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Abstract 
NGS technology is changing bio-medical sciences from academic research to clinical 

diagnostics. For non-invasive blood-based tests, it is crucial to distinguish the rare 

variants from sequencing noise in ultra-deep sequencing. Several approaches have been 

developed to make the variant calls reliable. They include base call quality scores, unique 

molecular identifiers, etc. Most software packages only call variants of 1% or higher by 

their default setting to avoid false positives. I describe the new variant quality scores 

based on the distribution of false positives in sequencing, as well as the fact that the false 

positive rates are dependent on the sequence contexts and locations. With statistical tests 

based on these considerations, we can detect variants with percentages significantly 

below 1% (depending on variants, sample types and sequencing protocols) when 

sufficient number of DNA molecules is present in the sample. I also describe a non-

standard usage of MiSeq Reporter (MSR) to verify the low-frequency variants we found 

using this approach. 
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1. Introduction 

 
This paper proposes to establish quality scores of variant calls based on statistical tests to 

distinguish low frequency true mutations from the false positive sequencing noise in 

ultra-deep sequencing (UDS) experiments. Next generation sequencing (NGS) can be a 

reference method for PCR-based diagnostic tests to detect mutations of cancer or other 

diseases, and can also be developed as IVD tests.  A number of recent studies have shown 

that it may be valuable to develop NGS-based applications as non-invasive blood tests
1,2

. 

One challenge for blood-based detection of cell free circulating tumor mutations is that 

the frequency of biomarker mutation is often quite low. Therefore, UDS will almost 

certainly be required. Many software packages report only 1% or higher variants to avoid 

high false positive rates
4
. However, these thresholds are too high for blood-based tests 

where frequencies of 0.01-0.1% have been reported
2,3

. In order to distinguish low 

frequency true mutations from noise, we can use the observed distribution of false 

positive variants to establish the variant calling quality scores to determine how likely a 

variant is a true mutation and hence to establish more accurate thresholds for low 

frequency variants. 

 

The false positive rates of variant calls depend on the sequence context and location. 

Therefore, we may compare mutation and wild type counts of a variant at the same 

location in different samples. This method is especially useful if there are wild type 
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(usually normal) samples as negative control in the sequencing run. We use the chi-

squared test of a 2 x 2 table to compare different samples. We use the symbol QS to 

denote this quality score (S stands for special variants at the same location). 

 

We may also compare variants of the same type, such as T>C, at different locations in all 

samples. We use the model based on distribution of logarithmic frequencies for this type 

of comparison. We use the symbol QM to denote this quality score based on the model. 

 

We also use QB to denote the quality score of a base call used in the FASTQ files 
 

2. Variant calling quality score QS based on 2x2 table of observed 

counts 

 
This method can be applied to very few, such as two, data points. We set a 2x2 table as 

follows. 

 

The reference sample represents the data theoretically without true mutation (but 

sequencing noise can generate small variant count) and the column of sample in question 

represents the data we want to determine whether its variant frequency is significantly 

larger than the reference frequency. The value a1 is the count of a particular variant in 

reference, n1 is the depth of the reference, and w1 = n1 – a1 represents the wild type count. 

The values a2, w2 and n2 are defined similarly for the sample in question. We define the 

row sums a = a1 + a2, w = w1 + w2 and define n = n1 + n2 as the total counts of the 2x2 

table. 

 

There are many ways to test whether (a1, w1) and (a2, w2) are significantly different in 

their ratios (odds). Because the values of n1 and n2 can be very large for UDS, we propose 

to use the one-sided chi-squared test. First, we calculate the proportions: f1 = a1 / n1 and f2 

= a2 / n2. If f2 <= f1, i.e., the proportion of sample in question is not higher than the 

proportion of reference (false positive), we can set the quality score to a very small 

number such as 2 (corresponding to error rate p = 0.63), and there is no need for further 

computation. If f2 > f1, we calculate the chi squared statistic: 

 

χ
2
 = n * (a1 * w2 – a2 * w1)

2
 / (n1 * n2 *a * w). 

 

The one-sided p-value is p = 0.5 * (1 – pchisq(χ
2
, d)), where pchisq is the chi-squared 

cumulative  distribution function with degrees of freedom d = 1. The corresponding 

quality score can be defined as QS = -10 * log10(max(p, minP)). Note that p is in the 

range of (0, 0.5). To avoid the difficulty of numerical computation when p is close to 0, 

we use minP = 10
–13

, which is equivalent to set maxQ = 130. We use two different 

methods to set the reference counts for a particular variant in a sequencing run of 

Table 1: The 2x2 table of reference sample and sample in question 

 

  Reference sample Sample in question Row sum 

Variant count a1 a2 a 

Wild type count w1 w2 w 

Total count (depth) n1 n2 n 
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multiple samples. One method is to use the sum of variant counts and the sum of the 

depths of the two samples with the lowest frequencies and enough depth (depth >= minD, 

and we may set minD = 3000) of the variant. To avoid the rare possibility that all samples 

have high frequency of the particular variant, when the reference proportion > f0 (e.g., f0 = 

0.01 = 1% or smaller), we set a1 = f0 * n1, i.e., the used a1 value is either the true a1 value 

or f0 * n1 whichever is smaller.  

 

We may also use known wild type sample as a reference. A problem of this approach is 

that if wild type samples are contaminated with the variant, then the quality scores QS of 

other samples will be low. With the approach we described above, the wild type sample 

with variant contamination will show high QS (hence not likely wild type for the 

particular variant) and the QS of other samples are usually not influenced. 

