it is unlikely that the proportion of endo cases (on other patients) will be correlated
with the patient’s survival time.

Since the bivariate normality assumed in the BSEM is not testable, we examined the
univariate log-normality of survival time of the rAAA patients through the Q-Q plot of the
standardized residuals by the the log-normal AFT model fitted to survival time as an ex-
ploratory approach to check the violation of the assumption. The Q-Q plot (not presented)
showed rough indication of log-normality of univariate survival time and it did not look
problematic to consider the log-normal survival model.

For the BSEM, we assume the prior mean of ρ to be 0 because (i) we are not knowl-
edgeable about whether unmeasured confounders between treatment and outcomes are pos-
itively or negatively correlated in this rAAA data and using the prior center=0 allows both
directions in estimation and (ii) ρ is not likely to be away from 0 since many observed
confounders are already adjusted for in this analysis.

Table 1 compares the estimates of treatment effect (ψ) between estimation methods
when censored observations are accounted for and excluded. Estimates are obtained using
the BSEM with and without an IV, the log-normal AFT model (ignores confounding), and
the 2SLS procedure (excludes censored cases). For comparison, the BSEM and the AFT
model are also evaluated when censored observations are excluded. For the BSEM in this
table, we assume a vague extended Beta prior with parameters=(1,1) for ρ with mean=0
and variance=0.33 over a range (-1,1) which is same as uniform (-1,1).

There are several informative findings in Table 1. First, the BSEM and the AFT model
produce estimates of ψ that are smaller in magnitude when censoring is accounted for
than with only the non-censored data. Thus, ψ is likely overestimated by removing cen-
sored observations. Second, ignoring confounding leads to estimates of smaller magnitude
of ψ in the standard AFT model than when accounting for unmeasured confounding in
the BSEM irrespective of whether censoring is accounted. However, the 2SLS yields the
smallest estimated ψ among the methods for non-censored data. This may reflect a selec-
tion bias incurred from excluding the large amount of censored observations in the rAAA
data. Third, the BSEM accounting for both censoring and unmeasured confounding yields
negative point estimates of ψ indicating shorter survival under endo while all the other
point estimates of ψ are positive, suggesting longer survival under endo. However, when
accounting for censoring, the 95% credible intervals from the standard AFT model and the
BSEM reassuringly include 0, implying endo neither significantly increased nor decreased
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Table 2: Results of estimates of treatment effect (ψ) and correlation (ρ) by omitting/including
‘urgent admission’ among observed confounders for all rAAA data in the Medicare population over
2001–2008.

Confounders Procedure Parameter Estimate Std Err Interval
Include all AFT model ψ .076 .063 (-.048, .200)
observed confounders BSEM ψ -.112 .129 (-.353, .145)

ρ .119 .071 (-.014, .259)

Omit an observed AFT model ψ .095 .063 (-.029, .219)
confounder BSEM ψ -.135 .144 (-.436, .133)
(urgent admission) ρ .145 .080 (-.009, .309)

Note: The BSEM used a vague extended Beta prior with parameters=(1,1) for ρ (i.e.
E[ρ]=0 and Var[ρ]= .33) over a range (-1,1) which is same as unif(-1,1).

survival compared to open. Fourth, the BSEM without an IV appears to magnify the point
estimate of ψ in the same direction of that by the BSEM with an IV and produces the wider
interval estimates than the BSEM with an IV, indicating that including an IV in the BSEM
helps the identification of ψ and stabilizes variance in the estimation of ψ.

As an ad hoc analysis to calibrate the impact of unmeasured confounders in the rAAA
data, we created an unmeasured confounder by omitting an observed variable whose di-
rection and magnitude of confounding can be assessed and compared the estimates to the
results under the model including the omitted confounder. We chose to omit ‘urgent admis-
sion’, an indicator of whether a patient is urgently admitted, which appeared to negatively
affect both treatment and outcome in the relatively larger magnitude than the other con-
founders (the estimates of coefficients of the observed confounders not presented in this
paper). This analysis was conducted to all rAAA data including censored observations
and we used a vague extended Beta prior for ρ as done for Table 1. The results from this
analysis are provided in Table 2: (i) the magnitude of the estimate of ψ increases in both
the AFT model and the BSEM when omitting ‘urgent admission’ from when adjusting for
it, which implies the created unmeasured confounder caused ψ to be more overestimated
by 0.019 positively in the AFT model and by 0.023 negatively in the BSEM; (ii) by the
BSEM without ‘urgent admission’, ρ has the bigger point estimate and wider interval es-
timate which reflect the increased unmeasured confounding. Specifically, we may imply
the increment=0.026 in the estimates of ρ which represents the net effect of the additional
unmeasured confounder led to the increment=0.023 in the magnitude of the estimates of ψ.

