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Abstract
The impacts of ignoring covariate measurement error in regression models have been well doc-

umented and include bias in parameter estimates and a loss of power. Measurement error in the
response variable has received less attention and correlated measurement errors (between the re-
sponse and explanatory variables) even less. A Bayesian model that accounts for measurement
errors is implemented in the simple linear regression setting, with extensions to the correlated mea-
surement error setting and multiple linear regression setting. A simulation study is used to explore
this approach, and allows for comparison to other popular measurement error correction methods
(SIMEX, method of moments, ordinary least squares-no correction). The Bayesian measurement
error model provided approximately unbiased results in all cases considered and directly provides a
corrected estimate of unexplainable random variation.

Key Words: Measurement Error, Errors-In-Variables, Response Measurement Error, Bayesian
Methods

1. Introduction

In many research situations a variable of interest cannot be observed exactly, but instead is
observed with error. When this occurs, the variable is said to contain measurement error.
Measurement error, also referred to as errors-in-variables (Stefanski, 2000), can arise in
a variety of circumstances, including, but not limited to: miscalibration of a measuring
instrument, sampling error, misclassification, abundance modeling, and anytime responses
are estimated. The consequences of ignoring measurement error in analyses have been well
documented and include bias in parameter estimation and a loss of power (Carroll et al.,
2006).

There are two main types of measurement error, Berkson (Berkson, 1950) and classi-
cal. This work focuses on classical measurement error present in either the response or
explanatory variables, working towards modeling situations where measurement error is
present in both. Classical measurement error occurs when the true value of the continuous
random variable (Xi) is measured with error, resulting in an observed value (wi). In this
work, the additive error structure will be used, however other error structures exist (linear,
multiplicative, etc.). The classical additive measurement error model for the mismeasured
random variable Wi given xi is

Wi|xi = xi + ui, (1)

where ui represents the measurement error, E(ui|xi) = 0, and V ar(ui|xi) = σ2u. A
result of the mean 0, additive error structure is that W is an unbiased estimator of x since
E(W |x) = x.

In order to explore measurement error modeling, we start with the simplest situation
where we have a quantitative response and single quantitative explanatory variable, the
simple linear regression (SLR) model. If we let Y and X denote the response and explana-
tory variables respectively, the SLR model is

Yi ∼ N(β0 + β1Xi, σ
2
ε ). (2)
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Often it is not possible to measure the true value of the response variable, explanatory
variable, or sometimes both. If we let (Di,Wi) represent the mismeasured response and
explanatory variables containing classical, additive measurement error, the SLR model be-
comes

Yi + qi = β0 + β1(xi + ui) + εi (3)

⇒ Di = β0 + β1wi + εi (4)

where qi ∼ N(0, σ2q ), ui ∼ N(0, σ2u), Cov(qi, ui) = σuq, and εi ∼ N(0, σ2ε ). Here, the
measurement error variances and covariance are constant across observations, however the
model and notation above can be altered to allow them to vary across observations (see
Section 2.4 for a discussion of this scenario).

To account for measurement errors when present, the measurement error variance must
either be assumed known or estimated from replicate data (repeated observations on the
same subject at the same time). The measurement error variance is often unknown and
replicate data are not available to estimate it, therefore measurement errors often go un-
accounted for. Biased parameter estimates and/or a loss of power are a known result of
ignoring measurement errors when present in analyses (Fuller, 1987). In the simple linear
regression setting, the naive (ordinary least squares regression of Di on Wi) estimator of
the slope is biased towards 0 because

β1,naive =
σ2X

σ2X + σ2u
β1 = kβ1, (5)

where k =
σ2
X

σ2
X+σ2

u
and is referred to as the reliability ratio, β1 is the true slope, σ2X is the

variance of the true random variable X, and σ2u is the measurement error variance associ-
ated with the mismeasured explanatory variable (Buonaccorsi, 2010). Larger measurement
error variance associated with the mismeasured explanatory variable (σ2u) results in β1,naive
being a more biased estimator, as can be seen in Equation 5 and Figure 1. When measure-
ment error is present in the response variable only, the estimator of β1,naive is unbiased
as Equation 5 does not depend on σ2q . Although the β1,naive estimator is unbiased when
measurement error is present only in the response variable, σ2ε,naive is inflated resulting in
less precise inferences for β1 and a loss of power for detecting effects.

