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Abstract
Residual plots are routinely used in regression analysis to evaluate underlying model assumptions and identify po-

tential outliers. Similar graphical tools are considerably more difficult to construct under the framework of structural
equation modeling (SEM) as the use of latent variables complicates the construction of such residual-based diagnos-
tics. The purpose of this paper is to introduce a method to construct residual plots under the SEM framework. First we
present a class of residual estimators that are weighted linear functions of the observed variables. We then propose a
method to construct residual plots under the SEM framework analogous to “residuals versus fitted values plots” in re-
gression analysis. The utility of these plots to identify potential outliers is demonstrated by implementing our method
using Mardia’s exam data. This example illustrates that the choice of residual estimator affects the residual plots and
provides insight into which residual estimator is the “best.” Compared to previous diagnostics to identify outliers in
SEM, we develop a graphical diagnostic that not only provides a more consistent method of identifying outliers but
also identifies why an observation is outlying. Ultimately, this work provides the foundation for the use of residual
plots and future development of residual analysis in SEM.
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1. Introduction

Structural equation modeling (SEM) is a popular statistical methodology frequently used in the social and
behavioral sciences that is becoming increasingly popular in the biological sciences and business. This pop-
ularity is due to the flexibility of SEM framework which allows for the modeling of complex systems of
equations, the use of latent (unobserved) variables, and variables measured with error. While several meth-
ods exist to obtain parameter estimates, maximum likelihood estimation is most commonly used, making
the validity of SEM analyses sensitive to the presence outliers. Consequently, the identification of potential
outliers via model diagnosis is crucial in SEM. In many statistical methodologies, such as regression analy-
sis, potential outliers are identified using graphical tools (e.g. scatterplots, QQ plots, and residual plots) or
numerical diagnostics (e.g. Cook’s distance, leverage, and standardized residuals) both of which frequently
use residuals. Due to the complexity of structural equation models and the use of latent variables, few analo-
gous tools and diagnostics have been developed for SEM as complications arise when calculating residuals.
(Bollen and Arminger, 1991). The purpose of this paper is to introduce a method to construct residual plots
under the SEM framework to aid in the identification of outliers. The plots we propose extend the standard
“residuals versus fitted values” residual plots frequently used in regression analysis to the SEM framework.
These plots allow researchers to visually assess the presence of outliers and identify in what portion(s) of
the model observations are outlying.

As explained by Yuan and Hayashi (2010), the use of model diagnostics is crucial in any statistical anal-
ysis but is even more so in SEM due to the increased complexity of these models. While model diagnostics
for SEM are not as extensively developed as in regression analysis, there have been several developments.
The most basic of these diagnostics are distance measures including Bollen’s A (Bollen, 1989; Mullen,
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Milne, and Doney, 1995) which is similar to the hat matrix in regression analysis and Mahalanobis distance
(Campbell, 1980; Mullen et al, 1995; Yuan, Fung, and Reise, 2004). Several other diagnostics have been
developed to assess local influence on the likelihood function (Coffman and Millsap, 2006; Ferrando, 2007,
2010; Lee and Lu, 2003; Rensvold and Cheung, 1999) and the observed covariance matrix (Mullen et al,
1995; Poon and Wong, 2004). A similar class of diagnostics adapt Cook’s (1986) perturbation scheme to
identify observations that are most influential on global fit indices such as the χ2 statistic and the goodness
of fit statistic (Cadigan, 1995; Lee, Lu, and Song, 2006; Lee and Tang, 2004; Lee and Wang, 1996; Poon,
Wang, and Lee, 1999).

The use of residuals in model diagnosis was originally introduced by Bollen and Armminger (1991) who
developed a method to calculate residuals. The utility of these residuals to identify outliers was demonstrated
through the use of stem-and-leaf plots and QQ plots. Though the development and use of these residuals
has been limited, their theoretical properties have been further investigated by Raykov and Penev (2001) and
Hildreth (2013) and several numerical and graphical diagnostics have been introduced. Sánchez, Houseman,
and Ryan (2009) developed several test statistics by extending the Kolmogorov-Smirnov and Cramér-von
Mises tests to the SEM framework to assess the normality and linearity assumptions. Yuan and Hayashi
(2010) introduced two scatterplots that use the residuals developed by Bollen and Arminger (1991) to aid
in the identification of outliers which are available in the R package semdiag (Yuan and Zhang, 2012).
The first plot displays the Mahalanobis distance of the residuals against the Mahalanobis distance of the
estimated values of the latent variables and the second is a QQ plot of the Mahalanobis distance against
quantiles of the χ2 distribution.