We also assessed the sensitivity of the BSEM to different levels of precision of the
prior for ρ, and the results when accounting for censoring are given in Table 3. The BSEM
appears insensitive to the different priors for ρ, implying the vague prior has sufficient
precision to be used on the rAAA data.

On the other hand, from the flipped sign of the point estimate of ψ between the AFT
model and the BSEM when accounting for censoring (Table 2), one may question on the
appropriateness of the BSEM to the rAAA example. Answering this question involves
the evaluation of ρ. As mentioned earlier in this section, it is unlikely that unmeasured
variables could exist such that ρ is far from 0 because we have a very detailed data set and
AAA has been studied extensively. Furthermore, in Copas and Li (1997), it is suggested
that ρ estimated to be near ±1 indicates model lack-of-fit. From Table 3, reassuringly all
the estimates of ρ under the BSEM are near 0 and their 95% credible intervals include
0. Hence, we may conclude the BSEM incorporating censored observations as well as
unmeasured confounders yields believable and reasonable results.

In this application, the unmeasured confounders appear to have a big impact on the
estimation of ψ even with the small ρ estimated to be around 0.1. Thus, in Section 4, we
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Table 3: Results of the BSEM estimates of treatment effect (ψ) and correlation (ρ) for all rAAA
data in the Medicare population over 2001–2008.

Parameter Prior of ρ Estimate Std Err Interval
ψ Vague -.112 .129 (-.353, .145)

Medium -.094 .135 (-.367, .175)
Precise -.067 .130 (-.327, .176)

ρ Vague .119 .071 (-.014, .259)
Medium .108 .075 (-.044, .254)
Precise .092 .071 (-.042, .234)

Note: The vague, medium, and precise priors for ρ are Beta-
type distributions with parameters=(1,1), (5,5) and (10,10),
respectively. Thus, E[ρ] = 0 in each case and Var[ρ] = .33, .09,
and .05, respectively, over a range (-1,1).

further investigate the performance of the proposed method under various scenarios whose
simulations are to be based on the larger range of values on the parameter space of ρ (i.e.
0/ ± 0.2/ ± 0.5) than the realistic values shown in Tables 2 and 3 in order to find more
explicit impact on the estimation of ψ by the change of ρ.

4. SIMULATION STUDIES

In this section, we conduct simulation studies to evaluate the sensitivity of ψ̂ = E[ψ∣Data],
the posterior mean estimator of ψ, to: (1) the prior of ρ, (2) strength of the IV, (3) different
censoring rates, and (4) misspecification of the distribution of εi.

We assume Xi and Zi are univariate and generated from uniform(0,1). Further, εi =
(ε1,i, ε2,i) has a bivariate normal distribution except in those simulations evaluating the im-
pact of a wrongly assumed error distribution. W ∗

i is generated by the linear model in (3)
(in Section 2.1) and Wi is 1 for W ∗

i > 0 and 0 otherwise. The transformed outcome Yi is
generated by the linear model in (3); the exponential of Yi can be thought of as the original
positively-valued survival time under a log-normal model. The exponential of Ci is gener-
ated from uniform(0, a) and log-transformed to Ci. The censoring proportion=30% except
when evaluating the performance of the estimator at different censoring rates. Performance
is evaluated by computing bias, mean squared error (MSE), and coverage probabilities over
100 simulated data sets, but results are presented only by bias plots instead of large arrays
of tables (available from authors) since trends are obvious.

4.1 Finite Sample Properties and Sensitivity to ρ

The values of the survival-time parameters (Equation 1) for data generation were ψ = −0.5,
β0 = 0.5, and β1 = 0.5 and the same for the treatment-selection parameters (Equation 2)
were λ = 0.5, θ0 = −0.5 and θ1 = 0.5. The variance and correlation parameters in the
bivariate normal error distribution (4) were set to σ2

1 = 0.5 and ρGEN = 0/ ± 0.2/ ± 0.5,
where ρGEN distinguishes the value of ρ at which the estimation procedure is evaluated
from the model (e.g., the prior distribution) used for the analysis.

