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Abstract 

When planning a clinical trial, there is often historical clinical data available. Recently Viele et al. (2013) 

have presented approaches that incorporate this historical clinical data into an analysis procedure. We 

focus on the idea of dynamic borrowing in the framework of various hierarchical modeling strategies and 

derive the Type I error, power, and DIC. These strategies may include estimating parameters for each trial 

separately versus pooling, weighting the prior distribution corresponding to each historical study based on 

the sample size, and incorporating historical borrowing on the control arm by a separate random effect 

parameter. As a further refinement we present how in the setting of a non-inferiority trial a covariate 

adjustment approach can be implemented to recalibrate the non-inferiority margin based on the difference 

between active control and placebo.  
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1. Introduction 

In late-phase (Phase III/IV) clinical trials, a primary primary objective was to establish non-inferiority of 

a test treatment, T, versus an active control treatment, C, with respect a binary outcome variable, where 

high values are desirable.  In addition, it is expected that the test treatment is more effective than placebo 

treatment, P. However, due to ethical concerns, the placebo is not used in the active control, non-

inferiority trial. Instead, historical data from a similar, previous trial of the active control versus placebo 

(historical control, C0  versus historical placebo, P0) is used to demonstrate efficacy of the test treatment 

relative to placebo via cross-trial inference.  It is assumed that the response rate of the putative placebo in 

the active control trial equals the historical placebo; that is, P=P0. Furthermore, the non-inferiority trial 

assumes constancy of the active control effect as in the historical trial (i.e., C-P ≈C0- P0). If this constancy 

assumption is violated, new methodology via a covariate-adjustment model could salvage the active 

control trial. T, C, P, C0, P0, represent event rates associated with the experimental treatment, active 

control treatment, active placebo, historical control treatment, and historical placebo, respectively 

Current frequentist methodology regarding non-inferiority constitutes four methods, three of which are 

standard: testing the difference between treatment and active control when no placebo arm is available 

(referred to as the “T-C” method, the conservative confidence interval (or fixed margin method), and the 

synthesis method. The fourth frequentist non-inferiority method is the covariate-adjustment model of Nie 

and Soon (2010) to address non-constancy (C0≠C) arising from heterogeneity between patient populations 

in the active and historical trials.  

However, prior to utilizing these frequentist methods, a model is initially fit that already incorporates 

historical borrowing on the control arm via a Bayesian hierarchical approach.  Some authors that have 

examined Bayesian approaches in past literature include Pennello and Thompson (2008) who used a 
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hierarchical model to borrow strength from historical controls to reduce the sample size of the active 

control and Ibrahim and Chen (2000) who examined covariates in power prior models, where a power 

prior is derived by raising the historical likelihood to a particular power. More recently, the general idea 

has been examined by Viele et al. (2013) through an augmented hierarchical method that effectively 

shares more information when the information between active and historical trials is similar and less 

information when the information between active and historical trials is disparate. These authors 

explained that in certain situations calibrating the active and historical controls is necessary to arrive at 

the correct inferences. The approach that will be outlined below not only implements the Bayesian model 

to more effectively share information when the active and historical trials are homogeneous, but follows  

with further, frequentist approaches, one of which can potentially salvage the active control trial if 

substantial heterogeneity is present. Hence, this approach can adapt to many possible situations that arise 

from the reliability of previous historical trial information.  

2. The Four Non-Inferiority Frequentist Inference Methods  

2.1 Testing the Difference between Treatment and Active Control 

The strategy of this non-inferiority inference method is to declare the trial a success if: 

    
( ̂    ̂   δinitial ) < 0.025,                                        (1) 

where δinitial represents the non-inferiority margin; that is, the portion of effectiveness of active controlthat 

may be lost in the performance of the test drug, and is known in non-inferiority literature as M2, whereas 

M1 is referred to as the lower bound of historical treatment effect of active control drug versus placebo.  

