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Abstract 

Initial investigation of the efficacy of a drug may involve a single-arm study in which the 

response rate of subjects receiving the drug is compared to a pre-defined minimum rate, 

below which the drug is deemed not worth further study. During recruitment, interim 

futility analyses may be used to determine whether the probability of a successful trial is 

high enough to justify continuing the study. When response or failure is quickly 

determined, Bayesian interim analyses for such studies typically use a beta distribution as 

a prior for the response rate. However, if observing a response requires prolonged follow-

up, this model is not adequate. A Bayesian interim analysis method which takes into 

account both time to failure and time to response, while respecting the binomial nature of 

the final analysis, will be described. The method is based on decomposing a beta prior for 

a binomial response/failure probability into a Dirichlet distribution describing 

probabilities of failure and response among multiple time intervals. 
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1. Introduction 

 

Initial investigations of the efficacy of a new cancer treatment often involve single arm 

studies in which the response rate of subjects receiving the new therapy is compared to a 

pre-defined minimum response rate. The minimum response rate is defined such that 

treatments which cannot be shown to produce response rates at least as high as the 

minimum can be considered as not worth pursuing in larger trials. Single arm trials can 

be justified when other treatments available for the study’s target population are only 

minimally beneficial, or have especially onerous side effects.  

 

If the number of subjects to be recruited is large or the time required for recruitment is 

long, both ethical and financial reasons motivate the use of interim futility analyses to 

determine, prior to the completion of recruitment, whether the probability of a successful 

trial is high enough to justify continuing the study.  

 

It is assumed that subjects have an unknown true response rate of π. The number of 

responses seen in a trial, given the response rate π, is assumed to have a binomial 

distribution. That is,  
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with fr(r|π) being the probability of observing exactly r responses out of n patients 

treated, given π, the unknown true response rate for the subject population. In a Bayesian 
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context, the conjugate prior distribution for the response rate π is the beta distribution, 

with the probability distribution function 
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with parameters α > 0 and β > 0. The mean of this distribution is α/(α + β). The 

magnitude of α + β relate to the strength of prior belief about the event rate. Typically, for 

a new treatment’s first clinical trial, these parameters are set such that α + β ≤ 2.  

 

After n1 patients have been treated and r1 responses have been observed the posterior 

distribution of π is  
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If outcomes for n2 patients are yet to be observed, then the distribution of total responses 

which will be observed is expressed as a beta-binomial distribution, with the distribution 

function 
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From this, the probability that enough total responses will be seen by the end of the study 

to declare the study a success (e.g., by rejecting a null hypothesis that π ≤ πnull) can be 

estimated. Thus, we can recruit, treat, and examine n1 patients and then determine 

whether there is enough probability of eventual success to make the recruitment of a 

further n2 patients worthwhile. This is the essence of Bayesian interim analysis for Phase 

II studies as developed by (Thall and Simon, 1994).  

 

This assumes that the outcomes of all of the first group of n1 patients, whether responses 

or failures, are observed before any of the any of the second group of n2 patients are 

treated. If each patient’s outcome is known soon after the start of treatment then it may be 

feasible to pause recruitment after the first n1 patients, determine the outcome for each, 

and then, if warranted, restart recruitment.  

 

However, there may be an extended period between the start of treatment for a patient 

and determination of the patient’s treatment outcome. Pausing recruitment may be 

impractical. If recruitment cannot be paused, and the rate of recruitment is not very slow, 

then many of the subjects comprising the second group may be already recruited before 

the all outcomes in the first group are known. It will be of little benefit to either patients 

or to the sponsor if the second group is already recruited when the analysis of the first 

group has no chance of showing efficacy.  

 

An alternative is to perform an interim analysis when the outcomes of n1 patients have 

been determined, regardless of whether these subjects are the first n1 patients recruited. 

However, these outcomes may not be representative of all outcomes which would be seen 

if the trial continued to completion. Identifying a patient as a responder may require 

blood tests, biopsies, or scans which can only be done a limited number of times during 

follow-up and which then have to be confirmed by repeated procedures, while patients 

may be identified as treatment failures due symptomatic progression or intolerable side 

effects which can be become immediately evident at any time during follow-up.  

 

JSM 2014 - Biopharmaceutical Section

1628



Also, if the study population consists of patients with tumors susceptible to the 

experimental treatment and others with tumors not susceptible, failures may occur quite 

quickly, whereas responses may follow a long period of stable disease before becoming 

evident. 

 

In either case, potentially useful information from subjects who have been recruited, but 

not yet evidenced an outcome would be lost to the interim analysis. Therefore, an interim 

analysis which takes into account both time to failure and time to response, while at the 

same time respecting the binomial nature of the final analysis, would be useful.  

 

This paper presents a method for monitoring a single arm trial when there may be a long 

and variable delay between the beginning of treatment and the determination of response 

or failure, and when the distribution of times to treatment failure may differ from times to 

response. It assumes that follow-up times can be divided into a limited number of defined 

intervals, as would be the case when treatment is given in regular cycles. Development of 

the method is based on decomposing the beta prior for a binomial response/failure 

probability into a Dirichlet distribution describing probabilities of response and failure 

among multiple time intervals.  

