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Abstract

Lakes are considered as sensitive indicators of environmental change which are impacted by both
natural and anthropogenic drivers. The potential impact of climate change on freshwater resources
is critical, and improved understanding of the observed changes is key to ensure better management
of aquatic resources. While previous studies have often focussed on individual lakes, identifying
synchronous temporal patterns observed across multiple lakes on a larger scale may indicate the
existence of global common drivers and pressures. The GloboLakes project includes statistical
analysis of remotely sensed data for lakes across the world in order to investigate how lake water
quality responds to environmental change at a global scale. The aim of this paper is to investigate
different clustering approaches for functional data applied to Lake Surface Water Temperature data.
The clustering will be used to explore temporal coherence of multiple time series, with a view to
establishing ecologically valid groups of lakes which are similar in terms of observed trends and
seasonal patterns.
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1. Introduction

Freshwater ecosystems are vital components of the global biosphere. However, these
environments are vulnerable to the forces of climate and human induced change. Conse-
quently it is of great importance to monitor and assess the impact and extent of any such
changes. In recent years, developments in Earth Observation systems, and the increased ca-
pability to retrieve in-water constituents, has resulted in the availability of exciting new data
sets (Xie et al., 2008, Matthews, 2011). These expansive spatiotemporal data sets simul-
taneously enable global assessment of environmental changes and present new statistical
challenges.

GloboLakes (www.globolakes.ac.uk) is a 5-year Natural Environment Research Coun-
cil (NERC) consortium project involving 6 UK research groups whose goal is to investigate
the state of 1000 lakes and their response to climatic and other environmental drivers of
change at a global scale using a 20-year archive of satellite based observations. The syn-
chrony between major fluctuations in a set of time series is often described as temporal
coherence (Salisbury et al., 2011). Two of the key aims of the GloboLakes project are to
identify patterns of temporal coherence for individual remotely sensed lake characteristics,
and to explore the spatial extent of coherence for the lakes.

The aim of this paper is to compare different clustering approaches to investigate the
temporal coherence of Lake Surface Water Temperature (LSWT) for a large number (675)
of lakes distributed globally, and to obtain clusters of lakes based on common features
across time.
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Figure 1: Global map with lake locations marked by a dot.

1.1 Data

The European Space Agency funded ARC-Lake project (MacCallum and Merchant,
2012) has employed the use of the Along Track Scanning Radiometers (ATSRs) instrument
on-board the Envisat satellite in order to derive observations of LSWT for a large number
of lakes across the globe. The data considered in this paper are a subset of the ARC-Lake
version 3 data-set (see www.geos.ed.ac.uk/arclake/data for details). The data-set we have
considered is comprised of bi-monthly lake average LSWTs for 675 lakes covering an 18-
year period from 1995 to 2012, providing 405 observations for each of the lakes. All of
the 675 lakes selected for this study are also being investigated as part of the GloboLakes
project. Figure 1 shows a map with the location of each of the lakes considered in this
paper.

The LSWT data products have been derived from spatially and temporally complete
reconstructions of the ARC-Lake LSWT products. Spatially complete reconstructions have
been obtained from observations using techniques based on interpolating empirical orthog-
onal functions. Full details of the interpolation of the spatial images are provided in Mac-
Callum and Merchant (2010).

2. Methods

Our aim is to group the LSWT time series corresponding to the lakes into clusters,
where two time series belong to the same cluster if they are coherent with each other. A
functional data analysis approach has been taken. Regarding the data in this functional
setting enables any long-term temporal and seasonal patterns in the data to be estimated
and then compared across lakes. Several applications of functional data analysis to envi-
ronmental data are available in the literature (Damon and Guillas, 2002 and Estvez-Prez
and Vilar, 2013). More specifically, functional clustering techniques have been applied to
environmental data in Pastres et al. (2011) and Haggarty et al. (2012), who consider the
application of model based functional clustering to water quality data and Garcia-Escudero

1552



JSM 2014 - Section on Statistics and the Environment

and Gordaliza (2005) and Ignaccolo et al. (2008), who explore variations on k-means based
clustering for air quality network data.