The residual plots we propose build on this previous work but differ markedly in several crucial ways.
First, the residual plots we propose are able to identify outliers at the equation level; that is, the plots
are able to identify in what equation(s) of the model an observation may be outlying. This differs from
many previous diagnostics which identify outliers at the model level such that the diagnostics identify an
observation as potentially outlying but cannot determine in what regard the observation is outlying. While
this may lead to the construction of a relatively large number of plots, it provides additional information that
could not otherwise be obtained. Second, we extend tools that are already familiar to SEM practitioners to
the SEM framework. The plots we propose can be interpreted analogously to residual plots in regression
analysis which allows SEM practitioners to use the skills they already possess and extend them to the SEM
framework.

The identification of outliers is a crucial part of model diagnosis, especially in SEM due to the com-
plexity of the models. In the next section, we introduce the standard SEM notation and present the residuals
introduced by Bollen and Arminger (1991). We then describe our method to construct residual plots and
assess the utility of these plots by analyzing a data set frequently studied in the literature. From this analysis
we are able to show the viability of these plots and recommend future research in this area in our conclusion
and discussion.

2. Notation for Structural Equation Modeling and Its Associated Residual Estimators and Residuals

We use the notation from Bollen (1989) to introduce the standard structural equation model and the residual
estimators of Bollen and Arminger (1991). Assume that there are i = 1, . . . , N independent individuals such
that the equations representing a structural equation model are at the individual level. To avoid confusion
arising from multiple subscripts, we omit the subscript i from our notation as done by Bollen (1989). A
structural equation model consists of two systems of equations: the latent variable model, representing
the relationships among the latent variables, and the measurement model, representing the relationships
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between the latent and observed variables. The latent variable model describes the relationships among the
m endogenous and n exogenous latent variables denoted as ηm×1 and ξn×1, respectively. The endogenous
latent variables are described using p observed variables xp×1, while the exogenous latent variables are
represented through q observed variables yq×1 (for notational ease we indicate the dimension of a vector or
matrix the first time it is defined).

Without loss of generality, we assume that all variables (latent and observed) are deviated from their
respective means leading to the following model:

η = Bη + Γξ + ζ (1)

y = Λyη + ε (2)

x = Λxξ + δ. (3)

In equation (1), ζm×1 represents the latent errors in equations associated with η, the matrix Bm×m
contains the coefficients relating the endogenous latent variables to one another such that (I −B) is non-
singular and diag(B) = 0, and Γm×n contains the coefficients linking the exogenous latent variables ξ to
the endogenous latent variables η. In equation (2), εp×1 contains the measurement errors of y and Λy, p×m
represents the matrix of coefficients relating the endogenous latent variables η to its items y. The measure-
ment errors of x are denoted by δq×1 and the matrix Λx, q×n in equation (3) consists of coefficients relating
the exogenous latent variables ξ to its items x. Regarding the error terms δ, ε, and ζ we assume:

A1. E(δ) = 0, E(ε) = 0, and E(ζ) = 0.

A2. Var(δ) = cδ, Var(ε) = cε, and Var(ζ) = cζ where cδ, cε and cζ are vectors of constants such that
each error term is homoskedastic.

A3. δ, ε, and ζ are uncorrelated across individuals within an equation.

A4. Cov(ξ, ζ) = 0, implying the latent errors in equations are uncorrelated with the exogenous latent
variables.

A5. Cov(η, δ) = 0, Cov(η, ε) = 0, Cov(ξ, δ) = 0, Cov(ξ, ε) = 0, and Cov(δ, ε) = 0, such that the
measurement errors are uncorrelated with both the exogenous and the endogenous latent variables and
each other.

Associated with the latent variable model in equation (1) are covariance matrices of the latent errors in
equation and the exogenous latent variables, Ψm×m = E(ζζ>) and Φn×n = E(ξξ>), respectively. The
covariance matrix of the endogenous latent variables is defined in terms of model parameters such that

Σηη,m×m = E(ηη>) = (I −B)−1(ΓΦΓ> + Ψ)(I −B)−>.

The measurement model in equations (2) and (3) relates the observed variables y and x to the endogenous
and exogenous latent variables η and ξ, respectively. Associated with this model are covariance matrices
Θδ, q×q = E(δδ>) and Θε, p×p = E(εε>). The covariance matrices of y and x are expressed as functions of
the other model parameters where Σyy p×p = E(yy>) = ΛyΣηηΛ>y and Σxx q×q = E(xx>) = ΛxΦΛ>x .

