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Abstract 
In the summer of 2013, Operations Analyst Paul Erford of the Marathon Petroleum 
Company, contacted Dr. Ryan Rahrig, Assistant Professor of Statistics at Ohio Northern 
University, asking him to look at a probability problem that had arisen in his work. Dr. 
Rahrig forwarded this request to Dr. Laurence Robinson, Associate Professor of Statistics 
at Ohio Northern University. Together Dr. Rahrig and Dr. Robinson determined the 
nature of solutions to this type of probability problem. In this paper we (Dr. Rahrig and 
Dr. Robinson) discuss the solution to the probability problem, and discuss its use as a 
valuable teaching tool for our mathematical statistics majors at Ohio Northern University. 
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1. Emails Sent by Mr. Erford 
 
Hey Ryan,  
    Let’s say you have a population set of 200 people. Out of those 200 people, the names of 
125 people are drawn as winners in each drawing. There are 9 consecutive drawings in 
all. I’m trying to determine what is the probability that exactly 1 person wins in all nine 
drawings, the probability that exactly 2 people win in all nine drawings, the probability 
that exactly 3 people win in all nine drawings, etc., all the way to the probability that 125 
people win in all nine drawings. Do you know a formula that I can use to determine these 
probabilities? 
 
Thanks, 
Paul Erford  

  
    Dr. Robinson asked Dr. Rahrig why an engineer at Marathon Oil would be interested 
in this particular problem, and he in turn sent an email to Mr. Erford asking “what's the 
real context of the problem?” Mr. Erford responded: 
 
Hey Ryan,  
    The context of the problem is that there are certain pipeline systems that administer a 
‘lottery’ system similar to what is described below. If a new shipper wins 9 months in a 
row, they will become a shipper with a higher status that states they are guaranteed 
service on the pipeline. This guaranteed service will have to take away service from 
somewhere, and that somewhere is typically a shipper that has lots more available 
service on the pipeline. By knowing the probability that x people could graduate with 200 
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new shippers, we can use those probabilities to manage the risk of people taking away 
some of our service.  
 
Thanks, 
Paul Erford 

 
2. An Interesting Problem for Undergraduates 

 
    We first discuss some factors that make this a particularly attractive and suitable 
problem for use with undergraduate students. It is a concisely stated problem that 
students can easily comprehend. It is a real-life problem posed by a major corporation 
(ONU has the added benefit of it being a local corporation). This problem is accessible to 
students at a variety of levels, but still presents a challenge. As we will show, the solution 
can be obtained by using only concepts covered in an introductory probability course, but 
it can be more elegantly described using more advanced theory such as Markov chains.  
     Most of the time, the expectation of an undergraduate research project is not that the 
student will have a significant breakthrough. Instead, it is that the student will be 
challenged and rewarded with the opportunity to synthesize information from various 
areas of study while exploring his or her own ideas. This problem provides such an 
opportunity – it is difficult enough to present several obstacles to initial classical 
approaches, yet is still able to be solved by examination from alternative perspectives. 

 
3. A Common Initial Obstacle 

 
    It is common for students to first approach this problem simply by counting equally 
likely outcomes. That is, the goal is to first count the total number of (equally likely) 
possible outcomes and then determine the number of outcomes that make up the event of 
interest. Then a simple ratio computes the desired probability. This is certainly a 
reasonable first attempt as it is a common technique that students use to solve many 
problems in their introductory probability course. However, for this example, a student 

will quickly realize that there are   956

9

10*6885.1
125

200









 total possible outcomes, 

and determining how many of these consist of exactly 1, 2, 3, … winners on all 9 
drawings is a non-trivial task. 
     It is at this point that the advisor may suggest looking at it from an alternative 
viewpoint. Consider the random variable Xk which represents the number of people who 
have been selected on all of the first k drawings. Thus, X3 denotes the number of people 
who are selected on all of the first r = 3 drawings and X9 denotes the number of people 
who are selected on all of the first r = 9 drawings. 
     Another piece of advice to the student at this point may be to work with a “smaller 
problem” rather than the original problem. The solution to the smaller problem may 
suggest a solution to the larger, original problem. 
    

