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Abstract 

In many contexts in the earth sciences, astrophysics and other fields, it often needs to 

analyze spherical data, which can be treated as having positions on spherical surface. 

Many parametric Bayesian methods are used to examine spherical data. We give 

semi-parametric Bayesian method to make statistical inferences. In particular, we show 

how to use our semi-parametric method to find the Bayesian predictive density and to test 

whether two samples are from two populations with the same mean. A von Mises-Fisher 

distribution is shown to be conjugate for the von Mises-Fisher distribution, which is often 

used in directional statistics. This makes the computations of our semi-parametric 

Bayesian method easier. 
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1. Introduction 

In many contexts in the earth sciences, astrophysics and other fields, it often needs to 

analyze spherical data, which can be treated as having positions on spherical surface. 

Traditional statistical methods on analyzing spherical data can be seen in, among others, 

Mardia (1972), Fisher, et al. (1987), Jammalamadaka and SenGupta (2001) and 

references therein. Nunez-Antonio and Gutierrez-Pena (2005) use parametric Bayesian 

method to examine spherical data. Ghosh, Jammalamadaka, and Tiwari (2003) first study 

2-dimenstional circular data with semi-parametric Bayesian techniques. The 

generalization of the semi-parametric Bayesian technique for 2-dimention to that for 

3-dimension is not immediate. In this paper, we shall use semi-parametric method to 

analyze 3-dimensional spherical data. 
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The commonly used 3-dimensional distribution for spherical data is von Mises-Fisher 

distribution. The Ferguson-Dirichlet process is well known for its application to 

nonparametric Bayesian analysis. In section 2, we give the notations for the von 

Mises-Fisher distribution and the Ferguson-Dirichlet process. Using the 

Ferguson-Dirichlet process prior, we derive the posterior distribution for making 

statistical inference in section 3. In particular, von Mises-Fisher prior distribution is 

shown to be conjugate for von Mises-Fisher data. This would make the computation 

easier. In section 4, we give a semi-parametric method to find Bayesian predictive 

density of a new future datum. We also give a semi-parametric method to test whether 

two random samples are from two populations with the same mean in section 5. Finally, 

conclusions are given in section 6. 

 

2. Von Mises-Fisher distribution and Ferguson-Dirichlet process 

In directional statistics, the von Mises-Fisher distribution is often used on the 

(p-1)-dimensional sphere on   . Although we concentrate on the cases with p=3 in this 

paper, here we shall define its probability density for general p of the random unit vector 

X with mean λ and concentration parameter    , denoted by         (    )  as 

   (       )    ( )    (     )                                                   ( ) 

where the length of the mean vector λ is 1 and the normalization constant   ( )  

 
 

 
 
  

(   )
 
  

 
 
 
  

( )
 with    denoting the modified Bessel function of the first kind and order 

ν. In particular,   ( )  
 

       
    

 

  (         )
 . Using the spherical coordinate system, 

   (        )  (    ( )     ( )      ( )     ( )      ( ))  where  ( ) (   ( )  

 ) is the colatitude (polar angle measured from the    axis to  ) and  ( ) (   ( )  

  ) is the longitude (azimuth angle measured from the    axis to the orthogonal 

projection of   on the (     ) reference plane). Similarly, λ can be expressed as 

   (        )  (    ( )     ( )      ( )     ( )      ( ))  Hence, the von 

Mises-Fisher distribution pdf of   (when p=3) in terms of the spherical coordinate 

system, denoted by ( ( )  ( ))      (( ( )  ( ))   )  can be expressed as 
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    ( )    ( )]}    ( )                                                                                    ( )  

In this paper, we shall use Ferguson-Dirichlet process (Ferguson, 1973) as our 

nonparametric prior. We say G is a Ferguson-Dirichlet process over a set S with a 

probability measure    on S and a positive measure c, denoted by      (    )  if 

( (  )  (  )    (  ))             (    (  )    (  )      (  ))  for any 

partition             of S. With each    follows prior    (    ), Blackwell and 

MacQueen (1973) show that the prior joint pde (probability density element) of 

   (          ) has the following expression: 

  ( |(    ))  ∏
   (   )  ∑    

(   )
   
   

     
 

 

   

 

where the Dirac delta function    
( )  {

                   