After standardizing, a test statistic can be expressed as: 

Zni=[T – C +  δinitial] / [σTC],                           (2)   

σTC represents the standard error of T – C in the active trial. This method is usually implemented in many 

non-inferiority studies that do not contain placebo arms.  Hence, δinitial in this particular approach does not 

take into account the difference between Pr(P0 = 1) and Pr(C0 = 1). 

2.2 The Fixed Margin and Synthesis Methods 

At the design stage, the conservative confidence interval takes into account information regarding M1, 

which is the lower bound of the historical active control effect and M2 is the portion of the efficacy of the 

active control that is not preserved in the efficacy of the test treatment; it is called the non-inferiority 

margin and is denoted by δinitial, as defined above. In the context of the fixed margin method, we can 

notate specifically, 

                    M2 = (1-η) M1,                                   (3) 

where M1= {P0 - C0 – z0.025 σP0C0}, η represents a preservation level ranging between 0 and 1, and σP0C0 

represents the standard deviation of P0 – C0 from the historical trial.  

At the analysis stage, it is required to show that the upper bound of the 95% confidence interval for    

Pr(T=1) – Pr(C=1)  and T is within the specified non-inferiority margin, δinitial. That is,  
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                          T – C + z0.025 σTC  < (1-η){P0 – C0 - z0.025 σ P0C0},                              (4)  

where σTC represents the standard deviation of T – C in the non-inferiority trial. Overall, the fixed margin 

method is conservative in controlling the type I error but may not be efficient in terms of controlling the 

Type II error.  

In contrast, the synthesis method, at the analysis stage, “synthesizes” or combines the test treatment effect 

relative to the active control along with the estimate of the active control effect from the historical trial in 

such a way that it can be used to test non-inferiority. The synthesis method treats both sources of data as 

if they are from the same randomized trial, omitting trial-to-trial variability. This could potentially lead to 

underestimating standard error and result in a higher chance of committing a Type I error.  From the 

synthesis method, a single confidence interval is obtained for testing that the test treatment preserves a 

fixed portion of the active control effect. If the constancy assumption is violated, using the synthesis 

method, as compared to the fixed margin method, could result in a Type I error inflation but also greater 

efficiency; that is, a lower Type II error. A test statistic for the synthesis method is expressed as 

                     Zpv=[T – C – (1-λ){P0 – C0}] / [sqrt(σ2
TC + (1-λ)2 σ2

P0C0)],                    (5) 

where λ represents a preservation level usually taken as 0.5, with range between 0 and 1, σ2
TC represents 

the variance of T – C in the non-inferiority trial and σ2
P0C0 represents the variance of P0 – C0 in the 

historical trial. 

2.3 The Covariate-Adjustment Method 

The objective of the covariate-adjustment method of Nie and Soon (2010) is to address non-constancy 

(C0≠ C) arising from heterogeneity between patient populations in the two trials while still assuming 

P=P0. P - C from the active control is compared against P0 - C0 from the historical trial. The following 

model is fit on the g -1(µi) scale where g(.) is the link function: 

                        E(yi) = g -1(µi), µi = α + βZi + ∑    
 
   xik + γk xik Zi ),                                   (6) 

                       Var (yi) = V{g -1(µi)}, 

and where i represents the ith subject, Zi = 1 represents placebo (P), Zi = 0 represents active control (C), xik  

is the kth covariate, yi = 1 represents response, and yi = 0 represents no response. βk is the kth covariate 

effect and γk  is the interaction effect of covariate xik with treatment Zi. Notice that the treatment effect β 

will change with the covariates xik. 

If the constancy assumption is rejected, the NI margin δadjusted is recalibrated to the active control 

population via the regression model in (6) and is defined as the lower bound of a (1-α)100 % CI of P–C, 

where                             

                                                    P    β +∑   
 
    ̅  ,                                              (7) 

and  ̅    represents the mean of the active control population,  ̂. The calibrated estimate of δadjusted is used 

to redefine the non-inferiority margin if the constancy assumption is violated and quantifies the impact of 

population difference between the historical and active control trials based on the regression equation (6). 

