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Abstract
In contrast with drugs, vaccines are often given to healthy individuals according to a standard-

ized schedule. Passive surveillance of vaccine safety data (e.g. using VAERS) presents several
challenges not unlike those with other passive surveillance systems. In spite of these challenges,
passive surveillance is useful in identifying unanticipated adverse events and in particular those that
are temporally associated with vaccine administration. Empirical Bayes (Dumouchel (1999)) and
likelihood ratio test approaches (Huang et al. (2011)) provide ways of developing presentations for
assessing many product by adverse event combinations in the context of passive surveillance. In
conjunction with traditional surveillance, these newer tools can identify vaccine-event combina-
tions that might warrant further exploration as potential safety signals. Background rates of adverse
events may vary by demographics group (e.g. cardiovascular events in the elderly or intussuscep-
tion in young infants). Approaches that permit adjustment for potential confounders and effect
modifiers, such as age, gender, and concomitant vaccines, may be particularly valuable. Graphi-
cal displays that facilitate and delineate these differences may aid medical reviewers in assessing
and prioritizing vaccine adverse events for further investigation. We present several graphical ap-
proaches for examining VAERS data.
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1 Vaccine Safety Surveillance

VAERS is a passive surveillance system that allows patients, physicians and vaccine
manufactures to report adverse events (AE) that occur after a vaccine exposure. These data
are challenging to analyze because the number of AE reports is known but the number
exposed to the vaccine is not. Pediatrics is especially challenging because many children
receive more than one vaccine at a doctor’s visit and children change rapidly at young ages.
In passive surveillance systems there is a reliance on disproportionality methods. Huang
et al. (2011) introduced a likelihood ratio test (LRT) method for passive surveillance. We
introduce a novel LRT method, denoted LR-LRT, that utilizes logistic regression once strata
are defined. For strata based on age, we use a method that only allows adjacent ages to be
combined into a small number of age classes. We compare both methods using a real data
set. While our initial example involves adjusting for age and gender, this method could be
expanded to analyze vaccine-vaccine interactions. Graphics highlight the applicability of
our method.

2 Methods of Disproportionality Analysis

Consider a large frequency table formed by vaccines, AE combinations, and other
sources of information. To be more specific, suppose that AE (having I levels, i = 1, . . . , I)
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and vaccine (having J levels, j = 1, . . . , I) are two variables of interest. In the database
nij represents the number of reports for the ith AE and jth vaccine. The total number of
reports for the ith AE is ni., and the total number of reports for the jth vaccine is n.j .
The total number of reports is n... The reports for the ith AE and the jth vaccine may be
summarized in a 2× 2 contingency table as in table 1.

Table 1: 2× 2 contingency table of distribution of the number of reports

jth Vaccine Other Vaccines Total
ith AE nij ni. − nij ni.

Other AEs n.j − nij n..− ni. − n.j + nij n.. − ni.

Total n.j n.. − n.j n..

In this section, we review several methods of disproportionality analysis including the
proportional reporting ratio (PRR) (Evans et al. (2001)), the likelihood ratio test (LRT)
method (Huang et al. (2011)), the multi-item gamma Poisson shrinker method (MGPS)
(Dumouchel (1999)), and the regression-adjusted GPS algorithm (RGPS) (DuMouchel and
Harpaz (2012)).

2.1 The Proportional Reporting Ratio

For a fixed ith AE, the estimated proportional reporting ratio (PRR) for the jth vaccine
is defined as

ˆPRRij =
nij/n.j

(ni. − nij)/(n.. − n.j)
. (1)

An approximate 95% confidence interval for the proportional reporting ratio is

exp
{
ln( ˆPRRij)± 1.96

√
1

nij
− 1

n.j
+

1

ni. − nij
− 1

n.. − n.j

}
. (2)

It has been suggested to report a particular vaccine as being a signal of disproportional
reporting if the lower bound of the above confidence interval (i.e. PRR025) is greater than
one (Evans et al. (2001)).