To simplify the notation of the measurement model and the resulting residual estimators, we follow
the approach of Bollen and Arminger (1991) and let z(p+q)×1 = [y> x>]>, L(m+n)×1 = [η> ξ>]>,
ν(p+q)×1 = [ε> δ>]>, and Λ(p+q)×(m+n) = diag(Λy,Λx). The measurement model is rewritten as:

z = ΛL+ ν. (4)

3
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Associated with equation (4) are the covariance matrix of measurement errors Σνν, (p+q)×(p+q) = diag(Θε,Θδ),
the covariance matrix of the latent variables

ΣLL, (m+n)×(m+n) =
[

Σηη,m×m (I −B)−1ΓΦ
ΦΓ>(I −B)−> Φ

]
,

and the covariance matrix of the observed variables

Σzz (p+q)×(p+q) = E(zz>) =
[

Σyy Λ>x ΦΓ>(I −B)−>Λ>y
Λy(I −B)−1ΓΦΛx Σxx

]
.

Rearranging equation (4) yields the measurement errors:

ν(θ) = z −ΛL (5)

where θ is a vector of the unique elements ofB, Γ, Λ, Ψ, ΣLL, and Σνν whose dimension depends on the
model. Similarly, by rearranging equation (1) the latent errors are:

ζ(θ) = (I −B)−1η − Γξ = [(I −B)−1 − Γ]L = ML (6)

whereMm×(m+n) = [(I−B)−1 −Γ] and θ is defined as above. In SEM, unlike other common statistical
methods such as regression analysis, there is a set of (p+q+m) residuals {ν1, ν2, . . . , ν(p+q), ζ1, ζ2, . . . , ζm}
associated with each individual.

The values of L in equations (5) and (6) are, by definition, unknown and must be estimated. These
estimates, L̂, are known as factor scores and frequently are constructed as linearly weighted functions of
the observed variables in z, such that L̂ = W (m+n)×(p+q) where W is referred to as the weight matrix
(see DiStefano, Zhu, and Mindrila (2009) for a more thorough discussion of computing factor scores).
Substituting the factor scores L̂ for L in equation (5) we define the measurement residuals, denoted as
ν̂(θ):

ν̂(θ) = z −ΛL̂ = zΛWz = (I −ΛW )z. (7)

Similarly, the latent residuals ζ̂(θ) are obtained by substituting the factor scores L̂ for L in equation (6):

ζ̂(θ) = ML̂ = MWz. (8)

Several choices for W exist and we consider the three most commonly used weight matrices. The ap-
proaches used to derive the weight matrices minimize a specific loss function which depends on the method
used. We briefly explain these below (further details are available in the original works and McDonald
and Burr (1967)). The regression method (Thurstone, 1935) utilizes the principles of ordinary least squares
to derive the weight matrix W r. Under this approach, W = W r is the solution that minimizes the loss
function Tr[E{(L− L̂)(L− L̂)>] where Tr denotes the trace of a matrix where:

W r = ΣLLΛ>Σ−1
zz . (9)

Estimates calculated using W r are referred to as the regression-method residuals. Under Bartlett’s method
(Bartlett, 1937), based on the principles of weighted least squares, the loss function is Tr[E{[Σ−1/2

νν Λ(L −
L̂)][Σ−1/2

νν Λ(L− L̂)]>}] yielding:

W b = (Λ>Σ−1
νν Λ)−1Λ>Σ−1

νν . (10)
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Residual estimates calculated usingW b are the Bartlett’s method residuals. The method by Anderson-Rubin
(Anderson and Rubin, 1956) is an extension of Bartlett’s method with the constraint of an orthogonal factor
model. That is, W = W ar minimizes the loss function Tr[E{[Σ−1/2

νν Λ(L − L̂)][Σ−1/2
νν Λ(L − L̂)]>}]

subject to the constraint E[L̂L̂>] = I . The resulting weight matrix is:

W ar = A−1Λ>Σ−1
νν , (11)

whereA2 = (Λ>Σ−1
νν ΣzzΣ−1

νν Λ). The Anderson-Rubin method residuals are calculated usingW ar.
The work by Bollen and Arminger (1991) introduced the regression method and Bartlett’s method resid-

uals. Subsequent work has primarily focused on the Bartlett’s method residuals (e.g. Raykov and Penev,
2001; Sánchez et al, 2009; and Yuan and Hayashi, 2010) as the resulting residuals are orthogonal to the true
factor scores (Yuan and Hayashi, 2010) and are unbiased estimates of the true residuals (Hildreth, 2013).
To the best of our knowledge, the Anderson-Rubin residuals have not been used or evaluated in previous
studies. This likely is because in SEM the condition E[L̂L̂>] = I is not practical as the latent variables are
correlated. However, for comparison purposes and to provide more information regarding the effects of the
choice of W , we chose to include this weight matrix in our study. Though orthogonality and unbiasedness
are desirable properties, there may be situations where these properties are of secondary importance to other
properties such as variability. Consequently, we evaluate all three methods to better understand similarities
and differences among the estimators.