Beta-type distributions with parameters=(1,1), (5,5) and (10,10) form the vague (uni-
form or flat), medium, and precise priors of ρ, respectively, with prior mean=0 (no unmea-
sured confounding) and variance=0.33, 0.09, and 0.05. The choice of the prior mean=0 of
ρ in estimation is reasonable because usually we are not knowledgeable about whether ρ is
positive or negative in real application and using the prior center=0 allows both directions
in estimation. However, for a particular case where researchers believe that there exists
unmeasured confounding and are knowledgeable about the relationship of the unmeasured
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Figure 2: Bias plots of treatment effect (ψ) in simulation studies

confounders between treatment and outcome, the prior of ρ should be centered according to
the known information. Hence, we further conduct the simulations with the prior mean=0.2
of ρ for the situation assuming the prior mean ≠ 0 (existence of unmeasured confounding)
under both true conditions (no unmeasured confounding / existence of unmeasured con-
founding). In this setting, the parameters of the Beta-type distributions were determined
by the specified prior mean and variances of ρ to have vague (uniform or flat), medium,
and precise priors. Two sample sizes n =1000 and 5000 are simulated and the result with
n =5000 is presented in this paper.

Figure 2(a) shows the bias plot of ψ under the BSEM assuming no unmeasured con-
founding (the prior mean=0 of ρ) in estimation. From Figure 2(a), the bias of ψ̂, the pos-
terior mean estimator of ψ, increases as ρGEN moves away from the prior mean, E[ρ]=0,
and the prior of ρ is more informative, and, conversely, bias is very close to 0 when
ρGEN =E[ρ] regardless of informativeness of prior. Also, (although not presented), MSE
and coverage improved when ρGEN =E[ρ] whereas they deteriorated ρGEN ≠E[ρ], but
informative priors for ρ had less influence as n increases from 1000 to 5000, showing bias
and MSE decrease and the coverage probability converges upon the 95% nominal level.

The result from additional simulations by the BSEM in the presence of unmeasured
confounding (the prior mean=0.2 of ρ) confirmed the result under no unmeasured con-
founding (the prior mean=0 of ρ) – bias close to 0 when ρGEN =E[ρ] and more bias for
the further ρGEN from the prior mean and for the more informative prior of ρ.

4.2 Sensitivity to the Strength of IVs

To illustrate the importance of a strong IV to the BSEM, we evaluate the operating charac-
teristics of ψ̂ at λ = 0, 0.5, 1, and 2 (the effect of the IV). A vague prior for ρ is assumed
so that the IV alone is principally responsible for identifying ψ separate from ρ. The other
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model specifications and simulation settings are as in Section 4.1.
Figure 2(b) reveals that the estimate of ψ is less biased when λ is bigger (stronger IV).

It is clear that the benefit of a strong IV is relatively more evident for larger ρGEN due
to the fact that the higher correlation between the survival time and the treatment selec-
tion equations increases the information available to estimate ψ provided the presence of
unmeasured confounding is accounted.

4.3 Sensitivity to Censoring Rate

To assess sensitivity to different censoring proportions we set the censoring rate to be 0,
30%, and 60% while fixing the other simulation parameters to the same values as previously
and assuming the uniform prior for ρ.

The bias plot of this simulation is not presented in Figure 2 because bias is close to 0 for
all censoring rates. Although lower censoring rates led to better precision, the differences
were very small among censoring rates. This reveals that the information in the censoring
times makes an important contribution to estimation; even in the presence of substantial
censoring precision is only modestly compromised.

4.4 Sensitivity to Model Misspecification

We finally examine the impact of departures from the bivariate normal assumptions. Data
are generated assuming the true distribution of the random errors of the survival time and
treatment selection equations to be (i) a bivariate t-distribution and (ii) a mixture of a bi-
variate normal distribution and a bivariate Gamma distribution. These allow sensitivity to
outliers and skewness to be assessed, respectively.

4.4.1 Bivariate t-distribution

Under a bivariate t-distribution, the random errors in the survival and treatment selection
equations have the PDF given by

εi = ( ε1,i
ε2,i

) ∼ tdf (µε,Σ) , where µε = ( 0
0

) and Σ = ( σ2
1 ρσ1

ρσ1 1
) . (12)

The smaller the degree-of-freedom (df) the heavier tails of the resulting PDF. We consider
df=3, 10, and 30 and evaluate the operating characteristics of ψ̂ when ρGEN=0 and 0.2
assuming the uniform prior for ρ. Other model specifications and simulation settings are as
in Section 4.1.

