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Abstract
Bayesian image analysis provides a solution for improving image quality relative to deterministic

methods, such as linear filtering, by balancing a priori expectations of image characteristics with a
model for the noise process. A reformulation of the conventional Bayesian image analysis paradigm
in Fourier space is given, i.e., such that the prior and likelihood are defined in terms of probabil-
ity densities across spatial frequencies. Spatially correlated priors, that are relatively difficult to
model and compute in conventional image space, can often be more efficiently modeled as a set of
independent processes across Fourier space. The originally inter-correlated and high-dimensional
problem in image space is thereby broken down into a series of independent one-dimensional prob-
lems; using ‘parameter functions’ to capture variation in the model’s prior parameters over Fourier
space. The Fourier space independence definition leads to easy model specification and relatively
fast and direct computation that is on the order of that for deterministic filtering methods. Specific
examples of applications are given and contrasted with Markov random field based model solutions.
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1. Introduction

Bayesian image analysis models provide a solution for improving image quality in image
reconstruction/enhancement by incorporating a priori expectations of image characteris-
tics along with a model for image noise. However, conventional Bayesian image analysis
models, defined in the image space, can be limited in practice because they can be difficult
to specify and implement (requiring problem-specific implementation) and slow to com-
pute. Furthermore, commonly used Markov random field model priors in Bayesian image
analysis (as conventionally used for the type of problem discussed here) are not invariant
to changes in resolution and not naturally isotropic (directionally invariant).

Our approach to overcoming the difficulties of conventional Bayesian image analysis
is to reformulate Bayesian Image analysis in Fourier Space (BIFS). Spatially correlated
prior distributions (priors) that are difficult to model and compute in conventional image
space can be successfully modeled as independent across locations in Fourier space. The
original high-dimensional problem in image space is thereby broken down into a series of
one-dimensional problems, leading to easier specification and implementation, and faster
computation.

2. BIFS modeling framework

Consider x to be a true or idealized image (e.g., noise-free or with enhanced features) that
we wish to recover from a sub-optimal image dataset y. (We use the common shorthand
notation of not explicitly distinguishing the random variables and the corresponding image
realizations (Besag, 1989), i.e., we use lower case x and y throughout.) The Bayesian
image analysis paradigm incorporates a priori desired spatial characteristics via a prior
distribution for the true image x and the noise degradation process via the likelihood.

Instead of the conventional Bayesian image analysis approach of generating prior and
likelihood models for the true image x based on image data y directly, we formulate them
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via their discrete Fourier transforms representations, Fx and Fy, respectively. To indicate
that we are working in Fourier space, we denote distributions with φ rather than the usual
π notation. The prior distribution in Fourier space is denoted as φpr(Fx); the likelihood as
φlk(Fy|Fx); and the posterior is φpst(Fx|Fy) ∝ φpr(Fx)φlk(Fy|Fx).

The key component of the BIFS formulation that leads to the modeling and computa-
tional gains, is that we define both the prior and likelihood to consist of a set of independent
distributions across Fourier space locations. Spatial correlation in image space is induced
by allowing the parameters of the distributions to change over Fourier space. This inde-
pendence definition can be contrasted with conventional Bayesian image analysis using
Markov random field (MRF) priors, where Markovian neighborhood structures are used to
define correlation structures across pixels via joint or conditional distribution specifications
(Besag, 1974, 1989; Geman and Geman, 1984).

When defining a spatially correlated prior in image space via a set of independent pro-
cesses across Fourier space, the full conditional posterior at a Fourier space location
k = (kx, ky), or for volumetric data (kx, ky, kz), now only depends on the prior at k, i.e.,
φpst(Fxk|Fy) ∝ φpr(Fxk)φlk(Fyk|Fxk), where we use Fxk as shorthand for (Fx)k. The
joint posterior density for the image is then φ(Fx|Fy) ∝

∏
k∈K φpr(Fxk)φlk(Fyk|Fxk)

where K is the set of all Fourier space point locations. It is precisely this independence
property of the BIFS formulation and the corresponding reduction of the posterior distri-
bution to a product of independent distributions that provides for the simple definition and
computational benefits of the BIFS formulation. (Note that we index Fourier space along
direction v ∈ {x, y, z} by {−Nv/2, . . . , 0, 1, . . . , Nv/2 − 1}, rather than the common al-
ternative of, 0, . . . , Nv − 1, as it leads to a more convenient formulation for BIFS prior
models that are naturally centered around the zero frequency position of Fourier space.)