There are many methods available to correct for measurement error, however each
method is not appropriate in every situation and performance of the methods vary greatly.
Common correction methods include the Method of Moments correction (Buonaccorsi,
2010), the SIMEX correction (Cook & Stefanski, 1994), the GSIMEX correction (Ronning
& Rosemann, 2008), Regression Calibration (Ch 4. of Carroll et al., 2006), and Bayesian
Methods (Gilks et al., 1996). The method of moments correction is a formula-based cor-
rection method that uses a formula to correct parameters and is specific to each modeling
situation. SIMEX uses simulation to obtain data containing more measurement error than
was observed, then fits the original model and obtains estimates of the parameters. This
process is repeated multiple times for a vector of increasing (additional) measurement er-
ror, and the algorithm then uses extrapolation in an attempt to obtain an estimate of the pa-
rameter in the case of no measurement error. It is a general framework applicable to many
situations, including measurement errors in response and explanatory variables, however it
does not directly account for correlated measurement errors. GSIMEX is a generalization
of the SIMEX method that attempts to account for correlated measurement errors. Regres-
sion calibration requires fitting a calibration model that requires replication, validation, or
instrumental data. Bayesian methods exist to correct for measurement error in the explana-
tory variable, however are generally developed for specific applications.
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Figure 1: Data were generated with a true slope of β1 = 5 containing measurement error
in the explanatory variable. Three values of the reliability ratio, k = (0.8, 0.5, 0.25), were
considered to show the effect of increasing measurement error on the estimate of β1. 500
simulations were used for each value of k, with each data set consisting of n = 500 obser-
vations. a) Distributions of β̂1,naive for each value of k. Vertical bold line represents the
true value of β1. b-d) True model versus naive estimate for one realization for each value
of k.

Here, a general framework for a Bayesian measurement error model that corrects for
measurement error when present in the explanatory and/or response variable in the SLR
setting is presented. Bayesian model specification and prior distributions are discussed
in Section 2. A simulation study was used to compare the performance of the Bayesian
measurement error model to other common correction methods in the SLR setting and
results are presented in Section 3.

2. Bayesian Simple Linear Regression Measurement Error Model

Bayesian methods are quickly becoming a popular and effective method for statisticians
in every field, in part due to their ability to handle complex modeling situations. When
present, measurement error can change a very basic modeling problem into a complex one.
There are four distinct modifications of the naive SLR model to consider when measure-
ment error is present: Case 1 - measurement error present in the explanatory variable only;
Case 2 - measurement error present in the response variable only; Case 3 - uncorrelated
measurement errors present in both the explanatory and response variables; and, Case 4 -
correlated measurement errors between the explanatory and response variables. A Bayesian
measurement error model is given below for Case 1 and Case 2. The model for Case 3 can
be obtained by combining the two models given, while Case 4 is a topic for future research.

In the following models that account for the different cases of measurement error in
SLR, the explanatory variable is first centered to have mean 0. Centering explanatory vari-
ables is commonly done in Bayesian analyses, and results in β0 and β1 being independent.
In all of the cases presented, the Gibbs sampling algorithm (Geman & Geman, 1984) is
used to obtain samples from the joint posterior distribution of the parameters, and it is most
efficient when parameterized in terms of independent components.

2.1 Case 1: Measurement Error in the Explanatory Variable

When measurement error is present in the explanatory variable only, Equation 3 becomes

Yi = β0 + β1wi + εi, (6)
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where wi is the mismeasured explanatory variable. In a Bayesian analysis where mea-
surement error is present in the explanatory variable, the true unobserved value (Xi) is
treated like a latent variable and given a prior distribution. Therefore, the Bayesian SLR
measurement error model when measurement error is present in the explanatory variable
is described using three pieces: an outcome model, a measurement model, and a latent
variable model. The outcome model is a model for the outcomes that you would obtain if
measurement error was not present and is

Yi ∼ N(β0 + β1Xi, σ
2
ε ). (7)