This covariate adjustment can be implemented for the fixed margin and synthesis approaches. 
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For the covariate-adjustment with fixed margin inference, T is non-inferior to C if the upper bound of the 

(1-α)100 % CI of T-C is smaller than δadjusted, the updated margin on the transformed scale of choice. For 

the covariate-adjustment with synthesis method inference, T is non-inferior to C if the upper bound of the 

(1-α)100 % CI of (T-C)-(1-λ)(C-P) < 0 on the transformed scale of choice. 

3. Bayesian Augmented Control Methods 

 

The covariate-adjusted method of Nie and Soon (2010) employs an underlying frequentist regression 

model before performing covariate adjustment, while both the fixed margin and synthesis methods have 

notable drawbacks. The frequentist method described in the previous section (synthesis, fixed margin, and 

covariate adjustment) could be improved via more accurate point estimates, increased power and reduced 

Type I error if the initial model fit to obtain estimates and distributions of T, C, C0 ,P0 incorporated 

historical borrowing on the control arm via a Bayesian, hierarchical model rather than a frequentist, 

general linear model (GLM) that does not incorporate this additional learning.  

 

If the information between C and C0 is similar, more will be borrowed. If not, less information will be 

borrowed. Hence, this may prove to be an advantage for those cases with moderate to high similarity in 

the rates between C and C0. In those cases were C and C0 are not similar, the properties of point estimate 

accuracy, increased power, and Type I error could possibly show further improvement after fitting the 

Bayesian hierarchical model by subsequently performing the covariate adjustment method via 

recalibration of the non-inferiority margin based on available additional information, e.g., suppose that 

patients in a particularly sick subgroup that constitute a substantial portion of the population (~15%) 

experience success rates of response at half of those in the less sick subgroup. The four proposed 

Bayesian hierarchical models along with their corresponding assumptions are outlined below in Table 1. 

Table 1: The Four Bayesian Augmented Hierarchical Models 

Name of 
Model  

Model Statement Priors  Assumptions 

(1) Hierarchical 
borrowing, separate 
historical trials 

log(p / (1-p))
  
= β

1
I
{C= 1 or 

T=1} 
+ β

2
I
{C01= 1}

 + β
3
I
{C02 

=1}
 + δ I

{P0 =1}
 + θ

 
I
{T =1}

 

β
k 
~ Normal(µ

 
, ω), δ ~ Normal(0, 10

-6

), 

θ ~ Normal(0, 10
-6

), µ ~ Normal (1, 1), 

ω
 

2 

~ InvGamma( 0.01, 0.01), k = 1, 2, 
3.  The second parameter represents 
precision (throughout all models).  

C01 and C02 represent 
the historical control 
effect for trials 1 and 
2, respectively, ω 
represents the across 
study precision which 
inversely corresponds 
to the degree of 
borrowing (greater ω 
= more borrowing), p 
represents the 
success proportion of 
each group; i.e., C, 
C01, C02, P0, T 
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(2) Hierarchical 
borrowing, weighed 
sharing effect 

log(p / (1-p))
  
= β

1
I
{C= 1 or 

T=1} 
+ β

2
I
{C01= 1}

 + β
3
I
{ C02 

=1}
  + δ I

{P0 =1}
 + θ

 
I
{T =1}

 

β
1 
~ Normal(µ

 
, ω

 1
), β

2 
~ Normal(µ

 
, ω

 

2
= ω

 1 
 X k

 1

 2

), β
3 
~ Normal(µ

 
, ω

 3
 = ω

 1 
 

X k
 2

 2

), δ ~ Normal(0, 10
-6

),  

θ ~ Normal(0, 10
-6

), µ ~ Normal(1, 1), 

ω
 k 

2 

~ InvGamma( 0.01, 0.01) 

km represents the 
factor that links the 
sample size of C with 
C0m,

 
for m = 1, 2.