In practice the parameters in the vector θ are unknown and must be estimated. Though several methods
exist, the most frequently used method is maximum likelihood estimation under the assumption of normally
distributed error terms and latent variables (for more details see Bollen (1989)). We assume that maximum
likelihood estimation is used to obtain θ̂ which are used in place of θ in equations (8) and (7) resulting in
the estimated measurement residuals,

ν̂(θ̂) = (I − Λ̂Ŵ )z

and the estimated latent residuals
ζ̂(θ̂) = M̂Ŵz.

These estimated residuals are the values that are used to construct our proposed residual plots. We chose to
use the MLEs in the construction of our plots because these estimates are most frequently used in practice.
While maximum likelihood estimation is sensitive to outliers as noted by Yuan and Hayashi (2010), we
follow the process that practitioners commonly use. Because the focus of this paper is to present a method
to construct residual plots, we do not further explore the effects of using maximum likelihood estimation on
the plots, though it is an area of future research.

3. Construction of Residual Plots in Structural Equation Modeling

In regression analysis, there are several (scatter)plots that utilize the residuals to detect potential outliers
and assumption violations. Kutner, Nachtsheim, Neter, and Li (2004) identify seven such plots: (1) plot of
residuals against a predictor variable; (2) plot of absolute or squared residuals against a predictor variable;
(3) plot of residuals against fitted or predicted values; (4) plot of residuals against time or another relevant
sequence; (5) plot(s) of residuals against omitted predictor variables; (6) boxplots of residuals; and (7)
normal probability plots of residuals. We propose extending the methodology of plotting the residuals
against the fitted values to the SEM framework.

Consider the standard linear regression model y = X>β + ε where y is an n × 1 vector of observed
response variables,X is a p×nmatrix of explanatory variables, β is a p×1 vector of unknown parameters,
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and ε is an n×1 vector of random errors term such that E(ε) = 0 and Var(ε) = σ2. Frequently the predicted
values, ŷ = X>β̂ are plotted on the x-axis and the residuals, e = y − ŷ = y −X>β̂ on the y-axis. We
propose extending this to the SEM framework as it is the most straightforward extension of this plot.

Under the SEM framework, the estimated measurement and latent residuals are:

ν̂(θ̂) = (I − Λ̂Ŵ )z (12)

and
ζ̂(θ̂) = M̂Ŵz (13)

where θ̂ = θ̂MLE estimated under the assumption of normality.
Next, it is necessary to define the predicted values of z(θ) = ΛL + ν and η(θ) = Bη + Γξ + ζ,

denoted as ẑ(θ̂) and η̂(θ̂), respectively. As before we replace L with the factor scores L̂ = Wz and θ with
θ̂ and define the predicted values as:

ẑ(θ̂) = Λ̂Ŵz (14)

and
η̂(θ̂) = [B̂ Γ̂]Ŵz. (15)

In regression analysis, the residuals e are plotted against the fitted values ŷ because this plot displays
random scatter if the appropriate model assumptions are met (Draper and Smith, 1981). Following this
framework, we propose plotting the predicted values in equations (14) and (15) against the corresponding
residuals in equations (12) and (13), respectively. However, under suitable regularity conditions (c.f. Mis-
cellanea 10.6.2 of Casella and Berger (2003)), the estimated residuals and the predicted values are correlated
in the SEM framework. (details are provided in the appendix). This poses a problem in the interpretation of
the residual plots as the proposed residual plots would generally exhibit a linear trend even if all assumptions
are met and no outliers are present. Consequently, the proposed plots cannot be interpreted analogously to
residual plots in regression analysis. We propose transforming the data in such a way to make the esti-
mated residuals and fitted values uncorrelated with one another using the inverse Cholesky transformation
or decomposition (Greene, 2008).

The Cholesky decomposition is frequently used in financial and econometric applications to efficiently
generate correlated random variables (e.g. Chan and Wong, 2013; Miranda and Fackler, 2002). Under the
Cholesky decomposition, a positive definite matrix Σ is written as a product of a lower triangular matrix L
and its transpose U , an upper triangular matrix, such that Σ = LU where L is the Cholesky factor of Σ.
For example, consider two independent variables X and Y . Using the matrix L, it is possible to create two
new random variables W and Z such that Cov[W,Z] = Σ. That is, each data point (x,y) is mapped to a
new data point (w,z) by multiplying (x,y) by L. Conversely suppose, as is done in this application, that the
random variables W and Z are correlated with the covariance matrix Σ. Then, it is possible to create two
uncorrelated random variables X and Y using the matrix L−1. That is, each data point (w,z) is mapped to
a new data point (x,y) by multiplying (w,z) by L−1.