4. Obtaining the Solution to a “Smaller Problem” 
 

    Rather than work with the original problem posed, for which the parameters used were 
N = population size = 200, n = sample size = 125, and r = number of samplings = 9, we 
choose to work with a “more manageable” set of parameters, specifically N = 5, n = 3, 
and r = 3. 
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The solution to this smaller problem is: 
 
 

             i 0 1 2 3 
Pr(X3 = i) 0.18 0.57 0.24 0.01 

 
     We now explain one way to obtain this solution. If a student is unable to reach this 
solution on his/her own, an additional hint would be to consider the distribution of X1 and 
then the distribution of Xk+1 given Xk.  
 
    The probability distribution of the random variable X1 is easily found. X1 cannot equal 0, 
1, or 2, but rather must equal 3. This is easily seen to be true, since when only a single 
sampling of n = 3 people is made, all 3 selected people must have been selected in all 
samplings – of which there has only been 1. 
 

             i 0 1 2 3 
Pr(X1 = i) 0 0 0 1 

 
     Next consider the probability distribution of the random variable X2. The probability 
that X2 = 3 equals the probability that the same 3 people chosen in the first drawing will be 

chosen again. There are 10
3

5









 possible samples, thus Pr(X2 = 3) = 1/10 = 0.1. The 

probability that X2 = 2 equals the probability that exactly 2 out of the 3 people chosen in 
the first drawing will be chosen again and 1 of the 2 not picked in the first drawing will be 
chosen. There are 623   ways this can happen so Pr(X2 = 2) = 6/10 = 0.6. The 
probability that X2 = 1 equals the probability that exactly 1 out of the 3 people chosen in 
the first drawing will be chosen again and the 2 people not drawn in the first drawing are 
chosen. So Pr(X2 = 1)  = 3/10 =  0.3.   Pr(X2 = 0) = 0, since at least 1 of the 3 chosen in the 
first drawing will be chosen in the second. Thus, we have: 
 

             i 0 1 2 3 
Pr(X2 = i) 0 0.3 0.6 0.1 

 
     Now we can investigate the probability distribution of the random variable X3. First 
consider Pr(X3 = 0). We find this probability for each of the 4 cases: X2 = 0, X2 = 1, X2 = 2, 
and X2 = 3. Pr(X3 = 0 | X2 = 0) = 1, because if there were no repeat winners for the first 2 
drawings, there will not be any repeat winners of the first 3 drawings. Pr(X3 = 0 | X2 = 1) is 
the probability that the 1 repeat winner from the first 2 drawings will not be drawn in the 

third. There are 4
3

4









 ways this can happen, so Pr(X3 = 0 | X2 = 1) = 4/10. Pr(X3 = 0 | X2 

= 2) is the probability that the 2 repeat winners from the first 2 drawings will not be drawn 
in the third. There is only 1 way this can happen (choose the other 3 people), so Pr(X3 = 0 | 
X2 = 2) = 1/10. Pr(X3 = 0 | X2 = 3) is the probability that the 3 repeat winners from the first 
2 drawings will not be drawn in the third. This is not possible since at least 1 of the 3 must 
be chosen, so Pr(X3 = 0 | X2 = 3) = 0. 
 

    The probability that X3 = 0 can now be found using the “law of total probability”: 
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    )3Pr()3|0Pr(

  )2Pr()2|0Pr(

  )1Pr()1|0Pr(

  )0Pr()0|0Pr()0Pr(

323

323

323

3233







XXX

XXX

XXX

XXXX

 

 
      =  18.1.06.1.3.4.01   
 
The remaining probabilities concerning X3 can be found similarly. 