As the number and structure of any clusters in the data is unknown, several different
functional clustering approaches are considered. This enables us to investigate the underly-
ing structure in the data identified by each of the approaches and to examine the robustness
of the results.

2.1 Functional Data Analysis

In functional data analysis, the observed time series are viewed as potentially noisy
realisations of unobserved functions. To estimate each of these functions, the time series
are described in terms of linear combinations of basis functions. For example, each LSWT
time series can be expressed as;

yi(t) = Gi(t) +&i(t) (1)

where G; is a smooth curve and ¢; is a normally distributed independent random error
term (i = 1,..,n). The curve Gj is a spline function of degree d which can be expressed
as a linear combination of B-splines, written in the following functional form for the spline

s; (t; Bs)
K+d—1

s; (t; 8;) = Z Bi1 By (t) ()
=1

where 5, = (Bi1, ..., Buﬂd,l)’ is a vector of real-valued coefficients, (B1(t), ..., Bk +4-1(t))
are the B-spline basis functions and K is the number of knots.

As detailed in Ignaccolo et al. (2008), the 5; vector is estimated by least squares and the
G curve is approximated by Gi (t) = s (t; B,) If the polynomial of degree d, the number
of knots K and the knot positions are the same for all the time series, then the B-spline
basis functions are fixed and the spline coefficients [3; describe the same features for each
of the time series.

Three approaches to obtain coherent clusters based on functional data are considered
here; model based clustering of functional principal component scores, the k-means algo-
rithm and a hierarchical clustering algorithm.

2.2 Functional Principal Components Analysis

One approach to find clusters based on functional data is to first decompose the varia-
tion in the data by applying a functional principal components analysis (FPCA) and subse-
quently, to cluster the corresponding principal component scores. The application of FPCA
enables the dimension of the functional data to be substantially reduced and hence provides
a very computationally efficient way of exploring any underlying structure in the data.

As in the standard setting, FPCA can be used to identify the dominant modes of varia-
tion in a data set. In the functional case, both the data and the estimated functional principal
components (FPCs) are curves. The FPCs can be thought of as a set of orthogonal basis
functions constructed so as to account for as much variation as possible.
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In the non-functional data setting, for a centered data matrix X of dimension n X p,
where the n rows represent observations and the p columns represent variables, the appli-
cation of PCA yields an orthogonal decomposition of X that is optimal for a given number
of principal components. Singular value decomposition of X can be used to decompose
the matrix and obtain principal component scores (Jolliffe, 2002). Furthermore, Varimax
rotation of the principal components can also be applied to make them more interpretable
(Ramsay and Silverman, 1997). To extend PCA to the functional setting each 1 X p vectors
representing an individual are replaced by sets of basis coefficients which define functions.
Hence, matrices are replaced by compact linear operators and covariance matrices by co-
variance operators. Full details of functional principal components are provided in Ramsay
and Silverman (1997).

After deciding on the appropriate number of functional principal components to re-
tain, clustering approaches can be applied to the corresponding set of principal component
scores. Model based clustering approaches can then be applied to the principal compo-
nent scores in order to identify groups of observations which are coherent in terms of their
temporal variation. The model based clustering method used in this paper is described in
(Fraley and Raftery, 1998).

2.3 Functional K-means

The k-means algorithm finds a partition such that the squared error between the empiri-
cal mean of a cluster and the points in the cluster is minimized. Functional clustering based
on the k-means algorithm has been introduced in Abraham et al. (2003) and applied in Ig-
naccolo et al. (2008). In the functional case the algorithm is applied to the spline coefficient
vectors which define the curves representing the time series. Following this, the clustering
result directly provides the clustering of the time series. For a given number of clusters, in
order to reduce the influence of the starting values, the k-means algorithm is applied several
times.