2.2 A likelihood Ratio Test Based (LRT) Method

The Likelihood Ratio Test (LRT) method for signal detection was proposed in Huang
et al. (2011). This method works as follows: for each fixed row i (i.e the ith AE) the LRT
method assumes that nij ∼ Poisson(n.jpij) and ni. − nij ∼ Poisson((n.. − n.j) × qij),
where j = 1, . . . , J . Here, pij is the reporting rate for the ith AE and the jth vaccine,
and qij is the reporting rate for the ith AE and for all other vaccines except for the jth

vaccine. They considered testing the null hypothesis H0 : pij = qij = pi0 for all columns
(vaccines), j = 1, . . . , J, versus the alternative hypothesis Ha : pij > qij for at least one
column (i.e. the jth vaccine). This one-sided alternative hypothesis is due to the fact that
in vaccine safety signal detection, the vaccine-AE combinations with higher reporting rates
are of more interest.

To develop the likelihood ratio procedure, the authors in Huang et al. (2011) first con-
sider the two-sided alternative Ha : pij ̸= qij . The maximum likelihood estimates of pij
and qij are given by

p̂ij =
nij

n.j
and q̂ij =

ni. − nij

n.. − n.j
. (3)
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With the ith AE fixed, the likelihood ratio test statistic corresponding to the hypothesis test
H0 : pij = qij = pi0 vs. Ha : pij > qij is given by

LRij =
maxHaL(pij , qij)

maxH0L(pij , qij)
=

La(p̂ij , q̂ij)

L0(p̂i0, p̂i0)
=

(
nij

Eij

)nij
(
ni. − nij

ni. − Eij

)ni.−nij

, (4)

where Eij = ni.n.j/n.. is the expected number of reports for ith AE and jth vaccine under
H0. With the ith AE fixed, the desired test statistic is the maximum of the log-likelihood
ratios log(LRij) over the J columns:

MaxLogLRi = max1≤j≤J log(LRij). (5)

The distribution of MaxLogLRi under H0 is not tractable, and the authors in Huang et al.
(2011) suggest a Monte-Carlo approach for obtaining p-values associated with the test H0 :
pij = qij vs. Ha : pij ̸= qij .

2.3 The Multi-item Gamma Poisson Shrinker (MGPS) Method and the Regression-
Adjusted GPS Algorithm (RGPS)

The multi-item gamma Poisson shrinker (MGPS) method (Dumouchel (1999)) is an
empirical Bayes approach that compares the ratio of observed-to-expected reporting events,
relative reporting rate Rij = nij/Eij . The MGPS assumes that the distribution of the num-
ber of events in the (i, j)th cell is given by nij |λij ∼ Poisson(λijEij), where Eij =
ni.n.j/n.. is the expected number of counts in the (i, j)th cell, and the λij’s are the relative
reporting rates. The λij’s are assumed to be independent random variables with a distri-
bution that is assumed to be a mixture of two Gamma distributions. From this model, one
may directly obtain the posterior distribution of each λij and compute the posterior .05-
percentile (EB05ij) of λij . Often, vaccine j is reported as being associated with the ith

AE if EB05ij > 2 (Szarfman et al. (2002)).
DuMouchel and Harpaz (2012) developed a hybrid of Extended Logistic Regression

(ELR) and the Multi-item Gamma Poisson Shrinker (MGPS) which they labeled as the
Regression-Adjusted GPS Algorithm (RGPS). This method estimates the relative reporting
ratios for each vaccine in three steps.

In the first first step, all covariates are converted into categorical variables and then
further grouped into various strata so that the event rate within each stratum is similar. This
allows them to use a extended logistic regression model to estimate each strata and vaccine
effect. Using the results of this logistic regression fit, they compute covariate-adjusted Eij

for each vaccine. Then using these {Eij}, they use a Poisson-Gamma model to generate
shrinkage estimates of the relative reporting ratios (EBRRR)

EBRRRij =
nij + γ

Eij + δ
, (6)

where (γ, δ) are the hyperparameters in the Gamma prior distribution.