 

The following section explores the potential severity of the bias of continuing to assume a 

binomial distribution of responses in this situation. Section 3 develops the method, and 

Section 4 provides an example based on hypothetical data. 

 

2. Bias of the Naïve Method 

  

Let us suppose that a trial is planned with ntotal as the total sample size and that A subjects 

must experience a response to the experimental treatment for the study to be considered a 

success. Suppose also that after n1 subjects are known to be either responders or 

nonresponders an interim analysis will be performed and the study will be stopped for 

futility if the predictive probability of success psuccess is less than a futility limit pfutile.  

 

The study is planned with the assumption that response has a binomial distribution with 

parameter π, which in turn has a prior distribution Beta(αo, βo).  

 

As an example, let ntotal = 140 subjects, n1 = 30 subjects, A = 22 subjects, and pfutile = 0.1. 

If we assume for π a relatively non-informative prior distribution of Beta(0.2, 1.8), then 

the study will be stopped at the interim analysis if there are fewer than three successes out 

of the first 30 subjects, if the stopping decision is based on the assumption that the 

relative proportion of failures and successes is constant. If there is no time delay or bias 

in the reporting of outcomes, then the number of successes at the interim analysis and the 

number of successes after the interim analysis are independent binomial variables. On 

this basis, the probabilities of a positive outcome and early stopping can be computed as a 

function of the true (unobserved) proportion of responders in the population. 

 

These probabilities will hold regardless of the rate of recruitment or the time from start of 

study to the outcome, as long as the distributions of times to outcome for responding 

subjects is the same as that for non-responding subjects.  But this will not be the case if 

these distributions differ.  

 

For example, suppose that the interim analysis will be done on the first n1 subjects with 

known outcomes, and that for the 100π% of the subjects who respond to treatment a 
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minimum of c cycles must pass before a response can be seen. Let tcycle be the time it 

takes for one cycle of treatment to be completed. And suppose that subjects enter the 

study at a constant rate of r subjects per tcycle. If tinterim is the time from the beginning of 

the trial to the interim analysis and tinterim/tcycle < c, then no subjects will have had time to 

show a response by the time of the interim analysis and the study will be stopped for 

failure regardless of the true value of π. Furthermore, approximately (tinterim/tcycle)·r will 

have been recruited to a study which may have been incorrectly terminated.  

 

3. Restructuring the Binomial Model as a Multinomial Model 

 

A Dirichlet distribution is a generalization of a beta distribution to multivariate 

parameters. It describes a distribution of a vector of nonnegative random variables which 

sum to one. Whereas the beta distribution serves as the conjugate prior for a binomial 

distribution, the Dirichlet distribution serves as conjugate prior for a multinomial 

distribution. For a vector of size n, there are n positive parameters, which may be written 

as (α1, α2, α3, . . ., αn). The Dirichlet distribution has the following properties which will 

prove useful. If (θ1, θ2, θ3, . . ., θn) ~ Dir(α1, α2, α3, . . ., αn) then the sum of any subset of 

the θi’s will have a beta distribution. For example, ),Beta(~
32121  
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Furthermore, if any subset of the vector of variables is discarded, the remaining variables, 

if normalized by their sum, will still have a Dirichlet distribution which is independent of 

the discarded variables. For example, if we discard θ1 from the vector then  
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Now suppose that there are T intervals within the study, perhaps corresponding to T 

cycles of treatment, and let the probability of failure in interval t be θF,t, and the 

probability of a response during interval t be θR,t. (Note that these are marginal 

probabilities. They are not the conditional probabilities of failure or response in interval t 

for subjects who have already completed t-1 intervals.) Let the vector of these 

probabilities,  

(θR,1, θR,2, θR,3, . . ., θR,T, θF,1, θF,2, θF,3, . . ., θF,T), 

have a Dirichlet distribution with parameters 

(αR,1, αR,2, αR,3, . . ., αR,T, αF,1, αF,2, αF,3, . . ., αF,T). 

It is possible that observing a response during interval t may depend upon an assessment 

which is not performed during interval t. In this case, αR,t = 0 by definition. The same 

could be said for the probability of failure during an interval.  

 

If the total response rate for the trial is modeled with a prior distribution Beta(α, β), then 

any model in which  

 t tR,
 

and  

 t tF ,  

is consistent with the overall response model.  
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The choice of the Dirichlet parameters, like the choice of beta distribution parameters, 

depends upon how confident one is in the new treatment, or how cautious one wishes to 

be in stopping or continuing the trial at interim analyses. But additionally one may 

include in the prior distribution expectations about the time of response or failure.  For 

example, if one expects that the effects of the treatment may require more than one cycle 

to manifest, while side effects will tend to eliminate patients during the first treatment 

cycle then one might chose a relatively high value for αF,1, and a relatively low value for 

αR,1.  