The use of this transformation leads to several differences between the proposed residual plots in the
SEM framework and the standard residual plots in regression analysis. First, the scale of the variables
changes due multiplying the data by the matrix L−1. As a result the residuals, in general, will not be
centered around 0 and the values of the predicted values, in general, are not necessarily values of the range
of observed values in the data set. This necessitates a slight reorientation of reading a residual plot under
the SEM framework. However, these plots should prove useful in the detection of outliers as outlying
observations will fall far from the bulk of the data. Secondly, under this framework each SEM has a set
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of residual plots associated with it. This implies that there are p + q residual plots associated with the
measurement model and m residual plots associated with the latent variable model.

The residual plots we propose differ markedly from previous diagnostics developed in the SEM frame-
work to detect outliers. In general, previously developed diagnostics are useful in detecting potential outliers
at the overall model level (e.g. Poon and Poon, 2002; Tanaka, Watadani, and Moon, 1991). That is, they
are capable of detecting if an observation has a large influence on some element(s) of the model but they are
not specific as to what portion(s) of the model the observation has a large influence. For example, Tanaka
et al (1991) identify an observation as extremely influential but are not able to identify why that observation
is influential. Instead, Tanaka et al (1991) compare this data point to the data set as a whole to speculate
why this observation is influential. In contrast, our proposed residual plots are able to detect in what portion
(equation) of the model an observation could be considered a potential outlier. Because each equation in the
model has an associated residual plot, it is possible to detect what observation(s) is (are) potentially influen-
tial and in what equation the observation(s) is (are) influential. This provides considerably more information
than previous diagnostics.

The previously described plots can be constructed using SAS 9.2. The general process is generalized in
the following steps.

1. Center the data using PROC STANDARD [Note: the data need not be centered but this considerably
simplifies later calculations].

2. Obtain parameter estimates θ̂MLE of the hypothesized model using PROC CALIS.

3. Calculate the following in PROC IML:

(a) The estimated measurement residuals, ν̂(θ̂), using equation (12). These estimates are then
standardized by multiplying the estimates by the inverse square root of the appropriate diagonal
element of the estimated covariance matrix Σ̂νν = (I − Λ̂Ŵ )Σ̂zz(I − Λ̂Ŵ )>.

(b) The estimated latent residuals, ẑ(θ̂), using equation (13). These estimates are also standardized
by multiplying the estimates by the appropriate diagonal element of the estimated covariance
matrix Σ̂ζζ = M̂Ŵ Σ̂zzŴ

>
M̂
>

where M̂ = [ (I − B̂)−1 −Γ̂ ].

(c) The predicted values ẑ(θ̂) and η̂(θ̂) using equations (14) and (15), respectively.

4. Rotate the data in ν̂(θ̂) and ẑ(θ̂) using the inverse Cholesky decomposition in PROC IML through
the following steps:

(a) Calculate the covariance matrix of the predicted values ẑ(θ̂), Σ̂ẑẑ = Λ̂Ŵ Σ̂zzŴ
>

Λ̂>.

(b) Calculate the matrix of the covariances of the predicted values ẑ(θ̂) and and the estimated
residuals ν̂(θ̂) Σ̂ẑν̂ = Λ̂Ŵ Σ̂zz(I − Λ̂Ŵ )> such that the diagonal elements correspond to the
covariance between predicted values and its corresponding estimated residuals.

(c) For the set of predicted values ẑj(θ̂) and its corresponding estimated residuals ν̂j(θ̂), where j
denotes the equation such that j = 1, . . . , (p + q), construct the 2 × 2 covariance matrix Sẑν̂ .
The [1,1] diagonal element of Sẑν̂ is the jth diagonal element of Σ̂ẑẑ (the variance of ẑj(θ̂)),
the [2,2] element of Sẑν̂ is set equal to 1 as the estimated residuals were standardized with a
variance of 1, and the off-diagonal elements [1,2] and [2,1] of Sẑν̂ consist of the jth diagonal
element from Σ̂ẑν̂ (the covariance of ẑj(θ̂) and ν̂j(θ̂)).

7

JSM 2014 - Section on Statistical Graphics

1479



(d) Using Sẑν̂ , obtain the inverse lower triangular matrix,L−1, such thatLL> = Sẑν̂ . Premultiply
the data set ẑj(θ̂) and ν̂j(θ̂) by L−1. This step can easily be done in SAS using the function
trisolv in PROC IML. The resulting data set produces new variables, denoted as ẑj(θ̂)R
and ν̂j(θ̂)R such that Cov[ẑj(θ̂)R, ν̂j(θ̂)R] = I .

5. Rotate the data in ν̂(θ̂) and ẑ(θ̂) using the inverse Cholesky decomposition in PROC IML through
the following steps:

(a) Calculate the covariance matrix of the predicted values η̂(θ̂), Σ̂η̂η̂ = D̂Ŵ Σ̂zzŴ
>
D̂
>

where

D̂ = [ B̂ Γ̂ ].