3 Logistic Regression-Adjusted LRT Algorithm (LR-LRT)

This section describes a new algorithm that is a hybrid of Logistic Regression (LR) and
the LRT method. We call this new algorithm the Logistic Regression-Adjusted LRT Algo-
rithm (LR-LRT). The LR-LRT method assumes that the data are assembled into a series of
reports with each report containing an adverse event-vaccine combination. The LR-LRT
method processes one response (AE) at a time, and the computation of each response is
independent of other responses so that several responses may be processed in parallel.
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3.1 Selecting Stratum Groups for a given AE

The LR-LRT method allows for extra covariates such as age, gender, or concomitant
vaccines. Although it is possible to use the LR-LRT method with continuous covariates,
we have usually chosen to discretize these variables. With discretization, all the covariates
are categorical, and we can then think of each category combination as representing a sep-
arate strata. For the subsequent parts of the LR-LRT procedure, we only consider the strata
labels to be the covariates. For example, if we had the covariates (gender, age) with age dis-
cretized into three groups, then we would have the following six strata: (male,female)×(6-
12 month, 12-18 month, 18-24 month).

We would like to select the stratum groups based on covariates such as age and gender.
For gender, it is straightforward to define the strata (female, male). However, for age, the
correct stratification is not as obvious since the age category cut-offs are somewhat arbi-
trary. Another difficulty is that we can not just group similar ages together while ignoring
the fact that each age group should be an interval. Although there are many reasonable ways
to stratify by age, our approach seeks to create the age strata so that the relative reporting
rate is similar within each stratum. This is discussed in Section 3.2.

3.2 Selecting Age Groups

Let {a1, . . . , aT } denote the possible age values and suppose that we want to discretize
the age variable into K + 1 age categories. Choosing the age strata so that each category
is an interval may be formulated as choosing K cut-points θ = (θ1, . . . , θK) with the
corresponding age strata (S1(θ), . . . , SK+1(θ)) being determined by

S1(θ) = {ak : ak ≤ θ1}, Si(θ) = {ak : θi−1 < ak ≤ θi}, SK+1(θ) = {ak : θK < ak}.

When selecting θ = (θ1, . . . , θK), we assume that each θi = ak for some k, and that
a1 ≤ θ1 < θ2 < . . . , θK < aT .

Let R̂c = (R̂c,1, . . . , R̂c,nc) be the estimated relative reporting rate for those in strata
Sc(θ), for c ∈ {1, . . . ,K+1}. If we assume that R̂c,i ∼ N(µc, σ

2), then the log-likelihood
function is

logL(R̂1, . . . , R̂K+1|θ, µ, σ2) =
K+1∑
c=1

nc∑
i=1

log(p(R̂c,i;µc, σ
2))

=
−(K + 1)nc log(2πσ

2)

2
− 1

2σ2

K+1∑
c=1

nc∑
i=1

(R̂c,i − µc)
2.

Given a choice of cut-points θ, estimation of µc and σ2 is straightforward (i.e., µ̂c = R̄c =
1
nc

∑nc
i=1Rc,i is the sample mean in the stratum c). So, given θ, let µ̂S and σ̂2

S denote the
corresponding MLE’s and define LL(S(θ)) as

LL(S(θ)) = logL(R|θ, µ̂S , σ̂
2
S)

= −1

2
(K + 1)nc log(2πσ̂

2)− 1

2σ̂2
S

K+1∑
c=1

nc∑
i=1

(R̂c,i − R̄c)
2. (7)

Since σ̂S is the same for each stratum, maximizing LL(S(θ)) just means minimizing the
within-strata sum of squares (WSSS),

WSSS =
K+1∑
c=1

nc∑
i=1

(R̂c,i − R̄c)
2. (8)
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Computation of LL(S(θ)) for every possible choice of (θ1, . . . , θK) is possible if K is
relatively small, and in these cases we let θ̂ = (θ̂1, . . . , θ̂K) denote the cut-points which
maximize LL(S(θ)).