 
5. Organizing the “Smaller Solution” 

 
    The next step for the student to develop is the organization of the smaller solution so 
that the solution to the larger problem may be determined. The above solution can be 
obtained from the following matrix equations: 
 



















0.1

0.0

0.0

0.0

    =    
























)3Pr(

)2Pr(

)1Pr(

)0Pr(

1

1

1

1

X

X

X

X

 

 



















1.00.00.00.0

6.03.00.00.0

3.06.06.00.0

0.01.04.00.1

   



















0.1

0.0

0.0

0.0

    =    



















1.0

6.0

3.0

0.0

     =    
























)3Pr(

)2Pr(

)1Pr(

)0Pr(

2

2

2

2

X

X

X

X

 

 



















1.00.00.00.0

6.03.00.00.0

3.06.06.00.0

0.01.04.00.1

   



















1.0

6.0

3.0

0.0

    =   



















01.0

24.0

57.0

18.0

    =    
























)3Pr(

)2Pr(

)1Pr(

)0Pr(

3

3

3

3

X

X

X

X

. 

 
    The first vector given above represents the probability distribution of the random 
variable X1. The second vector given above represents the probability distribution vector 
of the random variable X2, and is obtained by pre-multiplying the X1 probability 
distribution vector by the given matrix. Similarly, the third vector represents the 
probability distribution of the random variable X3 (the desired solution), and is obtained 
by pre-multiplying the X2 probability distribution vector by the same matrix.  
    In general, the probability distribution vector of Xk+1 can be obtained by pre-
multiplying the probability distribution vector of Xk by the same matrix M, with  
 

M  =  



















1.00.00.00.0

6.03.00.00.0

3.06.06.00.0

0.01.04.00.1

. 
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   That is, we have the following matrix equation which applies for all integer values of k: 
 













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



1.00.00.00.0
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






















)3Pr(

)2Pr(

)1Pr(

)0Pr(

k

k

k

k

X

X

X

X

    =    
































)3Pr(

)2Pr(

)1Pr(

)0Pr(

1

1

1

1

k

k

k

k

X

X

X

X

 

 

    The matrix M can be expressed as follows: 
 





















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
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




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)3|2Pr)2|2Pr)1|2Pr)0|2Pr

)3|1Pr)2|1Pr)1|1Pr)0|1Pr

)3|0Pr)2|0Pr)1|0Pr)0|0Pr
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((((
((((
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kkkkkkkk

kkkkkkkk

XXXXXXXX

XXXXXXXX
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    With regard to the first column of M, we have: 
 
































)0|3Pr

)0|2Pr

)0|1Pr

)0|0Pr

1

1

1

1

(
(
(
(

kk

kk

kk

kk

XX

XX

XX

XX

   =   



















0.0

0.0

0.0

0.1

 

 
    Here we see that if after k samplings there are 0 people who have been selected every 
time, then after sampling k+1 there must also be 0 people who have been selected every 
time.  
    With regard to the second column of M, we have: 
 
































)1|3Pr

)1|2Pr

)1|1Pr

)1|0Pr

1

1

1

1

(
(
(
(

kk

kk

kk

kk

XX

XX

XX

XX

   =   



















0.0

0.0

6.0

4.0

 

 
Here we see that if after k samplings there is 1 person who has been selected every time, 
then after sampling k+1 there must either be 1 or 0 people who have been selected every 
time. The probability )1|0Pr 1(  kk XX  is computed as: 

 























 

3

5

3

4

0

1
  =   (1) (4) / 10  =  0.4. 

 
The computation of this probability can be understood as follows: From a dichotomous 
population of 5 individuals, 1 of “type 1” (having been selected on all prior samplings) 
and 4 of “type 2” (having not been selected on all prior samplings), we have obtained a 
simple random sample of size 3 without replacement. The probability computed is the 
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hypergeometric probability that the single “type 1” individual is not selected and that 3 of 
the 4 “type 2” individuals are selected. 
    Similarly, the probability )1|1Pr 1(  kk XX  is the hypergeometric probability that 

the single “type 1” individual is selected and that only 2 of the 4 “type 2” individuals are 
selected, and is computed as: 
 























 

3

5

2

4

1

1
  =   (1) (6) / 10  =  0.6. 