2.4 Functional Hierarchical Clustering

To apply hierarchical clustering to a set of points, a distance matrix, D, is first calculated
which contains the distance between all possible pairs of points. The 4, j** entry of D is
the distance between points ¢ and j as determined by whichever metric has been chosen.
Henderson (2006) states that the idea of measuring distances is easily transferable from
pairs of points to pairs of curves and defines a method of computing a functional distance
matrix as follows. The distance between two curves can be written as

dij = (Bi — B;) "W (Bi — B;) 3)

In the above expression, W is a symmetric matrix the elements of which are given by
Wim = [ Bi(t)Bm(t)'dt, with I,m = 1,..., K + d — 1. For each set of basis functions,
W can be evaluated using numerical integration, if necessary, and the functional distance
matrix D with entries d;; can be computed. Standard algorithms for hierarchical clustering
can then be applied to the elements of D.

2.5 Stopping criteria

Well developed methods exist to choose the optimal number of clusters. For k-means
and hierarchical clustering the gap statistic (Tibshirani et al., 2001) approach has been con-
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sidered here. The gap statistic uses the within cluster dispersion to determine the statis-
tically optimal number of clusters and compares the average within cluster dispersion for
the observed data, to the average within cluster dispersion for a null reference distribution
which assumes there is no underlying clustering structure. The clustering based on FPC
scores is model based and so model selection criteria such as BIC can be used to determine
the best model. After calculating BIC for models with different numbers of mixture com-
ponents corresponding to different numbers of clusters, the model which minimises BIC is
selected.

While both approaches are data-driven and can be used to select the statistically optimal
number of clusters for the different clustering methods applied here, they can be computa-
tionally expensive due to the repeated calculations required, and simulations in the case of
the Gap statistic.

3. Results

To estimate the curves representing the average lake surface water temperature for each
individual lake a cubic B-spline basis function was used. The raw time series were regu-
lar and reasonably smooth to start with, and so no additional smoothing penalty term was
applied. When fitting the curves, a knot was placed at every 6 observations in order to
correspond to intervals of duration 3 months, or one ‘season’. Consequently, 68 basis func-
tions were used to estimate each of the smooth curves representing each lake. This number
of knots appeared to result in curves which provided a sensible fit to the data and neither
resulted in a fit which was deemed to be too smooth, nor too locally variable.

Following estimation of the functional data, all three clustering approaches were ap-
plied. The gap statistic suggested that 9 clusters was statistically optimal for the hierarchi-
cal clustering of the curves while 13 clusters was identified as being best when K-means
clustering was applied.

For the functional PCA approach, the first three principal components were found to
account for 99% of variability in the curves, and hence scores corresponding to the first
three principal components were retained. Figure 2 shows the mean-centered functional
mean curve (black solid line) plus and minus the rotated functional principal components
(green and blue lines). It is clear that the rotated fPCs have meaningful interpretations;
component 1, accounts for the most variability in the curves (60.7%) and corresponds to
the difference between the timing of the seasonal patterns of lakes located in the Northern
and Southern hemispheres whilst components 2 and 3 account for a similar quantity of
variability in the curves (18.5 and 20%) and correspond to deviations in the spring-summer
months, and deviations in summer-autumn months respectively. Using mixture model based
clustering via the mclust package in R (Fraley et al., 2012) and BIC to select the optimal
number of clusters, 10 clusters were identified as being most appropriate.

The results are summarised in Figures 3, 4 and 5 which show maps with lake locations
colored to represent the different clusters. The different sizes of each of the clusters obtained
(in terms of number of lakes) using the three different approaches are shown in Table 1. Due
to the different number of clusters and number of curves in each cluster the cluster numbers
are nominal labels only.
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Figure 2: Functional mean (black solid line) plus and minus the rotated functional principal
components (green/blue lines)

3.1 Discussion

Although there is no single number of clusters identified as being statistically optimal,
there are undoubtedly broad similarities between the results of all of the different clustering
methods investigated here. It is clear from the maps that in all approaches considered,
as could be expected, the key distinction between the clusters is the latitude of the lakes.
For all three approaches, the Northern hemisphere and Equatorial band clusters are defined
primarily by relatively smaller scale differences in the phase and amplitude of the seasonal
patterns than those clusters of primarily Southern hemisphere lakes.