3.3 Fitting the Logistic Regression

Let Y i
jk ∈ {0, 1} be an indicator of the ith AE in the kth report for vaccine j, where

Y i
jk = 1 if the kth report for vaccine j contains the ith AE and equals 0 otherwise. Let

g(k, j) be the stratum associated with the kth report for vaccine j.
We fit a logistic regression assuming the calculated strata are the covariates for the

logistic regression model. This model assumes that under the null hypothesis of no differ-
ences in the vaccine effects, Y i

jk ∼ Bernoulli(pi,0jk ) where pi,0jk is given by

pi,0jk = logit−1
(
β0,g(k,j)

)
=

exp(β0,g(k,j))

1 + exp(β0,g(k,j))
, (9)

where logit−1(x) = ex/(1 + ex) and β0,g(k,j) is the intercept term for reports in the
g(k, j)th stratum. The expression for pi,0jk in (9) is equivalent to writing

log
( pi,0jk

1− pi,0jk

)
= β0,g(k,j). (10)

In general, when the null hypothesis does not hold, we assume that Y i
jk ∼ Bernoulli(pi,Ajk )

where

log
( pi,Ajk

1− pi,Ajk

)
= β0,g(k,j) + βj . (11)

Under H0, the log-likelihood function is

logL(β|Y ) =

J∑
j=1

n.j∑
k=1

Y i
jk log(p

i,0
jk ) +

J∑
j=1

n.j∑
k=1

(1− Y i
jk) log(1− pi,0jk )

=

J∑
j=1

n.j∑
k=1

Y i
jkβ0,g(k,j) −

J∑
j=1

n.j∑
k=1

log
(
1 + exp(β0,g(k,j))

)
. (12)

The estimated strata coefficients (β̂0,1, . . . , β̂0,S) are computed by maximizing logL(β|Y ).

3.4 Computing Expected Counts Eij for Every Vaccine

The next step is to compute a set of baseline or expected counts Eij for every vac-
cine available, including those that were used as strata predictors in the LR-LRT model of
Section 3.3. We define Eij to be the expected value of nij under the null hypothesis

Eij = EH0(nij) =

n.j∑
k=1

logit−1
(
β0,g(k,j)

)
=

n.j∑
k=1

exp(β0,g(k,j))

1 + exp(β0,g(k,j))
, (13)

and hence the estimated Eij are defined as

Êij =

n.j∑
k=1

exp(β̂0,g(k,j))

1 + exp(β̂0,g(k,j))
=

S∑
s=1

ns
.j

exp(β̂0,s)

1 + exp(β̂0,s)
, (14)

where ns
.j is the number of reports for vaccine j and strata s. Due to the consistency of β̂0,s

as an estimate of β0,s, it is not difficult to see that Êij is asymptotically equivalent to Eij

in the sense that (Êij − Eij)/n.. converges to zero in probability as n.. goes to infinity.
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3.5 Employing the Novel LRT method by using Eij

Because nij =
∑n.j

k=1 Y
i
jk and Y i

jk ∼ Bernoulli(pi,Ajk ), nij is the sum of independent
Bernoulli random variables with different probabilities (commonly referred to as Pois-
son binomial) The distribution of nij is closely approximated by assuming that nij ∼
Poisson(

∑
k p

i,A
jk ) (See Hodges et al. (1960)). Now, note that

∑
k

pi,Ajk =

n.j∑
k=1

logit−1
(
β0,g(k,j) + βj

)
=

[∑n.j

k=1 logit
−1

(
β0,g(k,j) + βj

)
∑n.j

k=1 logit
−1

(
β0,g(k,j)

) ]
×Eij . (15)

So, if we define λij to be

λij =
[∑n.j

k=1 logit
−1

(
β0,g(k,j) + βj

)
∑n.j

k=1 logit
−1

(
β0,g(k,j)

) ]
, (16)

then we have the reasonable approximation nij ∼ Poisson(λijEij) with λij = 1 under H0.
The two-sided test is

H0 : λij = 1 vs. HA : λij ̸= 1 (17)

and with the Poisson approximation the log-likelihood function is

l(λij) = logL(λij) = −Eijλij + nij log(λij) + nij log(nij)− log(nij !). (18)

The MLE of λij is λ̂ij = nij/Eij and the likelihood ratio statistic is then

LRij =
maxHA

L(λ)

maxH0 L(λ)
=

L(λ̂ij)