 
(e.g., 

n
C 

= 200 but n
C01

 = 

100, -> k1
 
= 0.5) 

(3) Hierarchical 
borrowing, pooled 
historical trials 

log(p / (1-p))
  
= β

1
I
{C= 1 or T=1} 

+ 

β
2
I
{C0p= 1}

   + δ I
{P0 =1}

 + θ
 
I
{T =1},

  
β

k 
~ Normal(µ

 
, ω), δ ~ Normal(0, 10

-6

), 

θ ~ Normal(0, 10
-6

), µ ~ Normal (1, 1), 
ω

 

 

~ InvGamma( 0.01, 0.01)., k = 1, 2 

C0p represents the 
overall historical 
control effect pooled 
across all available 
trials. 

(4) Hierarchical 
borrowing, free-
floating sharing 

log(p / (1-p))
  
= β

1
I
{C= 1 or T=1} 

+ 

β
2
I
{C0p= 1}

   + δ I
{P0 =1}

 + θ
 
I
{T =1}

 

+ ψ
 r
 

β
k 
~ Normal(β

*

k 
, 10

-6

 ), δ ~ Normal(δ
*

, 

10
-6

), θ ~ Normal(θ
*

, 10
-6

), β
*

, θ
*

,  

δ
*

 ~ Normal(0, 10
-6

), 
*

  ψ
 q 

~ Normal(0, 

ω
2

), ω
 

 

~ Half-normal(1), k= 1, 2, 
r=1,2,3 

p = 1, 2 represents 
random effects placed 
on C and C0p, r = 3 
represents random 
effects pooled across 
all other arms (T, P0,) 

 

The purpose of implementing the first two models “Hierarchical borrowing, separate historical trials” and 

“Hierarchical borrowing, weighted sharing effect” was to compare the Bayesian hierarchical model when 

the prior distribution is weighted according to the sample size (more information is placed when the 

sample size is larger) versus four other borrowing strategies between C and C0. In summary,  

 

1. Hierarchical borrowing (weighted).  This situation corresponds to the situation outlined in 

Model #2; that is, more borrowing from the historical or active control arm that contain the higher 

sample size. 

2. Full borrowing. The precision (1/variance) for ω within the individual priors for β
k
, k = 1,2,3 is 

set at ω=1000 (most informative) to borrow the maximum 200 subjects. 

3. Half borrowing. The precision (1/variance) for ω within the individual priors for β
k
 is set at 

ω=100 (informative) to borrow 100 subjects. 

4. Hierarchical borrowing (unweighted).  This situation corresponds to the situation outlined in 

Model #1. 

5. No borrowing. The precision (1/variance) for ω within the individual priors for β
k
 is set at  

ω=10-6 (least informative) to borrow approximately 0 subjects. 

 

The number borrowed was calculated according to the formula   

 

( ̂     ̂ )) 

 ̂          )
                     (8) 

where  ̂  represents the proportion of success in the active control arm,  ̂          )
  represents the 

squared standard error of the average of the proportion of success across the two separate historical 

control arms, and nc represents the sample size of the active control arm.  

 

The strategy regarding the third model (hierarchical borrowing, pooled historical trials) is similar to that 

of the “Hierarchical borrowing, separate historical trials” model; that is, the precision within the priors for 
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β
k
 does not depend upon the individual sample sizes of the historical and active control arms. The main 

difference between these two models is that in the data from all historical control arms across different 

trials (assumed to be the base case of two trials shown in Table 1) are “pooled” into one historical control 

parameter, C0p, instead of fitting each trial parameter regarding the historical control arm separately.  The 

following scenarios were studied: 

 

1. “Hierarchical borrowing, separate historical trials”, C01 = 0.68, C02 = 0.72.  