(b) Calculate the covariances matrix of the predicted values η̂(θ̂) and and the estimated residuals

ζ̂(θ̂) Σ̂
η̂ζ̂

= M̂Ŵ Σ̂zzŴ
>
D̂
>

such that the diagonal elements correspond to the covariance
between predicted values and its corresponding estimated residual.

(c) For the set of predicted values η̂k(θ̂) and its corresponding estimated residuals ζ̂k(θ̂) where
k denotes the equation such that k = 1, . . . ,m, construct the 2 × 2 covariance matrix S

η̂ζ̂
.

The [1,1] diagonal element of S
η̂ζ̂

is the kth diagonal element of Σ̂η̂η̂ (the variance of η̂k(θ̂)),
the [2,2] element of S

η̂ζ̂
is set equal to 1 as the estimated residuals were standardized with a

variance of 1, and the off-diagonal elements [1,2] and [2,1] of S
η̂ζ̂

consist of the kth diagonal

element from Σ̂
η̂ζ̂

(the covariance between η̂k(θ̂) and ζ̂k(θ̂)).

(d) Using S
η̂ζ̂

, obtain the inverse lower triangular matrix,L−1, such thatLL> = S
η̂ζ̂

. Premultiply

the data set consisting of η̂k(θ̂) and ζ̂k(θ̂) by L−1. As before, this step is easily done in SAS
using the function trisolv in PROC IML. The resulting data set produces new variables,
denoted as η̂k(θ̂)R and ζ̂k(θ̂)R such that Cov[η̂k(θ̂)R, ζ̂k(θ̂)R] = I .

6. The residual plot for the jth equation of the measurement model is then obtained by plotting ζ̂j(θ̂)R

on the y-axis against η̂j(θ̂)R on the x-axis.

7. The residual plot for the jth equation of the latent variable model is then obtained by plotting ν̂k(θ̂)R
on the y-axis against ẑk(θ̂)R on the x-axis.

4. Example: Mardia Exam Data (1979)

The data for our example are from Mardia, Kent, and Bibby (1979). The data set contains exam scores
from n = 88 students on five subjects in mathematics including mechanics (mec), vectors (vec), algebra
(alg), analysis (ana), and statistics (sta). The mechanics and vectors exams were closed-book while the
remaining three exams were open-book. Previous research (e.g. Mardia et al, 1979) indicates that a two
factor model adequately fits the data where the first factor represents (latent) scores on closed-book exams
and the second factor represents (latent) scores on open-book exams. These two factors are correlated though
the error terms of the items (the exam scores for the five subjects) are not. Due to the adequacy of this model,
we also use this two factor model to construct our proposed residual plots. The SAS code used to construct
these plots is available from the first author.
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These data have been used extensively in previous research as an empirical example to illustrate the
utility of proposed diagnostics to detect outliers (c.f. Cadigan, 1995; Lee and Wang, 1996; Poon, Lew, and
Poon, 2000; Poon and Poon, 2002; Tanaka et al, 1991; Yuan and Hayashi, 2010). We refer to these works for
further details regarding the construction of these diagnostics. These previous studies indicate that several
observations are potential outliers. Observations 81, 87, and 88 are frequently identified in these studies as
outlying while observations 1, 2, and 3 are identified somewhat less frequently as outliers. When assessing
the utility of our proposed residual plots we will primarily focus on these observations to evaluate how our
plots compare to previous diagnostics. To aid in this, these observations are plotted in color (1 = orange, 2
= yellow, 3 = purple, 81 = red, 87 = blue, 88 = green).

4.1 Assessing the Effects of Using the Inverse Cholesky Decomposition

We first briefly examine the effects using the inverse Cholesky decomposition has on our proposed residual
plots. Using the procedure from Section 3, we first calculated ν̂(θ̂) and ẑ(θ̂) for each of the three weight
matrices W r, W b, and W ar defined in (9)-(11), respectively. We refer to these values as the unrotated
data and the plots constructed using these data as the unrotated residual plots. Next, we applied the inverse
Cholesky decomposition, as described previously, to obtain ν̂(θ̂)R and ẑ(θ̂)R. These values are referred to
as the rotated data and the subsequent plots constructed from these data as the rotated residual plots. We
present the residual plots associated with the mechanics exam in Figure (4.1) (results were similar for the
other four exams and thus were omitted). The plots in the left column correspond to the residual plots of
ν̂(θ̂) against ẑ(θ̂) constructed using each of the weight matrices under consideration while the plots in the
right column are of ν̂(θ̂)R against ẑ(θ̂)R to illustrate the effect of rotating the data.

