
Tree Representations of XML and JSON Data Formats with an
Implementation in R

Xiaotian Dai∗ Jürgen Symanzik†

Abstract
Extensible Markup Language (XML) and JavaScript Object Notation (JSON) are widely

used in web applications for data storage. Both, XML and JSON documents, have a hi-
erarchical data structure and can be summarized as a tree structure, called XML tree or
JSON tree. A tree data structure represents a hierarchical data structure with a set of
linked nodes. It is important for data scientists to understand the node structure and the
relationship among the nodes within XML and JSON documents. The tree representation
can provide an intuitive visualization of the data structures. Based on this idea, in this
article, we will discuss the implementation of XML trees and JSON trees in the R software
environment.

Key Words: Extensible Markup Language; JavaScript Object Notation; Hierarchical
Data Structure; Visualization.

1. Introduction

Both, Extensible Markup Language (XML) and JavaScript Object Notation (JSON),
are widely used in web applications for data storage. Many datasets can be seri-
alized and stored in either format. XML and JSON have their own features and
applications. However, there are also similarities in their syntaxes.

An XML document must contain a root node that is the parent node of all
the other nodes. All nodes in an XML document can contain child nodes, text, and
attributes. The structure of an XML document starts at the root node and branches
to the lowest level of the nodes. Although JSON has a different set of notations and
formatting rules, the structure of a JSON document is also based on parent-child
relationships. Hence, both XML and JSON have a hierarchical structure, which
can be interpreted as a tree structure. Tree representations can be useful for the
visualization of hierarchical data structures. There already exist some free JSON
tree or XML tree viewers online, such as jQuery4u.com (2013). Currently, all of
these tree viewers are built in programming languages other than R (R Development
Core Team, 2013), such as JavaScript. The research goal presented in this article is
to create tree plots in R to make a simple tree representation of the structure of a
JSON or XML document.

In this article, we will present two functions developed for the tree represen-
tation: treeplot and print.treeplot. In Sections 2 and 3, we will discuss the
implementations of XML tree and JSON tree, respectively. We will finish with our
conclusion in Section 4. More details and additional examples are provided in Dai
(2013).

∗Utah State University, Department of Mathematics and Statistics, 3900 Old Main
Hill, Logan, UT 84322, USA. Phone: (435)754-4980, Fax: (435)797-1822, E–mail: xiao-

tian.dai@aggiemail.usu.edu
†Utah State University, Department of Mathematics and Statistics, 3900 Old Main Hill, Logan,

UT 84322, USA. Phone: (435)797-0696, Fax: (435)797-1822, E-mail: symanzik@math.usu.edu

JSM 2014 - Section on Statistical Computing

1515

2. Implementation of XML Tree

XML documents are in a format that is both human-readable and machine-readable.
They are created to store and transport data and information. By definition, an
XML document is a string of characters. The characters making up an XML doc-
ument are divided into markup and content, which may be distinguished by the
application of simple syntactic rules (Bray et al., 1997). Generally, strings that
constitute markup begin with the character “<” and end with a “>”. These strings
are called tags. There are start-tags and end-tags. The strings in the tags are the
“nodes”, i.e., they can be referred to as the names of the variables. The end-tags
start with “/” and the strings in the end-tags must match those in the start-tags.
Between the start-tag and the end-tag, there can be one value or other child nodes.
As introduced in Section 1, the structure of the XML object starts at the root node
and branches to the lowest level of the nodes. If a node consists of other identifiers
within a start-tag, the contents within the start-tag are describing the attributes of
this node.

Due to the popular use of XML databases, many programming languages have
built-in functions to aid software developers with the processing of XML documents.
The XML package (Temple Lang, 2012) in R contains built-in functions for handling
data in XML format. It provides the parser to read in XML documents and store
the data in R as a list data type. Then, we can use two newly developed functions
from Dai (2013), treeplot and print.treeplot, to skecth a tree plot of the data
structure.

The tree plot can be organized similarly to the original XML document, in which
keys of the same level will be placed around one vertical line and the child nodes
will be placed on the lower right side of its parent node. A data frame is used
to store the information of this tree structure temporarily. The function treeplot
will take an XML list data type as the input argument and it returns such a data
frame. This data frame contains the location information of the nodes to be placed
in a plot. We just need some lines to connect the nodes and sketch a tree. The
function print.treeplot can finish this job and produce a sketch of the XML tree.
This function is built based on the S3 object-oriented programming models and the
data frame with class “treeplot” can be inherited by the generic function print(),
which means users of the function can call the function print directly instead of
print.treeplot. The user can even hide the print.treeplot function by just calling
treeplot, as shown in the following examples.