2. “Hierarchical borrowing, separate historical trials”, C01 = 0.65, C02 = 0.75.  

3. “Hierarchical borrowing, separate historical trials”, C01 = 0.60, C02 = 0.80.  

4. “Hierarchical borrowing, pooled historical trials”: generate simulated data from C01 = 0.60, C02 =   

0.80, but fit a model with a “pooled” C0p=0.70. 

The purpose is two-fold: 1. to compare the result of having the average rate of two trials (within trials) = 

0.70, but with increasing the difference in rates between trials and 2. to compare the situation with fitting 

a model that specifies each individual trial separately versus a model that pools the information into one 

parameter when there is a large difference in the underlying active control rates from trial to trial; e.g., C01 

= 0.60 but C02 = 0.80. 

Finally, the fourth model (hierarchical borrowing, free-floating sharing) implements a technique different 

than the other three previous models.  This model is similar to the approach of Jones et al., (2011) who fit 

a “simple shrinkage” model that assumed full exchangeability within the subgroup setting. Here, the 

parameter ω, which measures the strength of historical borrowing, is free-floating rather than embedded 

hierarchically within the active and historical control arms as described in the other models. This 

approach in the context of non-inferiority trials could be useful if little previous historical information is 

known regarding the control arms and could potentially be of great benefit to avoid spurious conclusions.   

4.  Simulation Studies  

Simulation studies were conducted to estimate the Type I and Type II errors, in addition to the number 

borrowed, updated non-inferiority margin after covariate-adjustment method, bias (relative bias and bias 

ratio), and DIC for the four proposed methods that were explained in Section 3.  

When conducting the simulation, 100 simulation runs were implemented with unequal sample sizes; e.g., 

nT= nC =200, while nC01= nC02 = nP0 = 100, for a total of 700 subjects. For the weighted scenario, since nC = 

200 but nC01 = 100 and nC02 = 100, -> k 1 = k 2 = 0.5.  The initial non-inferiority margin, prior to 

implementing the covariate-adjustment method will be set at δinitial = 0.10. To utilize the covariate-

adjustment method, assume that patients in a particularly sick subgroup experience success rates at half of 

those in the less sick subgroup. Additionally, patients in this subgroup constitute approximately 15% of 

the population. The “truth” values for each of the five arms are as follows: C = 0.55 to 0.95, C01 = 0.68, 

C02 = 0.72, P0 = 0.50, T = 0.70.  Note that the pooled data between the two historical control arms, C01 

and C02 ,with equal sample sizes is 0.70; that is, let C0p=0.70.  In the case of Models 3 and 4, C01 and C02 

are simulated from the scenarios described in Section 3; that is, 1. C01 = 0.68, C02 = 0.72, 2. C01 = 0.65, 

C02 = 0.75, 3. C01 = 0.60, C02 = 0.80, and 4. fit a model with a “pooled” C0p=0.70, but generate simulated 

data from C01 = 0.60, C02 = 0.80. 
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In our hypothesis for testing non-inferiority it is assumed that: H0: inferior, HA: non-inferior. Hence, Type 

I error -> declaring T non-inferior when T is inferior while Type II error -> declaring T inferior when T is 

non-inferior. The non-inferiority state of truth was determined based on the synthesis method by the 

following equation: 

                                               T-C < 0.5(P0-C0)                                                   (9) 

If this inequality holds true, then the non-inferiority state of truth is satisfied. When testing for non-

inferiority, the null hypothesis is that the test treatment is inferior. Hence, if equation (9) is true under a 

specified set of assumptions for C, T, C0, and P0, beta errors are reported. Likewise, if equation (9) is 

false, the non-inferiority state of truth is not satisfied and alpha errors are reported. The set of assumptions 

for the two scenarios are described below: 

(Assume C ≠ C0)  

           (a): C = 0.55 to 0.75, C0 = T = 0.7,  P0 = 0.50, η = λ = 0.5. Report beta errors 

           (b): C = 0.80 to 0.95, C0 = T = 0.7, P0 = 0.50, η = λ = 0.5. Report alpha errors. 