L(1)
=

e−λ̂ijEij (λ̂ijEij)
nij

e−EijE
nij

ij

= eEij−nij

(nij

Eij

)nij

, (19)

with the logarithm of the likelihood ratio statistic being

logLRij = Eij − nij + nij

(
log(nij)− log(Eij)

)
. (20)

The MLR test statistic is
MLRi = max

j
logLRij , (21)

where we plug-in Êij in place of Eij to compute the MLRi statistic. Since we are really
interested in the one-sided test H0 : λij ≤ 1 vs. HA : λij > 1, we instead use the following
for the likelihood ratio

L̃Rij = LRij1{λ̂ij > 1} = LRij1{nij > Eij}. (22)

3.6 Hypothesis Testing

The distribution of the MLR statistic under H0, is not analytically tractable so it is
obtained through Monte Carlo simulation (Huang et al. (2011)). Simulating the null distri-
bution of the MLR statistic utilizes the fact that under H0

nij ∼ Poisson(Êij), (23)

which implies that given the margin total ni.,

(ni1, . . . , niJ)|ni. ∼ Multinomial
(
ni.;

Êi1

Êi.

, . . . ,
ÊiJ

Êi.

)
under H0. (24)
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By using (24), 10, 000 MLR values are calculated (with 9999 being simulated MLR values
and one being the observed MLR) and then reject H0 at the α = 0.05 level if the observed
MLR exceeds the 95th percentile of the 10, 000 MLR values. We then rank the log(LRij)
from the observed dataset from largest to smallest. For the jth vaccine, calculate the cor-
responding p-value pj = 1 − Rj/(1 + 9999), where Rj is the rank of log(LRij) among
all the 10, 000 MLR. If pj < 0.05, then we consider vaccine j to be a signal. Because the
p-values are determined by the null distribution of the maximum of the log-likelihood ratio
statistics, this procedure naturally controls for multiplicity.

4 An Example

As noted in our introduction, passive surveillance systems such as VAERS are used to
identify potential signals that may warrant further investigation. The data for our example
were VAERS reports from 2005 − 2010 in the pediatric population from 6 months to 2
years. We elected to focus on a single adverse event, namely febrile convulsions, because
?) suggested an association with a particular flu vaccine with febrile convulsions and this
event, while rare, tends to be more common in a young pediatric population. We restricted
our study to children 6 months and older since the flu vaccines being evaluated in this paper
are currently not licensed for children under 6 months, and we wanted to look at vaccines
with a comparable age and gender distribution.

We only consider age and gender as covariates at this stage. We caution that our method
is still under development and our example does not fully account for all possible con-
founders. For these data, the age stratification that maximizes LL(S(θ)) in (7) and assum-
ing three age groups as discussed in Section 3.2 is shown in Figure 1. This figure shows
that those with ages 0.5 or 0.6 were assigned to age stratum 1, those aged 0.7, 0.8, or 0.9
were assigned to age stratum 2 and those with aged 1.0, 1.1, . . . , 2.0 were assigned to age
stratum 3.

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

Relative Reporting Rates vs Age (yrs) 

 

 

Figure 1: Best Age Stratification assuming Three Age Groups

We computed the PRR scores described in Section 5 and applied both the LRT method
and the LR-LRT method to the VAERS dataset. For the PRR method, we calculated the
lower confidence interval of PRR (i.e., PRR025). For the LRT method, we calculated the
log-likelihood ratios (LLR) and the p-values by the method of Huang et al. (2011), and
we calculated the log-likelihood ratios (LR-LLR) and the p-values for our new LR-LRT
procedure using the steps discussed in Section 3.6. The results are presented in Table 2.
The term “FOREIGN” is not a particular influenza brand or vaccine brand, but a collection
of various influenza vaccines. We note the results for LRT and LR-LRT are similar for
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INFLUENZA BRAND A while INFLUENZA FOREIGN and INFLUENZA BRAND B
are significant only for the LRT method. PRR captures 13 vaccine signals including three
of the similar captured by the LRT method. The reason that PRR captures so many signals
is most likely due to the fact that just reporting the vaccines whose PRR025 is greater than
one does not account in any way for multiplicity. In contrast, both the LRT and the LR-LRT
method address the multiplicity problem by using adjusted p-values that control the overall
Type I error level.