 

It is time consuming to directly calculate p and then quality score for every variant. Since 

we only report quality scores as an integer, we can discretize the value of QS, e.g., when 

f2 <= f1, we set QS = 2, when f2 > f1, we allow QS to be 3, 4, …, maxQ (we set maxQ = 

130). Therefore, we calculate the χ
2
 values for Q = 3.5, 4.5, …, 129.5 (Table 2 lists a part 

of the whole table) and use binary search to determine the best approximate integer value 

of Q in 3, 4, …, 130. 

 

Table 2: Partial List of Q, qnorm and qchisq at half integers 

 
Q qnorm qchisq Q qnorm qchisq Q qnorm qchisq 

3.5 0.1340 0.0180 16.5 2.0068 4.0271 29.5 3.0559 9.3384 

4.5 0.3724 0.1387 17.5 2.1019 4.4178 30.5 3.1243 9.7610 

5.5 0.5774 0.3334 18.5 2.1938 4.8127 31.5 3.1914 10.1850 

6.5 0.7592 0.5764 19.5 2.2828 5.2113 32.5 3.2573 10.6102 

7.5 0.9237 0.8532 20.5 2.3692 5.6133 33.5 3.3221 11.0365 

8.5 1.0747 1.1550 21.5 2.4532 6.0182 34.5 3.3858 11.4639 

9.5 1.2149 1.4760 22.5 2.5349 6.4259 35.5 3.4485 11.8923 

10.5 1.3462 1.8122 23.5 2.6146 6.8360 36.5 3.5102 12.3216 

11.5 1.4699 2.1606 24.5 2.6923 7.2484 37.5 3.5710 12.7519 

12.5 1.5872 2.5192 25.5 2.7682 7.6629 38.5 3.6308 13.1830 

13.5 1.6989 2.8863 26.5 2.8424 8.0793 39.5 3.6898 13.6148 

14.5 1.8057 3.2606 27.5 2.9150 8.4974 40.5 3.7480 14.0475 

15.5 1.9082 3.6412 28.5 2.9862 8.9171 41.5 3.8054 14.4809 

 

3. Variant calling quality score QM based on frequency distribution 

 
In case we have multiple data points, we can use the normal approximation to make 

statistical inference. We first make a logarithmic transformation of frequency. Let the 

original frequency be f = a / n, where a is the mutant read count and n is the total read 

count. The logarithmic transformation we use is 

 

x = log10(f + e), 

 

where e=10
-6

 is the constant to avoid the negative infinity value when f = 0. 

 

JSM 2014 - Section on Medical Devices and Diagnostics

1865



We divide the simple variants in a sequencing run at different locations into 19 classes. In 

every class, the majority of the calls are false positive, and we can calculate the 

parameters of the distribution of every class. The 19 variant classes are as follows 

(a) 12 single-base substitutions (A>C, A>G, A>T, C>A, C>G, C>T, G>A, G>C, G>T, 

T>A, T>C and T>G), 

(b) multiple-base substitutions,  

(c) deletions of 1-2 bases, 3 bases, 4-5 bases, 6 or more bases, 

(d) insertions 

(e) other simple variants such as a substitution followed by a deletion. 

 

We can use the normal approximation to calculate the quality score QM. For an observed 

variant in a class with frequency f1, x1 = log10(f1 + e), with sufficient depth (total count 

n1), we can calculate a statistic similar to z-score 

 

z = (x1 – m) / (s / sqrt(n)), 

 

where m and s are the sample mean and sample standard deviation. and n is the number 

of reference data points used in estimation of s and m. Our calculation indicates that the 

standard z score is large for large n, and it can generate very small p-value and hence too 

large quality score. Therefore, we calculate the z-like statistic, i.e, use min(n, N) to 

replace n in the above formula. We set N = 36. We also set a lower bound s2 (with default 

value 0.01), for s / sqrt(min(n, N), to handle the situation where s is too small. Our z-like 

statistic can be expressed as 

 

z’ = (x1 – m) / max(s2,  s / sqrt(min(n, N))). 

 

We calculate p = 1 – F(z’), where F is the cumulative distribution function of the 

standard normal. The variant calling quality score, QM, is defined as the Phred-like score 

 

QM = -10 log10(max(p, minP)) 

 

as we set before minP = 10
–13

, which implies that maxQ = 130. 

 

We may also use robust estimation for central position and variation of data instead of 

sample mean and sample deviation to calculate the quality scores. 

 

4. Application and Verification 

 
The two types of quality scores defined above help us to determine the threshold of 

variant frequencies as the limit of detection. We can successfully detect substitutions with 

0.1-0.7% frequency given sufficient input DNA amount for the Illumina MiSeq system. 

Since the false positive rate depends on mutation context and location, for particular 

substitutions at particular location, we may even detect variant at 0.03%. 

 

For moderate size insertions, deletions and complex mutations, such as a 15-base 

deletion, it is almost impossible to generate this type of mutations randomly in 

sequencing, and the main source of false positive is the carry-over contamination from 

other samples. With well-established washing protocol between runs, we may detect as 

low as 0.0025% of such variants. 
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We also used MiSeq Reporter in a non-standard way to verify the low frequency variants 

we report. MiSeq Reporter (MSR) uses a somatic variant caller with a built-in Poisson 

model to report low-frequency variants
4
. The lowest frequency that MSR reports is 

depth-dependent and with default settings it is above 1%. 

 

We ran MSR with the sequence containing known variants as the reference and make 

MSR to report the wild type as a “variant” of this reference. MSR also reports the actual 

variant as “wild type”. In this way, we can verify our own variant calls. This non-

standard usage of MSR has the following disadvantages. (1) It can only be used to verify 

known variants. (2) The variant calling quality score that MSR reports is for the wild type 

and is not for actual variant. (3) When there are multiple overlapping known variants, it 

becomes tedious or difficult to use this method. However, it can be used as a verification 

method for known variants after the above concerns are considered. 
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