                    P0                                                                  C0 ,T                                                      

(a)                                                (b) 

                   ---|-------(----------------------------|----------)(--------------------------------------) 

                   0.50      0.55    0.60     0.65        0.70     0.75    0.80     0.85     0.90     0.95  

5. Results 

                             

(1)                                                                       (2) 

 
 

(1) 

(2) 
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Figure 1: Comparison of the models “Hierarchical borrowing, separate historical trials” versus 

“Hierarchical borrowing, weighed sharing effect” for each of the borrowing scenarios symbolized by red 

(hierarchical borrowing  (weighted)), blue (full borrowing), green (half borrowing),  black (hierarchical 

borrowing (unweighted)), and brown (no borrowing). (1, 1) = “Baseline Synthesis Beta Errors”, (1,2) = 

“Baseline Synthesis Alpha Errors”,  (2,1) = “Baseline Fixed Margin Beta Errors”,  (2,2) = “Baseline 

Fixed Margin Alpha Errors”, (3,1) = “Covariate-Adjusted Synthesis Beta Errors”, (3,2) = “Covariate-

Adjusted Synthesis Alpha Errors”, (4,1) = “Covariate-Adjusted Fixed Margin Beta Errors”, (4,2) = 

“Covariate-Adjusted Fixed Margin Alpha Errors”, (5,1) = “T-C Beta Errors”, (5,2) = “T-C Alpha Errors”. 

The horizontal line corresponds to a=0.025, and vertical line corresponds to C0 = 0.7. y-axis = alpha or 

beta error, x-axis = active control “C” 

 

 

 

 

 

 

 

 

 

 

(3) 

(4) 

(5) 
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(1)                           (2) 

                          

 

 

Figure 2: Model diagnostics for comparing “Hierarchical borrowing, separate historical trials” versus 

“Hierarchical borrowing, weighed sharing effect” for each of the borrowing scenarios listed above in 

Figure 1. Legend remains the same as Figure 1; that is, (hierarchical borrowing  (weighted)), blue (full 

borrowing), green (half borrowing),  black (hierarchical borrowing (unweighted)), and brown (no 

borrowing).  (1, 1) = “Number Borrowed”, (1,2) = “Adjusted, New Margin after Covariate Adjustment”,  

(2,1) = “Relative Bias”,  (2,2) = “Bias Ratio”, (3, ·) = “DIC.” Horizontal lines correspond to Z = ±1.96, 

vertical line corresponds to C0 = 0.7. y-axis = diagnostic of interest, x-axis=”C” (active control) 

 

 

 

 

 

 

(1) 

      (2) 

   (3) 
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(1)                                                                                    (2) 

 

Figure 3:  Comparison of the models “Hierarchical borrowing, separate historical trials” versus 

“Hierarchical borrowing, pooled historical trials” for each of the scenarios symbolized by red (“C01 

= 0.68, C02 = 0.72, separate historical trials”), blue (“C01 = 0.65, C02 = 0.75, separate historical 

trials”), green (“C01 = 0.60, C02 = 0.80, separate historical trials”), and black (“C01 = 0.60, C02 = 

0.80, pooled historical trials”).  (1, 1) = “Baseline Synthesis Beta Errors”, (1,2) = “Baseline 

Synthesis Alpha Errors”,  (2,1) = “Baseline Fixed Margin Beta Errors”,  (2,2) = “Baseline Fixed 

Margin Alpha Errors”, (3,1) = “Covariate-Adjusted Synthesis Beta Errors”, (3,2) = “Covariate-

Adjusted Synthesis Alpha Errors”, (4,1) = “Covariate-Adjusted Fixed Margin Beta Errors”, (4,2) = 

“Covariate-Adjusted Fixed Margin Alpha Errors”, (5,1) = “T-C Beta Errors”, (5,2) = “T-C Alpha 

Errors”. The horizontal line corresponds to a=0.025, and vertical line corresponds to C0 = 0.7. y-

axis = beta/alpha error. x-axis =”C” (active control). 