In order to account for the fact that medical images are generally real-valued, the
Fourier transform must be conjugate (Hermitian) symmetric on the plane (or volume if
3D). A real image output is ensured by considering a realization of the posterior distribu-
tion to be determined by the half-plane (half volume), the half being conjugate symmetric
to the first (see (Liang and Lauterbur, 2000), pp. 31 and 322). Therefore, for real-valued
images, the BIFS posterior is only evaluated over half of Fourier space and the remainder
is obtained by conjugate reflection.

Where does the independence property over Fourier space come from? That the inde-
pendence assumption is a reasonable one to make can be heuristically gleaned from the fact
that spatially correlated Gaussian processes in image space, lead to exactly uncorrelated
Gaussian variables in Fourier space (where the Gaussian variables are mutually indepen-
dent but with heterogeneous variances) (Zeger, 1985). Further, the Fourier transform of any
spatially correlated stationary process in image space is asymptotically independent Gaus-
sian in Fourier space (Peligrad and Utev, 2006), allowing a wide range of spatial correlation
structures to be modeled by BIFS priors.

2.1 The BIFS prior and its parameter function

The process of defining the BIFS prior distribution capitalizes on the independence def-
inition of the prior over Fourier space. First the distributional form for the prior at each
Fourier space location is specified, φpr(Fxk). Then the parameters of each of the priors
are specified. In order to specify the parameter values across all Fourier space location, we
define a parameter function over Fourier space that specifies the value of each parameter
at each Fourier space location. Specifically, for some parameter αk of φpr(Fxk) we define
the parameter function fα such that the αk = fα(k). For many problems it is desirable to
define a spatially isotropic prior, which can be induced by defining αk = fα(|k|), where
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|k| =
√
k2x + k2y in 2D or

√
k2x + k2y + k2z in 3D, i.e., such that f only depends on the

distance from the origin.
It is convenient to define separate (and independent) priors and associated parameter

functions for each of the modulus and argument of the complex value at each Fourier space
location. Working with the modulus and argument provides a more natural framework than
working with the real and imaginary components, because contextual information (e.g.,
smoothness, edges, or features of interest) most strongly relates to the magnitude of the
process involved rather than the phase information.

2.2 BIFS likelihood

Because we model based on independence across Fourier space points, a range of different
noise structures (defined in Fourier space) can readily be incorporated into the likelihood
φlk(Fyk|Fxk). For example, the combination of Rayleigh noise/Rician likelihood Rice
(1945) for the modulus with uniform argument on the circle corresponds to the likelihood
model of Gaussian noise in image space.

2.3 Posterior estimation

It is at the posterior estimation stage that the computational gains of the independent BIFS
formulation are ultimately realized. Posterior estimation in conventional Bayesian image
analysis tends to focus on maximum a posteriori (MAP) estimation (minimizing a 0-1 loss
function), because it is the most computationally tractable. In the BIFS formulation the
MAP estimate can be efficiently obtained by maximizing the posterior conditional at each
Fourier space location, i.e, xMAP = F−1(FxMAP) whereFxMAP = {Fxk,MAP, k = 1, . . . ,K}
and Fxk,MAP = maxFxk {φpst(Fxk|Fyk)}. This contrasts with conventional Bayesian im-
age analysis, where even the most computationally convenient MAP estimate requires it-
erative computation methods such as conjugate gradients or expectation-maximization to
obtain it.

2.4 Implementation

Implementation of BIFS modeling requires the following steps: 1) Fast Fourier transform
(FFT) the original data from image space into Fourier space; 2) Define the prior in Fourier
space; 3) Define the likelihood in Fourier space; 4) Combine the prior and likelihood via
Bayes’ Theorem to generate the Fourier space posterior; 5) Generate posterior estimates/
summaries/simulations (in Fourier space); 6) Inverse FFT posterior estimates/summaries/
simulations back to image space.

2.5 BIFS properties

We here discuss two important properties of the BIFS formulation that lead to meaningful
advantages over MRF-based models beyond those already discussed.

a) Invariance Property: Defining the prior in Fourier space leads to a natural invari-
ance property of the prior form with respect to changes in image resolution. When increas-
ing resolution in image space the central region of the Fourier transform at high resolution
corresponds to that of the complete Fourier transform at lower resolution (the lower resolu-
tion image is a band-limited version of the image at higher resolution). Therefore, only the
extension of the prior over the higher frequencies is required in the higher resolution case
and the spatial properties for the lower frequencies remain unchanged. The BIFS invariance
property contrasts with MRF models, for which in order to retain the spatial properties of
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the prior at lower frequencies, an increase in resolution would require careful manipulation
of neighborhood structure and prior parameters to match spatial auto-covariance (Rue and
Tjelmeland, 2001).

b) Isotropy Property: In order to define an isotropic BIFS prior all that is required
is for the prior to depend solely on the distance from the center of Fourier space, i.e.,
φpr(Fxk) = g(|k|). The relative ease with which isotropy is defined can be contrasted with
MRF-based priors where local neighborhood characteristics need to be carefully manipu-
lated by increasing neighborhood size and adjusting parameter values to induce approxi-
mate spatial isotropy (Rue and Tjelmeland, 2001).