 
    We can interpret the third and fourth columns of M in a similar fashion. With regard to 
the third column of M, we have: 
 
































)2|3Pr

)2|2Pr

)2|1Pr

)2|0Pr

1

1

1

1

(
(
(
(
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XX

XX

XX

   =   



















0.0

3.0

6.0

1.0

 

 
The first 3 probabilities constitute the hypergeometric distribution associated with a 
simple random sample of size 3 (without replacement) from a dichotomous population of 
size 5, consisting of 2 “type 1” and 3 “type 2” individuals. Of course it is impossible to 
select 3 “type 1” individuals from a population containing only 2 “type 1” individuals, 
hence the result that )2|3Pr 1(  kk XX  = 0. 

        With regard to the fourth column of M, we have: 
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

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
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





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









)3|3Pr

)3|2Pr
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1

1

1

1

(
(
(
(
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kk
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XX
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   =   



















1.0

6.0

3.0

0.0

 

 
All 4 probabilities constitute the hypergeometric distribution associated with a simple 
random sample of size 3 (without replacement) from a dichotomous population of size 5, 
consisting of 3 “type 1” and 2 “type 2” individuals. It should be noted that for this 
particular case the sampling must select at least 1 “type 1” individual, hence the result 
that )3|0Pr 1(  kk XX  = 0. 

    Denoting the probabilities of matrix M as pij = )|Pr 1( jXiX kk  , the matrix M can 

be expressed as: 
 

M  =  



















33323130
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pppp
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where                          pij = 










































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     and   if jNinji

n

N
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jN

i

j

 

 
Also, let us denote the probability distribution associated with the random variable Xr as 
 

πr   =   





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
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Thus, the probability distribution associated with the random variable Xk+1 can be 
obtained from the probability distribution associated with the random variable Xk as M πk 
= πk+1.  However, given π1 one can utilize the recursive nature of the formula for πk+1 to 
determine that πk+1 = Mk π1. 
 

6. Results for Mr. Erford’s Original Problem 
 

The original problem had the following parameters: N = 200, n = 125, and r = 9. In this 
case,  

π1   =   
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and 
 

M  =  
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
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
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
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
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
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
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The solution for the particular set of parameters specified is as follows: 

 
i Pr(X9 = i)  i Pr(X9 = i) i Pr(X9 = i) 
0 .0470  4 .1704 8 .0050 
1 .1513  5 .0953 9 .0013 
2 .2351  6 .0429 10 .0003 
3 .2352  7 .0159 11 .0001 

 
It should be noted that this table actually pertains to values of i extending to a maximum 
possible value of n = 125. However, for all values of i greater than 11, the associated 
probabilities are 0 (to 4 decimal places), and hence have be omitted from the table. 

 
7. A Markov Chain Problem 

 
    The knowledgeable student who has taken more advanced courses may recognize that 
the random process discussed here is simply a discrete-time homogeneous Markov chain, 
with the matrix M being the transition matrix. It is a Markov chain because the 
probability distribution of the random variable Xk+1 depends only on the immediately 
preceding random variable Xk. It is time-homogeneous because the transition matrix is 
constant from one sampling to the next. 
    For students unfamiliar with Markov Chain theory, this problem can serve as an 
introduction once the student’s interest has been piqued after solving the problem using 
only first principles of probability. Having gone through the entire process of deriving a 
solution, the student will more greatly appreciate the compactness and elegance of the 
Markov Chain approach.  

 
8. Conclusion 

 
    This consulting project can be used as a teaching tool in many contexts in the future. It 
will make an excellent senior capstone project for a mathematical statistics major in our 
department, and can also be included in a variety of courses, such as applied probability, 
stochastic processes, statistical computing, and statistical consulting. While this problem 
certainly can be posed and its solution be presented to the students within one class 
period, it is our opinion that the best approach is to allow the students to have time to 
explore and investigate it as we have outlined in this paper. The process of experiencing 
both the joys and challenges of solving a problem independently is critical to the 
development of mathematical thinking. 
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