                       
  If a random sample Y=(Y1, 

Y2, …, Yn), where each Yi|   is iid, is further observed, then by Antoniak (1974) the 

posterior is a mixture of Ferguson-Dirichlet processes. In addition, it can be shown that, 

the posterior pde of    (          ), after observing Y=(Y1, Y2, …, Yn) with 

corresponding parameters    (          ), is  

  ( |  (    ))   ∏ (  |  )
   (   )  ∑    

(   )
   
   

     
                         (   )

 

   

 

where  (  |  ) is the likelihood function of    after observing   . It is hard to estimate 

   directly from the above expression in (2.1). To overcome such a problem, Escobar 

(1994) shows that expression (2.1) can also be expressed as the following conditional 

pde: 

  (  |      (    ))     (  |  )     (   )  ∑  (  |  )    
(   )     (   )

 

       

 

for i=1, 2, …, n, where    
  (                  )  It can be further seen that 

expression (2.2) is equivalent to the following expression: 

   |      {
   (  |  )                                        (  ) 

                                          (  |  )     
         (   ) 

for i=1, 2, …, n, where  (  |  )     (  |  )   (   )       (  )   ∫  (  |  )   (   ). 

Hence,  (  |  )  
 

 (  )
  (  |  )   (   )     is the posterior p.d.f. of    when the prior 
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is   . Notice that the conditional distribution of    in (2.3) depend on Y only through 

  . Therefore, expression    |      in (2.3) can also be expressed as    |      .  

 

3. Semi-parametric Bayesian inference 

In this paper, we assume to have a random sample of size n from the von Mises-Fisher 

distribution with dimension p=3, concentration parameter   and mean vector  . We 

further assume that   has a Ferguson-Dirichlet process prior with concentration 

parameter c and base probability distribution   , which is also a von Mises-Fisher 

distribution with concentration parameter   and mean vector  . Specifically, we have 

the following prior and sampling model: 

            |                          

                  (    ) 

                    (    )  

           |             (      )             .  

That is,   |          |      are independent random variables, each   |      

follows von Mises-Fisher distribution with concentration parameter    and mean vector 

  ;   |      |  follow a distribution G, which is from a Ferguson-Dirichlet process 

with concentration parameter c and base distribution   ;    follows a von Mises-Fisher 

distribution with concentration parameter   and mean vector  . 

The posterior p.d.e. of             can be expressed as 

  (           |  (       ) (    ))  

  ∏  (  |     )

 

   

   (   )  ∑    
(   )

   
   

     
                   (   ) 

where    (       ) and   (  |     ) is the p.d.f. of   , which has a von 

Mises-Fisher distribution with parameters          . That is,   |             (      ). 

As shown by Escobar (1994), (3.1) can also be expressed as  

  (  |      (       ) (    ))  

    (  |     )    (   )  ∑   (  |     )    
(   )   (   )

 

       

 

Expression (3.2) is equivalent to the following expression: 

   |      {
    (  |     )                                        (  ) 

                                           (  |     )     
      (   ) 
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for i=1, 2, …, n, where   (  |     )      (  |     )   (   )      is the posterior p.d.f. 

of    and  (  )   ∫   (  |     )   (   ) is the normalized constant for the posterior 

p.d.f. of   . 

   In using polar coordinates, we let    (     
( )

     
( )

      
( )
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), and 

   (    ( )     ( )      ( )     ( )      ( )). Then the posterior p.d.f.  (  |     ) 

of   , in terms of polar coordinates, is 
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Hence, the posterior p.d.f.  (  |     ) of   , in terms of polar coordinates, is 
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Therefore, the posterior distribution of       (  
( )

   
( )

)
 
 is still a von Mises-Fisher 

distribution with updated parameters    (  
( )

   
( )

). In short, if the prior 

(  
( )

   
( )

)      ( ( )  ( )  ) and data 

(  
( )

   
( )

)|(  
( )

   
( )

   )     (  
( )

   
( )

   ), then the posterior 

(  
( )

   
( )

) |(  
( )

   
( )

)     (  
( )

   
( )

   ).  

In the next section, we give the predictive density based on the observed data. 