 

A neutral choice might be to let αR,t = αS
 -1

 and αF,t = βT
 -1

, where S and T are the number 

of intervals during which there are assessments which might produce a response or 

failure, respectively. Another neutral choice might be to initially assume a constant 

hazard for response or failure across intervals up until a final point T at which any 

subjects still in the study would be regarded as treatment failures. In this case we would 

use for the parameters of the initial prior  
1
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for t < T where αF,1, αR,1, and αF,T can be any solution to the equations  
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If θF,t and θR,t are the marginal probabilities for failure and response in interval t, hazards 

can be defined for failure and response by 
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Then F,k has the prior distribution Beta(αF,k, αR,k + Σj>k(αR,j + αF,j)), while R,k has the prior 

distribution Beta(αR,k, Σj>k(αR,j + αF,j)). Furthermore, all of the phi’s are independent, and 

the probability of a response occurring in interval k can be expressed as 
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If we have observed ni subjects at the ith interval, with fi failures and ri responses, then 

the posterior distribution on F,i is Beta(αF,i + fi, αR,i + Σj>i(αR,j + αF,j) + ni – fi) and the 

posterior distribution of R,i is Beta(αR,i + ri, Σj>i(αR,j + αF,j) + ni– fi – ri).  

 

Thus, based on observed data we can get posterior distributions for the probabilities of 

having a response or a failure at each cycle, conditional on not having had a previous 

response or failure.  
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Once posterior distributions for the phi’s have been determined, the overall response rate 

can be expressed as a function of independent variables which all have known posterior 

distributions.  If ORR is the overall response rate then 
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We can draw from the posterior distributions for the phi’s to get an overall probability of 

a response, and then draw from a binomial distribution using that probability to get an 

overall number of responses. If this is repeated a large number of times, the result is an 

estimate of the posterior distribution of the overall number of responses. This can be used 

to estimate the predictive probability of a successful trial.  

 

If complete information on response or failure were known for subjects included in the 

interim analysis, then the predictive probability determined from the above analysis 

would be the same as the predictive probability resulting from an interim analysis based 

on the binomial distribution with a beta prior, because in this case the two methods are 

algebraically equivalent.  

 

4 A Hypothetical Example 

 

Consider a single-arm phase 2 cancer trial. Two hundred subjects will be given an 

experimental treatment. There are 5 treatment periods, each with multiple treatment 

cycles. At the end of each period, a subject can be classified into one of three possible 

outcomes:  

 Response (success)  

 Disease progression (failure) 

 Stable disease.  

 

Subjects with stable disease continue to the next treatment period, while subjects 

experiencing disease progression are withdrawn from the study. Based on the opinions of 

key experts and regulatory officials, it is determined that the treatment will be worth 

pursuing in larger-scale trials if the observed response rate is at least 26%. Hence, success 

for the study is defined as 52 or more responders out of 200 subjects. Also, Beta(0.2, 1.8) 

is selected as a reasonable prior distribution for the binomial response rate.  

 

After a set period of time, a first futility analysis is to be carried out. At this time, 33 

subjects have been recruited, of which disease progression has been observed in 20, and 

responses have been observed in only 2. One addition subject has gone through all five 

treatment periods without either response or progression. This subject is counted as a 

treatment failure. Thus, there are a total of two responses and 21 failures.  

 

If response is treated as simple binomial variable, the posterior distribution for the 

response rate would be Beta(2.2, 22.8), and the predictive probability of achieving a 

further 50 responses out of  the remaining 177 subjects would be 0.007. With such a 

miniscule probability of success, discontinuation of the study would be the reasonable 

choice.  

 

However, examination of the distribution of outcomes over time (Table 1) calls into 

question the reasonableness of treating the observed outcomes as a simple binomial 

variable.  
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Table 1. Results of hypothetical study at the first futility analysis 

 

Treatment Period Subjects Observed 

During the Period 

Observed Disease 

Progressions 

Observed Treatment 

Responses 

1 33 14 0 

2 13 6 1 

3 4 0 1 

4 1 0 0 

5 1 0 0 

Totals Total subjects: 

33 

Total Progressions: 

20 

Total Responders: 

2 

 

Of the 20 disease progressions, 14 occurred during the first treatment period, and none 

occurred after the second period. On the other hand, neither of the treatment responses 

occurred during the first treatment period. There is very little information available on 

later three treatment periods, and it cannot be ruled out that more information would 

reveal a higher responses rate during these periods. If response is treated as a simple 

binomial variable there is no way around this problem. However, using the method 

described above, the uncertainty about the later periods can be accounted for in 

probability calculations.  

 

Figure 1 shows the posterior distribution of the overall number of responses if the study 

is allowed to run to its full planned sample size of 200 subjects. With the uncertainty with 

regard to the later treatment periods correctly accounted for, the predicted probability of 

success is much higher – 0.12 rather than 0.007. Thus, a better-informed decision can be 

made with regard to discontinuing the study.   
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Figure 1: Probability distribution of the total number of responses if the hypothetical 

study is allowed to its full planned sample size of 200 subjects, given the 33 initially 

observed subjects summarized in Table 1, based on a Beta(0.2, 1.8) prior and response 

and progression probabilities each partitioned equally among the treatment periods. 

Based on 10,000 draws from, first, the Dirichlet distribution based on observed responses 

and, second, the resulting multinomial distribution.  
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