   (1) 

   (2) 

 (3) 

  (4) 

   (5) 
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                                 (1)                                                                         (2) 

 

 

Figure 4: Model diagnostics for comparing “Hierarchical borrowing, separate historical trials” versus 

“Hierarchical borrowing, pooled historical trials” for each of the scenarios listed above in Figure 3. 

Legend remains the same as Figure 3; that is, red (“C01 = 0.68, C02 = 0.72, separate historical trials”), 

blue (“C01 = 0.65, C02 = 0.75, separate historical trials”), green (“C01 = 0.60, C02 = 0.80, separate 

historical trials”), and black (“C01 = 0.60, C02 = 0.80, pooled historical trials”).  (1, 1) = “Number 

Borrowed”, (1,2) = “Adjusted, New Margin after Covariate Adjustment”,  (2,1) = “Relative Bias”,  (2,2) 

= “Bias Ratio”, (3,·) = “DIC.” Horizontal lines correspond to Z = 0 (relative bias and bias ratio), δadjusted = 

0.10 (new margin), vertical line corresponds to C0 = 0.7. y-axis = diagnostic of interest, x-axis = ”C” 

(active control).  

 

 

 

           (1) 

       (2) 

(3) 
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                                                (1)                                                                                 (2) 

 

 

 

Figure 5: Comparison of “free-floating sharing” versus “hierarchical borrowing” regarding each of 

the scenarios symbolized by red (“C01 = 0.60, C02 = 0.80, separate historical trials”), blue (“C01 = 

0.60, C02 = 0.80, pooled historical trials”), black (“C01 = 0.60, C02 = 0.80, pooled historical trials, 

free-floating sharing”) for all graphs except (3,·). In graphs (3,1), (3,2), (3,3), (3,4): red (“C01 = 

0.60, C02 = 0.80, separate historical trials, covariate-adjusted synthesis”), blue (“C01 = 0.60, C02 = 

0.80, pooled historical trials, covariate-adjusted synthesis”), black (“C01 = 0.60, C02 = 0.80, pooled 

historical trials, free-floating sharing, covariate-adjusted synthesis”), green (“C01 = 0.60, C02 = 

0.80, separate historical trials, baseline synthesis”), orange (“C01 = 0.60, C02 = 0.80, pooled 

historical trials, baseline synthesis”), yellow (“C01 = 0.60, C02 = 0.80, pooled historical trials, free-

floating sharing, baseline synthesis”). The horizontal line corresponds to a=0.025, and vertical line 

corresponds to C0 = 0.7.  y-axis = beta/alpha error, x-axis =”C” (active control). 

        (1) 

(2) 

(3) 

    (4) 

    (5) 
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                                                (1)                                                                                 (2) 

 

 

Figure 6: Model diagnostics for comparing “free-floating sharing” versus “hierarchical borrowing,” 

where red (“C01 = 0.60, C02 = 0.80, separate historical trials”), blue (“C01 = 0.60, C02 = 0.80, pooled 

historical trials”), black (“C01 = 0.60, C02 = 0.80, pooled historical trials, free-floating sharing”). (1, 1) = 

“Number Borrowed”, (1,2) = “Adjusted, New Margin after Covariate Adjustment”,  (2,1) = “Relative 

Bias”,  (2,2) = “Bias Ratio”, (3,·) = “DIC.” Horizontal lines correspond to Z = 0 (relative bias and bias 

ratio), δadjusted = 0.10 (new margin), vertical line corresponds to C0 = 0.7. y-axis = diagnostic of interest, 

x-axis =”C” (active control).  