 

4. Bayesian predictive density 

Given the random sample           , the posterior predictive density of      can be 

expressed as 

  (    |(          ))  

∫   (    |(          ) (          )) ((          )|(          ))        , 

where  ((          )|(          )) is the posterior joint p.d.f. of            and 

  (    |(          ) (          )) is the posterior predictive density function of 

     when            are also known. However, 

  (    |(          ) (          ))  

 ∫   (    |     (          ) (          ))  (    |(          ) (          ))  

 ∫   (    |    )  (    |(          ))   ∫   (    |    ) 
 

   
  (     )  

JSM 2014 - Section on Bayesian Statistical Science

1536



 

 

 
 

   
∑     

(     ) 
 
    . By using polar coordinates with 

   (     
( )

     
( )

      
( )

     
( )

      
( )

)     

 (     
( )

     
( )

      
( )

     
( )

      
( )

)        

 (    ( )     ( )      ( )     ( )      ( ))  

  (    |(          ) (          ))    ∫   (    |    )  (    |(          ))  

 
 

   
∫

    

          
         [       

( )
       

( )
   (    

( )
     

( )
)  

       
( )

       
( )

         
( )

  
 

       
      [       

( )
    ( )    (    

( )
  ( ))  

       
( )

    ( )         
( )

      
( )

     
( )

 

 

   
∑  

    

          
         [       

( )
     

( )
   (    

( )
   

( )
)   

   

       
( )

     
( )

         
( )

  

 
 

   
 
           

( )

          
 

 

       
 
          

    
  

 

   
∑   ((    

( )
     

( )
) |(  

( )
   

( )
     )) 

 
    

 

   
 
             

( )
         

                      
   

 

   
∑   ((    

( )
     

( )
) |(  

( )
   

( )
     ))

 
   , where 

     

√     
             [       

( )
    ( )    (    

( )
  ( ))         

( )
    ( )  , and 

  ((    
( )

     
( )

) |(  
( )

   
( )

     )) is the von Mises-Fisher p.d.f. of      

(       
( )

       
( )

        
( )

       
( )

        
( )

) with mean 

    (     
( )

     
( )

      
( )

     
( )

      
( )

). Hence, the posterior predictive 

density of      can be expressed as   (    |(          ))   ∫ [ 
 

   
   (    )  

 

   
∑   (    |       )

 
    ]  ((          )|(          ))         

JSM 2014 - Section on Bayesian Statistical Science

1537



 

 

 
 

   
   (    )  

 

   
∑ ∫   (    |       )

 
    ((          )|(          ))        , where 

  (    )   
             

( )
         

                      
 is the prior predictive density of     . 

 

5. Bayesian two-sample test 

Given that the first random sample            is from a von Mises-Fisher distribution 

with mean vector    and concentration parameter     and the second random sample 

           is from another von Mises-Fisher distribution with mean vector    and 

concentration parameter    , we want use our semi-parametric method to test whether 

      . Formally, let   |             (      )                   
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We want to test            against the alternative            in this section.  

Assume that (  
( )

   
( )

) and (  
( )

   
( )

) are the corresponding polar coordinates for 

         , respectively,     (  ) is the prior probability that    is true for i=1, 2, and 

  ( ) is the conditional probability density of   given    is true for i=0,1. The 

likelihood function of   is 

 ( |                     )  
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theorem, the posterior probability that    is true is 

 (  |                     )   
 (  ) (                     |  ) 

∑  (  ) (                     |  )
 
   

  

 = 
 (  ) ∫  (                     |    ) ( |  )   

∑  (  )∫ (                     |    ) ( |  )   
   

  

=
  ∫  ( |                     )  ( )   
Ω

 

∑   ∫  ( |                     )  ( )   
Ω

 

 
   

. 

From the given Ferguson-Dirichlet prior distribution and Blackwell and MacQueen 
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for i=0,1. By the argument in Section 4, a von Mises-Fisher prior p.d.f. with a von 

Mises-Fisher data still has a von Mises-Fisher posterior p.d.f., it would not be hard to 
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compute the posterior probability that    is true. In practice, we accept    if the 

posterior probability that    is true is more 1/2. Otherwise, we reject   .  

 

6. Conclusions 

In this paper, we first show that the von Mises-Fisher prior distribution is conjugate for 

the von Mises-Fisher sample data on sphere. We then give semi-parametric Bayesian 

methods to make statistical inferences. In particular, Bayesian predictive density and 

Bayesian two-sample test methods are given. 
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