There are several features of note in these plots. First is that when rotating the data, as expected, the
range of the y-axes corresponding with the residuals changes with the exception of the plot constructed using
the Bartlett’s method-based estimator. Similarly, the range of x-axes (the fitted values) also changes. Also
as expected, the residuals may not be centered around 0 and the fitted values may not correspond to values
in the range of the original data. Secondly, rotating the data essentially serves to rotate the shape seen in the
residual plots, though this does not alter what observations would be detected as outliers. For example, for
the plots constructed using the Anderson-Rubin method-based estimator, there is a strong linear relationship
in the unrotated residual plot while the rotated residual plot does not display any discernible trend. However,
both the unrotated and rotated residual plots detect observation 81 (shown in red) as outlying. Similar
results are found in the unrotated and rotated residual plots for the other two methods (differences among
the methods will be discussed shortly). This indicates that the inverse Cholesky decomposition is successful
in creating residual plots that are similar to what we would expect in regression analyses while not affecting
the utility of the plots in detecting potential outliers.

4.2 Assessing Utility to Detect Potential Outliers

We next assess the utility of the proposed residual plots to detect potential outliers and examine differences
in the plots due to the choice of estimator. Figure (4.2) displays the rotated residual plots for each equation
of the model and each estimator. First we compare these plots to previous studies using this data set to assess
diagnostics for detecting outliers and then we evaluate differences among the plots in terms of the estimator
used.

These plots indicate several potential outliers which differs depending on the residual of interest. In
general the observations that have been frequently considered outliers are also outlying in our proposed
residual plots. For example, observation 81 is frequently considered an outlier based on previous diagnos-
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Figure 1: Residual Plots of the Unrotated and Rotated Data for the Mechanics Exam

tics. From our plots, observation 81 would be considered an outlier as well but through this analysis it is
possible to determine in what regard observation 81 is considered an outlier. The residual plots indicate
that observation 81 is an outlier in the equations for the mec and vec exams but none of the open book
exams. In particular, the predicted scores on the mechanics and vector exams are comparatively small ow-
ing to the fact that this student performed poorly on the closed-book exams. Tanaka et al (1991) reach this
conclusion by comparing the data associated with observation 81 to the other observations in the data set.
For this application with five indicators and 88 observations it is possible to use this approach, however for
larger data sets and more complex models this is not a viable option. Consequently, the proposed residual
plots have utility in detecting potential outliers and are able to detect why these observations are outliers.
This is a major advantage over previous diagnostics designed to detect outliers as these previous diagnostics
are global diagnostics. In contrast, our proposed plots are able to identify potential outliers and to identify
in what portion of the model the observation is outlying and why the observation may be outlying. This
provides invaluable information to SEM practitioners and would allow for improved model assessment.

We are also interested in the effects the choice of residual estimator has on the residual plots. Inter-
estingly, observations detected as potential outliers in the residual plots associated with closed book exams
(mec and vec) depend on the estimator used while the residual plots associated with the open book exams
(alg, ana, and sta) tend to detect the same observations as potential outliers. For example, in the residual
plots for mec, the plots constructed using the Bartlett’s method-based estimator and the Anderson-Rubin
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Figure 2: Residual Plots for the Mardia Exam Data
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method-based estimator both indicate that observation 81 (in red) is a potential outlier as this observation
lies far to the left of the bulk of the observations. However, in the plot constructed using the regression
method-based estimator observation 81 is closer to the bulk of the observations while observation 87 is fur-
ther to the left and may be considered outlying. In contrast, in the residual plots for alg, ana, and sta,
observations 87 and 88 (in blue and green, respectively) are far to the left of the bulk of the data and obser-
vation 2 (in yellow) is far to the right. Aside from what observations are detected as potential outliers, it is
also notable that potential outliers tend to be easier to detect using the Anderson-Rubin method-based esti-
mator plots as these potential outliers lie considerably further from the bulk of the data in comparison to the
plots constructed under the other two estimators. Though the reason for this is not immediate, one potential
explanation is that under the Anderson-Rubin method factor scores are obtained assuming an orthogonal
factor model such that the Anderson-Rubin method-estimator is a type of canonical factor analysis (Jack-
son, 1991). Under this type of analysis, canonical variables (linear combinations of observed variables) are
formed when the canonical correlation (correlation between two canonical variables) is maximized. Accord-
ing to Jackson (1991), a small number of outliers may lead to canonical correlations and plots of canonical
variables or any rotation of these variables, such as the residuals and predicted values obtained using the
Anderson-Rubin method-based estimator, can then easily detect the outlying observations (Jackson, 1991).
This suggests that the Anderson-Rubin estimator may be particularly useful in isolating a small number of
potential outliers.