 

 

 

          (1) 

(2) 

(3) 
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6. Conclusions 

As C is closer to C0, borrowing more subjects (e.g., full borrowing) is beneficial. However, borrowing 

unnecessarily (especially as C drifts away from C0) increases both Type I and II error in addition to bias. 

In terms of the deviance information criteria (DIC), the weighted hierarchical performs the best (in terms 

of lowest DIC) in most cases, except where C= C0 (in this case, full borrowing has the advantage) and at 

the most extreme points (e.g., C=0.95 >> C0=0.70), where the unweighted hierarchical method has a 

slight advantage. 

When C is very far away from C0, the “no borrowing” method performs most optimally in terms of Type I 

and II error and bias. In fact, borrowing observations between C and C0 introduces a certain degree of bias 

which is especially pronounced when there is little constancy between the active and historical control 

rates.  

Overall, if only one borrowing method can be implemented for all values of C, the “weighted hierarchical 

borrowing” could be considered as the safest choice. It borrows few subjects when C >> C0  or C << C0 

but borrows more subjects while accounting for imbalance between sample sizes when C=C0. 

When evaluating non-inferiority methods, we can observe that the synthesis method performs better for 

reducing the amount of Type II (beta) error than the fixed margin methods. However, for Type I (alpha) 

error, the reverse was true. 

The T – C method exhibits less Type II error when compared to the synthesis and fixed margin methods, 

and shows less Type I error than the synthesis method, but not the fixed margin method.  When 

examining the results, one should take into consideration that the placebo arm is set at P = 0.50, which is 

not very far from the historical control C0 = 0.70. As a result, there will be less C0 – P0 effect, leading to 

declare non-inferiority less often.  

The covariate adjustment (frequentist-based) for the synthesis method is useful for reducing the Type I 

error, while the covariate adjustment for the fixed margin method is useful for reducing the Type II error. 

However, applying the covariate adjustment for the synthesis method for further reducing the Type II 

error and applying the covariate adjustment for the fixed margin for further reducing the Type I error is 

not particularly useful.  

When comparing separate historical trials versus pooled historical trials, most cases show that the pooled 

model performs better in terms of beta and alpha error, except at the boundary points where non-

inferiority versus inferiority “truth” is not clear (e.g., C = 0.75 – 0.85). In terms of hierarchical 

borrowing, the pooled model borrows more information when C is closer to C0 compared to the other 

cases.  

For the non-pooled models (separate historical trials), the case of C01 = 0.65, C02 = 0.75, which 

corresponds to moderate difference in the underlying active control rates from trial to trial, contains less 

Type I and Type II error.  However, in terms of selection criteria according to model fit, the non-pooled 

case of C01 = 0.60, C02 = 0.80 performs slightly better (lower DIC) than the others (which are roughly 

equal). When comparing the non-pooled models to the pooled models, the bias for all model fits is well-

controlled.  
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The final model (free-floating sharing) tends to be more conservative than the hierarchical model. The 

Type II error is inflated, while the Type I error is consistently well-controlled and is never above the 

threshold of 0.025. This conclusion applies to both the synthesis and fixed margin methods.  

Applying the covariate-adjustment for the synthesis method improves the beta error, although it is still a 

little inflated compared to the hierarchical model for both the pooled and unpooled analysis. The 

covariate-adjustment applied to the fixed margin method improves the beta error to such an extent that 

from C = 0.67 to 0.75, this method outperforms the hierarchical model. The alpha error for the fixed 

margin method (but not the synthesis method) performs well without needing covariate adjustment. 

The free-floating sharing modeling approach is the most beneficial when there is little previous 

information as it controls the alpha error while the inflated beta error resulting from the conservativeness 

of this modeling approach can be reduced via the covariate-adjustment method under either the fixed 

margin or synthesis methods. In the case of either inconsistent or nonreliable historical information, the 

free-floating approach applied to the fixed margin method would be most ideal. 
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