While the number of clusters identified as statistically optimal is most different for the
K-means and hierarchical approaches, these partitions share many similar features, such
as the distribution of clusters in the Southern hemisphere. In fact, hierarchical clusters 6
and 8 are identical to K-means clusters 9 and 12. One of the main distinctions between
the K-means and hierarchical clustering results is the difference in the number of clusters
describing the variability in the Northern hemisphere. Hierarchical clustering suggests that
fewer, larger clusters are suitable to describe the variability in the LSWT here. On the
other hand, K-means clustering identifies smaller clusters that are separated by more subtle
differences between the lakes. The FPCA clusters also share similarities with the other ap-
proaches, for example, all lakes in FPCA clusters 6 and 10 are contained within hierarchical
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Table 1: Number of time series/curves in each cluster obtained using the three approaches

Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13

Hierarchical 152 40 47 272 24 29 40 20 51 - - - -
K-means 25 60 43 106 33 46 68 55 29 40 100 20 50
FPCA 56 8 41 73 92 103 102 49 32 42 - - -

clusters 4 and 1, respectively.
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Figure 6: Comparison of a subset of clusters across the different approaches considered.
Solid lines representing cluster means are shown for a Southern hemisphere cluster (left
hand side), an Equatorial band cluster (middle) a Northern hemisphere cluster (right hand
side). The shaded bands represent the uncertainty associated with the cluster means

Figure 6 shows a comparison between a subset of the clusters across the three methods.
The left hand column of Figure 6 shows cluster means for a Southern hemisphere cluster,
the middle column of plots shows the means for an Equatorial band cluster and the right
hand plots a Northern hemisphere cluster. The shaded bands show the cluster mean plus
and minus twice the functional standard deviation of the curves within that cluster. Despite
the different cluster sizes, it can be seen that the broad patterns being identified are simi-
lar across the three approaches. However, there are some distinctions between the clusters
obtained via each of the approaches. For example, both the k-means and hierarchical clus-
tering methods identify one more cluster in the Southern hemisphere than the clustering
based on principal component scores.

In order to attempt to quantify how similar the results of each method were the Adjusted
Rand Index (Hubert and Arabie, 1985) was computed for all pairs of clustering approaches.
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The Adjusted Rand Index (ARI) is an index which is based upon counting the pairs of points
on which two clusterings agree or disagree and is corrected for the possibility that agree-
ment between two sets of clusters may simply be due to chance. The maximum value of the
ARI is one, which corresponds to perfect agreement between two partitions. Conversely, if
the ARI is zero, the two partitions are mutually independent.

The greatest degree of agreement is between the partitions based on FPCA and K-means
(ARI=0.49) with marginally poorer agreement between the clusters of lakes determined us-
ing the K-means and Hierarchical approaches (ARI=0.35) and the FPCA based and Hierar-
chical approaches (ARI=0.33). The moderate size of all of the ARI values computed may
be surprising in light of the broad similarities between the clusters shown in Figures 3, 4
and 5. This indicates that, while informative to some degree, the ARI should be viewed
with caution and should not be considered without also comparing the distribution of the
partitions via either cluster mean curves or geographical maps.

4. Conclusions

It has been demonstrated with the ARC-lake data that all three of the approaches con-
sidered here are robust and computationally efficient for large numbers of time series of
potentially noisy data. The use of functional data enables the data dimension to be reduced
substantially. While the temperature time series are already reasonably smooth, creating
functional data objects via smoothing can be very useful when highly noisy time series are
required to be clustered. Initially, smoothing the time series before clustering enables the
key features of interest in the data to be retained while, excluding local variability which, if
included, may result in an overestimation of the the number of clusters required to describe
the variability in the curves.

The clustering approaches enable clusters of curves to be identified which are coherent
in terms of temporal dynamics. As there is no single correct answer when clustering data
such as global lake temperature is necessary to consider different clustering approaches and
compare results. It is very reassuring, that although not identical, the approaches consid-
ered, have produced results which are consistent with each other and which make sense
when interpreted in an ecological context.

The analysis presented here gives us an overview of global coherence, however there
may be distinct basins within lake which behave very differently to one another and so
our future work will also focus on within lake coherence. The computational efficiency of
FPCA could be an attractive feature for this.
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