As df increases and the true distribution approaches normality, we find the BSEM esti-
mator ofψ is less biased (Figure 2(c)), more precise and has better coverage (not presented).
Hence, the combination of unmeasured confounding (i.e. under ρGEN =0.2) and assuming
a survival time distribution whose tails are not sufficiently thick leads to substantial bias
whereas the bias is small regardless of df under no unmeasured confounding.

4.4.2 Mixture of a bivariate normal distribution and a bivariate Gamma distribution

To isolate the impact of skewness, we generate data from a bivariate normal-gamma mix-
ture distribution having the same mean and covariance as for the bivariate normal model in
Section 2.1. That is,

εi = (ε1,i, ε2,i) ∼ π ×N(εi;µε,Σ) + (1 − π) ×G(εi;µε,Σ), (13)
where µε and Σ are as in (12), π is the mixing proportion, and N(εi;µε,Σ) denotes
the bivariate normal distribution and G(εi;µε,Σ) denotes the bivariate gamma distribu-
tion with the mean µε and variance Σ. Draws from the mixture distribution are made by
evaluating εi = ΛT (πν1 + (1 − π)ν2), where Λ is the Choleski decomposition of Σ (i.e.,
Σ = ΛTΛ), assigning the elements of ν1 to be standard normal random variables, and
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assigning the elements of ν2 to be univariate gamma random variables with both mean and
variance equal to 1. Smaller π allows greater departure from the bivariate normal distribu-
tion, generating more skewed data. We consider six settings of ρGEN=0 and 0.2 by π=0.2,
0.5, and 0.8. The other model specifications and simulation settings are as in Section 4.4.1.

As π increases, the BSEM estimator of ψ is less biased (Figure 2(d)), more precise and
has better coverage (not presented). The changes in bias, precision and coverage due to
skewness are much more pronounced in the presence of unmeasured confounding (ρGEN =
0.2) and are greater than those under no unmeasured confounding (ρGEN =0).

5. DISCUSSION

In this paper, we have developed a novel Bayesian structural equations model (BSEM) to
estimate the causal effect of treatment on survival subject to censoring accounting for un-
measured confounding by jointly modeling survival time and treatment using SEM. The
approach assumes an underlying bivariate normal distribution for the log-survival time and
propensity to be “treated.” Bayesian MCMC techniques were used for estimation which,
for computational efficiency, included treating the censored survival times as unknown pa-
rameters to be estimated. The methodology extends comparative effectiveness research
methodology to account for both unmeasured confounding and censoring, whereas almost
all prior work has focused on one problem or the other.

In the rAAA data analysis, the BSEM appeared to offer the most justifiable results
among the applied methods (the AFT model, the linear model implied by the 2SLS proce-
dure, and the BSEM) and was robust to different priors for ρ.

The BSEM performed well in finite samples with the Bayesian estimator appearing to
be consistent under the model even when the prior for the unknown selection parameter
was not centered on the true mean. Other simulations revealed that a stronger IV led to
more robust estimation of the casual effect of treatment and that different censoring rates
had little impact, implying the model made efficient use of information in the censored
survival times. However, when unmeasured confounding was present, the joint model was
sensitive to departures from the bivariate normal distribution in terms of the propensity for
outliers and skewness.

The censoring mechanism assumed in this paper is non-informative. That is, the de-
pendence considered in the proposed method is the one induced by the unmeasured con-
founders between treatment and survival time. The method can be extended to informative
censoring by adding an equation for censored time which is also explained by treatment
and confounders and by assuming the unmeasured confounders among the three equations
for survival time, censoring time, and treatment selection to be correlated.

The parameter ρ of the bivariate normal distribution represents the net effect of unmea-
sured confounding and is easily interpreted. However, estimation of ρ and the other model
parameters relies on the untestable bivariate normality assumption, and misspecifying the
assumption can lead to substantial bias, which is evident in the simulations for the sensi-
tivity of the BSEM to wrongly assumed distributions. An alternative involves accounting
for censoring and confounding in sequence, not simultaneously. For example, first use the
BSEM solely to multiply impute censored survival times. Then apply a traditional IV anal-
ysis to each completed data set. This method might allow censoring to be accounted while
preserving the robustness of the IV procedure to distributional misspecifications. There-
fore, the methodology derived here is not limited to the parametric domain and can also be
thought of as overcoming a problem of informative censoring prior to applying IV methods
for complete (non-censored) data. We are currently evaluating the just described procedure.
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APPENDICES

The conditional posterior distributions discussed in Section 2.3 are provided below.