Note that isotropy is not a requirement of the BIFS prior formulation. Anisotropy can
be induced by allowing the prior function to behave differently in different directions from
the origin through appropriately defining the parameter functions, i.e., such that αk cannot
be fully defined as f(|k|).

3. Examples

In the two examples below we develop BIFS processing for MAP estimation for the fol-
lowing simple BIFS model structure at each Fourier space location:

• Gaussian (normal) prior for the modulus: Mod(Fxk) ∼ N(µk, τ
2
k )

• Uniform prior on the circle for the argument: Arg(Fxk) ∼ U(0, 2π)

• Gaussian noise model for the modulus Mod(εk) ∼ N(0, σ2)

• Uniform noise model for the argument Arg(εk) ∼ U(0, 2π)

where εk is the complex noise at Fourier space location k. (Note this model is not Gaussian
noise in image space, for which we use a Rayleigh noise model/Rician likelihood, for the
modulus.)

The global posterior mode can then be obtained by generating the posterior mode at
each Fourier space location based on conjugate Bayes for the Gaussian/normal distribution
Gelman et al. (2003) with xk,MAP = (µk

τ2k
+ yk

σ2 )/(
1
τ2k

+ 1
σ2 ). The remaining component is

to define the parameter functions for the BIFS priors, which we choose separately for each
example.

3.1 Example 1 - breast MRI reconstructions

Figure 1 shows the results of applying a BIFS prior for the reconstruction of a 2D slice of
contrast-enhanced breast MRI data. The left image shows the original breast MRI image
slice and the second shows the same image with added Gaussian noise (approximating the
effect of background enhancement commonly seen in contrast enhanced breast MRI as a
confounding factor to detecting breast cancer). The third image shows the reconstruction
from the noisy data based on a prior φpr(Fxk) that has an inverse square root (inv-sqrt)
parameter function for the modulus: fµ(|k|) = a/

√
|k| with the standard deviation of the

modulus modeled as proportional to the mean: fτ (|k|) = cfµ(|k|). The right image shows a
1st-order intrinsic Gaussian MRF (IG-MRF) reconstruction (i.e., pairwise-difference) (Be-
sag, 1989). Both priors reduce the noise and enhance the image, though the BIFS prior does
a better job of preserving features (we tried a range of parameter values for the IG-MRF and
the result shown was visually the best). The reconstruction took less than 0.3s to compute
(including forward and back Fourier transforms) using Matlab R2012b on a Macbook Pro
with a 2.3 GHz i5 processor (c.f. conjugate gradients optimization for a pairwise intrinsic
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Figure 1: Comparison of BIFS inverse square root prior and 1st-order intrinsic Gaussian
MRF prior for noise reduction of breast MRI data.

Gaussian MRF prior, which needed 18s for 100 iterations – there was no noticeable change
with additional iterations).

3.2 Example 2 - lesion enhancement

In this example we used simulations to drive the parameter functions. That is, the pa-
rameter functions were generated from the empirical estimates of the mean and standard
deviation at each Fourier space location over the simulated datasets. We simulated 1000
256×256 images representing lesions/tumor patterns. The number of lesions was modeled
as a Poisson process; the lesions were simulated as randomly positioned truncated Gaussian
probability density functions (resembling bumps) with random intensity, standard deviation
(sd) on each axis, and correlation, distributed uniformly between -1 and 0, so that the pro-
cess was not isotropic. Figure 2 shows a single new realization of the process on the left,
with added noise in the center, and the BIFS MAP reconstruction on the right. The BIFS
reconstruction clearly enhances the simulated lesions, especially note the upper left one
which is all but lost in the Truth + Noise image. We forego showing a 1st-order intrinsic
Gaussian MRF prior reconstruction because it would be a straw man comparison given the
lack of capacity to incorporate the diagonal directional effects; incorporating directional
preferences could be done for the Gaussian MRF, but would require careful engineering of
parameters in larger neighborhood structures (Rue and Tjelmeland, 2001).

4. Conclusion

The BIFS modeling framework provides a new family of Bayesian image analysis solutions
with the capacity to a) enhance images beyond conventional standards; b) allow straight-
forward specification and implementation across a wide range of imaging research and
applications; and c) enable fast and high-throughput processing. These benefits along with
the inherent properties of resolution invariance and isotropy, make BIFS a powerful tool
for the image analysis practitioner.
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Figure 2: Simulation study and reconstruction of lesion/tumor patterns.
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