5. Conclusions and Future Work

The purpose of this paper was to provide a method to construct residual plots in SEM and conduct an
exploratory analysis of the utility of these plots using a well-known data set. Through this work we have
shown that our proposed residual plots have the utility to detect potential outliers and are thus are worth
pursuing in future research. There are several areas that need to be further explored to better develop the
use of these residual plots. The next step in developing these plots is to conduct a thorough simulation
study to better understand the properties of these plots. In particular, this simulation study would provide
insight on how severely outlying an observation must be to be detected as a potential outlier as well as the
most appropriate choice of estimator. Another area that needs to be addressed is that while we used the
Cholesky inverse decomposition to “remove” the correlatedness between the residuals and predicted values,
this rotation of the data does not take into account that residuals associated with different items or latent
variables are correlated (more details are found in Hildreth, 2013). This is of concern as the identification
of an outlier may be an artifact of problems in other equations of the model. A simulation study would
be able to address this concern which would help to further the development of residual plots in SEM to
detect outliers and also provide information for other purposes of residual plots such as the ability to detect
assumption violations. Lastly, because we used maximum likelihood estimation a thorough simulation study
would address the impacts of this estimation choice, in particular potential masking effects.

Though there are several areas that must be addressed in regards to our proposed residual plots, this
work lays the foundation for the development of residuals plots and subsequently residual analysis in the
SEM framework. Through this work we have proposed a useful method to calculate residuals and predicted
values in SEM and how to plot them to construct residual plots analogous to those used in other statistical
methods. This work indicates the promise of residual analysis in SEM.
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A. Supplementary Material

First consider the covariance between ν̂(θ̂) and ẑ(θ̂): Cov[ν̂(θ̂), ẑ(θ̂)] = E[ν̂(θ̂)ẑ(θ̂)>]. In general there
are not closed-form solutions for the elements of θ̂ (Bollen, 1989) and thus it is not possible to explicitly
derive this covariance. Instead, assume that the elements in θ are known. Because the elements in θ
are estimated using maximum likelihood estimation, by the consistency property of MLEs (c.f. Theorem
10.1.6 of Casella and Berger, 2003), ν̂(θ̂) d−→ ν̂(θ) and ẑ(θ̂) d−→ ẑ(θ). Consequently, Cov[ν̂(θ̂), ẑ(θ̂)] d−→
Cov[ν̂(θ), ẑ(θ)] under the assumption that the regularity conditions in Miscellanea 10.6.2 of Casella and
Berger (2003) are satisfied. Then,

Cov[ν̂(θ), ẑ(θ)] = E[ν̂(θ)ẑ(θ)>]
= E((I −ΛW )z(ΛWz)>)
= E((I −ΛW )zz>W>Λ>)
= (I −ΛW )ΣzzW

>Λ> (16)

such that = Cov[ν̂(θ̂), ẑ(θ̂)] = 0 when one of the following three conditions hold: ΛW = I , ΛW = 0, or
W = Λ>(ΛΛ>)−1 [Note: Λ is an (p+ q)× (m+ n) matrix of rank (m+ n) where (m+ n) < (p+ q),
Λ−1 does not exist]. Because it is assumed that the elements of θ are real-valued and, with the exception of
B, are not equal to 0 the condition ΛW = 0 is not possible and is thus disregarded. None of the weight
matrices in (9)–(11) satisfy the conditionW = Λ>(ΛΛ>)−1 and is disregarded for this paper. As is easily
shown, the condition ΛW = I is satisfied when W = W b implying that ν̂(θ) and ẑ(θ) are uncorrelated
when using W = W b. These results show that in general ν̂(θ̂) and ẑ(θ̂) are correlated except for when
using the Bartlett’s method estimator or if using a weight matrix whereW = Λ>(ΛΛ>)−1.

Next, consider the covariance between ζ̂(θ̂) and η̂(θ̂): Cov[ζ̂(θ̂), η̂(θ̂)] = E[ζ̂(θ̂)η̂(θ̂)>]. As noted
before, closed-form solutions, in general, do not exist for θ̂. We use the analogous argument as above that
under the necessary regularity conditions, by the consistency of MLEs, ζ̂(θ̂) d−→ ζ̂(θ) and η̂(θ̂) d−→ η̂(θ)
implying that Cov[ζ̂(θ̂), η̂(θ̂)] d−→ Cov[ζ̂(θ), η̂(θ)]. Then,

E(ζ̂(θ)η̂(θ)>) = E(MWz([B Γ]Wz)>)
= E(MWzz>W>[B Γ]>)
= MWΣzzW

>[B Γ]>. (17)

Under the assumption that the elements of θ are real-valued and, with the exception of the matrixB are not
equal to 0, Cov[ζ̂(θ), η̂(θ)] = 0 is not possible. Consequently, regardless of the choice of W , ζ̂(θ) and
η̂(θ) are correlated.
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