1) Posterior distribution of Y ∗

i (potential survival time)

Assuming a non-informative prior, we derive the conditional posterior distribution of Y ∗

i ,

p(Y ∗

i ∣ψ,β,λ,θ, σ2
1, ρ,Ci)∝φ(Y ∗

i ;µy∗,i, σ
2
1)Φ(µw∣y∗,i)

Wi(1−Φ(µw∣y∗,i))
1−Wi

I(Y ∗

i ≥ log(Ci),

where µy∗,i = ψWi + βTXi and µw∣y∗,i = [λZi + θTXi + ρ(Y ∗

i − µy,i)/σ1]/
√

1 − ρ2 for
ρ ≠ 1. Candidate values of Y ∗

i are generated using a Metropolis-Hastings (M-H) indepen-
dence step (Tierney 1994). Instead of the typically-used random walk step, the candidate
generating density is the fixed approximation to the true conditional posterior given by
p(Y ∗

i ;µy∗,i, σ
2
1)∝ φ(Y ∗

i ;µy∗,i, σ
2
1)I(Y ∗

i ≥ log(Ci).

2) Posterior distribution of β

Under the improper uniform prior for β (all values of β considered equally likely), the
conditional posterior distribution of β is available in closed form, allowing use of a Gibbs
Sampling step to generate values of β. It is given by

β∣σ2
1, λ̃, θ̃, ρ̃ ∼ N((XTX)−1XT Ỹ , σ2

1(XTX)−1),
whereX is the matrix with i-th rowXT

i and Ỹ has the i-th element Ỹi = Y a
i −ψWi, where

Y a
i = Y ∆i

i (Y ∗

i )(1−∆i).

3) Posterior distribution of σ2
1

Under the Inverse Gamma conjugate prior, IG (υ1, υ2), σ2
1 has the conditional posterior

distribution,
σ2

1 ∣β, λ̃, θ̃, ρ̃ ∼ IG(υ1 +
n

2
, υ2 +

1

2

n

∑
i=1

(Ỹi −βTXi)
2)

We choose υ1(=0.001) and υ2(=0.001) so that the prior is diffuse with large variance (=∞).

4) Posterior distribution of (λ̃, θ̃, ρ̃)

Assuming non-informative priors for the two transformed parameters λ̃ and θ̃ and the in-
formative prior (including a diffuse prior as a special case) given in (10) for ρ̃, we obtain
the joint conditional posterior distribution for (λ̃, θ̃, ρ̃) given by
p(λ̃, θ̃, ρ̃∣β, σ2

1, ψ)

∝
n

∏
i=1

Φ(µw∣ỹ,i)
Wi(1−Φ(µw∣ỹ,i))

1−Wi σ1√
1+ρ̃2σ2

1

(1+ ρ̃σ1√
1+ρ̃2σ2

1

)
ν1−1

(1− ρ̃σ1√
1+ρ̃2σ2

1

)
ν2−1

.

The covariance parameter used in the vector-normal distribution for updating (λ̃, θ̃, ρ̃) is
the covariance of the maximum likelihood estimator of (λ̃, θ̃, ρ̃) under a normal PDF based
on only the non-censored data. After generating each new candidate value, the values of
λ̃, θ̃, and ρ̃ are transformed back to the original parameters λ, θ, and ρ for use in the other
steps of the MCMC algorithm.

5) Posterior distribution of ψ

Under an improper flat prior for ψ, the conditional posterior distribution of ψ is given by

p(ψ∣β, σ2
1λ̃, θ̃, ρ̃) ∝ φ(Y a

i ;µya,i, σ
2
1)Φ(µw∣ya,i)

Wi(1 −Φ(µw∣ya,i))
1−Wi

,

where Y a
i = Y ∆i

i (Y ∗

i )(1−∆i), and µya,i and µw∣ya,i have Y a
i in place of Yi in (6). A M-H

step with a random-walk normal distribution as the candidate generating function is used
for updating ψ.
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