<doc><part><name>ABC</name><type>XYZ</type><cost>3.54</cost>

<status>available</status></part></doc>

Figure 1: Simple XML document: “simple.xml”

For example, the string in Figure 1 is a simple XML document used in the
documentation of the XML package, called“simple.xml”. It is not a well-structured
XML document, and we cannot easily distinguish the parent-child relationships
within the nodes. A tree plot would be helpful for understanding the internal
structure of this document. Before sketching the tree plot, the functions xmlParse
and xmlToList from the XML package were to be called to convert the XML
document into an R list, as shown in Figure 2. Then we can sketch the tree plot.

JSM 2014 - Section on Statistical Computing

1516

> library(XML)

> xmlData = xmlParse("<doc><part><name>ABC</name><type>XYZ</type>

+ <cost>3.54</cost><status>available</status></part></doc>")

> simple.xml = xmlToList(xmlData)

Figure 2: R expressions required to parse and convert an XML document into an
R list

> treeplot(simple.xml)

ROOT

|

| - - - - part

|

| - - - - name

|

| - - - - type

|

| - - - - cost

|

| - - - - status

Figure 3: Tree plot for “simple.xml” (shown in Figure 1)

As shown in Figure 3, the node “part” is the child of the root node. The other four
nodes, “name”, “type”, “cost”, and “status”, are parallel and the children of “part”.

This is only a simple implementation of the XML tree. There are also other
special features in XML documents. As introduced earlier in this section, if a node
consists of other variables within the start-tag, the contents within the start-tag are
describing the attributes of this node. Attributes often provide information that is
not a part of the data. The XML object in Figure 4 is an example provided by
w3schools (2013), called “note.xml”. The nodes “day”, “month”, and “year” are the
child nodes of “date”, and “date” is one of the child nodes of the root. We can sketch
the structure of “note.xml” using treeplot function, as shown in Figure 5.

The XML object in Figure 6 contains exactly the same information as“note.xml”.
However, the three nodes under“date”are placed in the first start-tag. They become
the attributes of the root node.

The tree plot in Figure 7 is generated from “note.xml” with attributes. We can
take a closer look at the differences in the tree structures in Figure 5 and 7. The
tree plot shown in Figure 7 uses the string “attrs” to represent attributes. The node
“attrs” is under its parent node, the root node, and it is drawn in parallel to the
other child nodes of the root node.

JSM 2014 - Section on Statistical Computing

1517

<note>

<date>

<day>10</day>

<month>01</month>

<year>2008</year>

</date>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

Figure 4: XML document: “note.xml”

> treeplot(note.xml)

ROOT

|

| - - - - date

| |

| | - - - - day

| |

| | - - - - month

| |

| | - - - - year

|

| - - - - to

|

| - - - - from

|

| - - - - heading

|

| - - - - body

Figure 5: Tree plot for “note.xml” (shown in Figure 4)

3. Implementation of JSON Tree

As another example of a hierarchical data format, the structure of a JSON document
can also be summarized as a tree plot using the treeplot and print.treeplot
functions.

Similar to XML, JSON is also a human-readable and machine-readable format.
A JSON document is a collection of variable and value pairs, and each pair can be
referred to as a node. A colon separates the variables from the values, and a comma
separates the nodes. The variables are strings and the types of value presented
in JSON can be strings, numbers, Booleans, object, arrays, or even NULL. The
variables are wrapped in quote marks. The data wrapped in curly braces or square
brackets after a colon represent lower level nodes included in a higher level node.
We can often read a JSON document if it is well organized.

The JSON example in Figure 8 is called “menu.json” and has been provided by
JSON (2013). The node “menu” is the parent node of “id”, “value”, and “popup”.
The node “popup” has one child, “menuitem”, and “menuitem” has two other child

JSM 2014 - Section on Statistical Computing

1518

<note day="10" month="01" year="2008">

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

Figure 6: XML document: “note.xml” with attributes, called “note.attrs.xml”

> treeplot(note.attrs.xml)

ROOT

|

| - - - - to

|

| - - - - from

|

| - - - - heading

|

| - - - - body

|

| - - - - attrs

|

| - - - - day

|

| - - - - month

|

| - - - - year

Figure 7: Tree plot for “note.xml” with attributes (shown in Figure 6)

nodes, “value” and “onclick”. This is how this JSON object starts at the root node
and branches to the lowest level of the nodes.

Generally, JSON is a natural presentation of data, and it is easy for computers
to generate and parse (Crockford, 2006). There exist open-source JSON libraries
in R, such as rjson (Couture-Beil, 2012) and RJSONIO (Temple Lang, 2011).
The functions included in the RJSONIO package are built on the C programming
language, which can significantly speed up the processing of the data. More im-
portantly, the fromJSON function in RJSONIO can directly convert a JSON
document into an R list. Hence, we can easily create a tree representation of the
JSON document introduced in Figure 8 (shown in Figure 9) using the treeplot
function.