Table 2: The association of Febrile Convulsion (FC) with various vaccines in VAERS. nij

is the number of reports with vaccine j and adverse event i. n.j is the total number of
reports for vaccine j. Only those analyses with p-values < .05 are reported. In total, there
are 76 vaccines among the 141 vaccines that have Febrile Convulsion as an AE.

Vaccine n.j nij PRR(PRR025) LLR(p-value) LR-LLR(p-value)
INFLUENZA BRAND A 8391 182 1.43 (1.29) 10.54 (0.0003) 10.35 (0.0197)
INFLUENZA FOREIGN 563 22 2.62 (2.20) 6.27 (0.0107) 6.12 (0.2580)
INFLUENZA BRAND B 244 12 3.34 (2.76) 5.76 (0.0201) 5.62 (0.3273)

5 Harnessing Graphics

A common use of passive surveillance is to investigate many vaccine-AE pairs in an
exploratory fashion and it was logical to consider some means of displaying the results
graphically. We present two possible graphs though many more could be considered. The
first of which is a volcano plot as shown in Figure 2 and we borrow this idea from Zink et al.
(2013). The x-axis is a metric reflecting the magnitude of the effect, namely the relative
reporting rates (See Section 2.3). The y-axis reports − log(p) with p being the calculated
p-value. The p-value is typically not adjusted for multiple comparisons. Smaller p-values
correspond to a greater − log(p) . The size of the bubble reflects the number of reports for
that vaccine-AE combination.

0 1 2 3 4 5

0
1

2
3

4
5

INFLUENZA BRAND A 
INFLUENZA FOREIGN
INFLUENZA BRAND B

a. LRT

0 1 2 3 4 5

0
1

2
3

4
5

INFLUENZA BRAND A 

b. LR−LRT

Figure 2: Volcano plots show -log(p-value) vs. the estimated relative reporting ratio for
both LRT and LR-LRT. Only the significant vaccines (p < .05) reported for Febrile Con-
vulsion in Table 2 are shown.

The proportional reporting ratio (PRR) (Evans et al. (2001)) plot could provide a com-
parison of adverse event rates of the same AE across a class of products. We recognize
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an important limitation: vaccines that may have been used more often may influence the
results, since p-values are sensitive to sample size. Here we only report the three associa-
tions that are statistically significant, but many vaccines were examined as noted in Table
2. The right-hand panel of Figure 3 plots ˆPRRij by vaccine along with the associated 95%
confidence intervals. Only those highlighted in Table 2 by LRT and LR-LRT are graphed
in Table 2.

LR−LRT Significant Vaccines Sorted by Proportional Reporting Ratio (PRR)

 Less Risk      More Risk

INFLUENZA BRAND A

INFLUENZA FOREIGN

INFLUENZA BRAND B

0.00 0.02 0.04 0.06 0.08

Vaccine Proportion

1.5 2.0 2.5 3.0 3.5 4.0

PRR with 0.95 CI

Febrile Convulsion Other AEs

Figure 3: Graph illustrates disproportionality for Febrile Convulsion for a set of vaccines.
The PRR plot could be used to compare vaccines within a certain class.

6 Conclusion and Future Work

Our LR-LRT procedure is a novel method for identifying vaccine-AE associations
while adjusting for possible confounders in the context of passive surveillance data. We
highlighted our method by focusing on the adverse event of febrile convulsion, but passive
surveillance signals would need to be further explored using other data. Now we are devel-
oping an approach to multiplicity adjustment to facilitate data mining using false discovery
rates and are developing additional graphical displays tied to our analysis procedure. Fi-
nally, to further evaluate the performance of our procedure, we plan to conduct simulations
that examine the LR-LRT method on a variety measures such as Type I error, power, false
discovery rate, and sensitivity.
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