The treeplot function works in the same way for JSON as for XML. When
working with JSON documents, the function will take in a JSON list data type as the
input argument and it returns a data frame. This data frame contains the location
information of the nodes to be placed in a plot. The function print.treeplot will
connect the nodes and produce a sketch of the JSON tree. The tree plot in Figure 9
shows the structure of the JSON object, which is the same as what we read from
the data.

JSM 2014 - Section on Statistical Computing

1519

{"menu": {

"id": "file",

"value": "File",

"popup": {

"menuitem": [

{"value": "New", "onclick": "CreateNewDoc()"},

{"value": "Open", "onclick": "OpenDoc()"},

{"value": "Close", "onclick": "CloseDoc()"}

]

}

}}

Figure 8: JSON document: “menu.json”

> treeplot(menu.json)

ROOT

|

| - - - - menu

|

| - - - - id

|

| - - - - value

|

| - - - - popup

|

| - - - - menuitem

|

| - - - - value

|

| - - - - onclick

Figure 9: Tree plot for “menu.json” (shown in Figure 8)

<XML>

<menu id="file" value="File">

<popup>

<menuitem value="New" onclick="CreateNewDoc()" />

<menuitem value="Open" onclick="OpenDoc()" />

<menuitem value="Close" onclick="CloseDoc()" />

</popup>

</menu>

</XML>

Figure 10: XML document: “menu.xml”

JSM 2014 - Section on Statistical Computing

1520

> treeplot(menu.xml)

ROOT

|

| - - - - menu

|

| - - - - popup

| |

| | - - - - menuitem

| |

| | - - - - value

| |

| | - - - - onclick

|

| - - - - attrs

|

| - - - - id

|

| - - - - value

Figure 11: Tree plot for “menu.xml” (shown in Figure 10)

Alternatively, the same information as in Figure 8 can be expressed in an XML
document, shown in Figure 10. The document contains the same nodes and the
same parent-node relationships as the JSON document in Figure 8, except for “id”
and “value”. “id” and “value” are the child nodes of “menu” in “menu.json”, but they
are attributes of “menu” in “menu.xml”. Other than this difference in the structures,
“menu.json” and “menu.xml” contain exactly the same data and information.

If we apply a tree representation to this XML document, we will end up with a
tree plot similar to the one in Figure 9, except for the attribute nodes, as shown in
Figure 11.

4. Conclusion

The functions treeplot and print.treeplot introduced in this article work in the
same way for both tree-structured data formats, XML and JSON. The functions
use a recursive algorithm to detect each branch of the tree, from the root node
to the child nodes at the lowest level. Hence, if documents in these two formats
contain the same nodes and parent-child relationships, the functions treeplot and
print.treeplot will return the same tree plot. Although XML and JSON are using
different notations, they can be used to express exactly the same data and informa-
tion. Actually, a recursive algorithm can be applied to translate between these two
types of data formats (Wang, 2011).

There have only been a few simple examples presented in this article. Neverthe-
less, the functions treeplot and print.treeplot have been developed for a general
purpose. These functions can be used for any valid XML and JSON document. The
same approach could also be applied to other tree-structured data formats, or, say,
data formats with a hierarchical database model.

JSM 2014 - Section on Statistical Computing

1521

References

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., 1997. Exten-
sible Markup Language (XML). World Wide Web Journal 2 (4), 27–66.

Couture-Beil, A., 2012. rjson: JSON for R. R package version 0.2.8.

Crockford, D., 2006. JSON: The Fat-free Alternative to XML. URL: http://www.
json.org/fatfree.html.

Dai, X., 2013. Processing and Manipulation of Data Collected from the Educational
On-line Game Refraction. Master’s thesis, Utah State University, Department of
Mathematics & Statistics, Logan, Utah.

jQuery4u.com, 2013. Online JSON Tree Viewer Tool.
URL http://www.jquery4u.com/demos/online-json-tree-viewer/

JSON, 2013. JSON Example.
URL http://json.org/example.html

R Development Core Team, 2013. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3–
900051–07–0 (http://www.R-project.org/).

Temple Lang, D., 2011. RJSONIO: Serialize R Objects to JSON, JavaScript Object
Notation. R package version 0.95-0.

Temple Lang, D., 2012. XML: Tools for Parsing and Generating XML within R and
S-plus. R package version 3.9-4.

w3schools, 2013. XML Attributes.
URL http://www.w3schools.com/xml/xml_attributes.asp

Wang, G., 2011. Improving Data Transmission in Web Applications via the Trans-
lation between XML and JSON. In: 2011 Third International Conference on
Communications and Mobile Computing (CMC). IEEE, pp. 182–185.

JSM 2014 - Section on Statistical Computing

1522

http://www.json.org/fatfree.html
http://www.json.org/fatfree.html
http://www.jquery4u.com/demos/online-json-tree-viewer/
http://json.org/example.html
http://www.R-project.org/
http://www.w3schools.com/xml/xml_attributes.asp

	Introduction
	Implementation of XML Tree
	Implementation of JSON Tree
	Conclusion