The measurement model is a model for the mismeasured variable given the true variable
and is

Wi|Xi ∼ N(Xi, σ
2
u). (8)

This is a direct result of Equation 1, which implies that when classical additive measure-
ment error is present in the explanatory variable, E(Wi|xi) = xi and V ar(Wi|xi) = σ2u.
The latent variable model is a model for the true unobserved variable (Xi) and, by centering
the observed variable, is

Xi ∼ N(0, σ2x). (9)

In this model, σ2u is assumed known and all other parameters (β0, β1, τX = 1
σ2
x

, τε = 1
σ2
ε

)
are given prior distributions, which depend on the particular situation and are often selected
to be non-informative. For example, a diffuse Normal distribution is used below for the β′s
and a Gamma(0.5, 2) distribution is used for the τ ′s.

2.2 Case 2: Measurement Error in the Response Variable

When measurement error is present in the response variable only, Equation 3 becomes

Di = β0 + β1xi + εi, (10)

where Di is the mismeasured response variable. In this scenario, the naive estimator of β1
is unbiased (Equation 5), however the measurement error causes a loss of power to detect
effects. The Bayesian SLR measurement error model for measurement error in the response
variable only is described using two pieces: an outcome model and a measurement model.
The outcome model is

Yi ∼ N(β0 + β1Xi, σ
2
ε ). (11)

When classical additive measurement error is present in the response variable, E(Di|yi) =
yi and V ar(Di|yi) = σ2q as a result of Equation 1. The measurement model is a model for
the mismeasured variable given the true variable and is

Di|Yi ∼ N(Yi, σ
2
q ). (12)

Similar to Case 1, σ2q is assumed known and all other parameters (β0, β1, τε = 1
σ2
ε

) are
given prior distributions.

2.3 Case 3: Measurement Error in both the Response Variable and the Explanatory
Variable

When measurement error is present in both the explanatory variable and the response vari-
able, the naive estimator of β1 is biased and a loss of power occurs. Combining the models
for Case 1 and Case 2 results in the model for Case 3. Here, the outcome model is

Yi ∼ N(β0 + β1Xi, σ
2
ε ). (13)
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Table 1: Simulation study parameter values. σ2q = 0 in Case 1 and σ2u = 0 in Case 2.
(σ2u,σ2q )

∗ only apply to Case 3.

β0 β1 σ2ε σ2X σ2u σ2q (σ2u,σ2q )
∗

1 5 4 4 (1, 4, 12) (1, 4, 12) (1,1), (4,4), (12,12)

The measurement model now consists of two pieces, a model for the mismeasured explana-
tory variable given the true explanatory variable and a model for the mismeasured response
variable given the true response variable. The two pieces are

Wi|Xi ∼ N(Xi, σ
2
u) (14)

and
Di|Yi ∼ N(Yi, σ

2
q ). (15)

The true unobserved explanatory variable (Xi) is again treated like a latent variable and the
latent variable model is

Xi ∼ N(0, σ2x). (16)

Similar to Case 1 and Case 2, σ2u and σ2q are assumed known while all other parameters
(β0, β1, τX = 1

σ2
x

, τε = 1
σ2
ε

) are given prior distributions.

2.4 Extensions

The models in Sections 2.1, 2.2, and 2.3 assume the measurement error variances are
known, however if replicate data (referring to the situation where on unit i there are mi

replicate values of the error prone measure) are available, the measurement error variances
can be given a prior distribution and estimated from the model. This feature is unique to
the Bayesian measurement error methods, as other correction methods require the measure-
ment error variances be known, or estimated from replicate data and then assumed known,
in order to be used. Also, situations may arise where non-constant measurement error is
present. The models presented here can easily extend to a non-constant measurement error
setting by replacing σ2u in Equation 8 and Equation 14 with σ2u(i) and σ2q in Equation 12
and Equation 15 with σ2q (i).

3. Simulation Studies

Simulation studies were performed for Cases 1, 2, and 3 with constant measurement er-
ror to explore the Bayesian measurement error model results and to compare the results
to some other common measurement error corrections. Within each case, three separate
simulations were performed to see the effects of increasing measurement error. Overall,
nine simulations were performed with each simulation consisting ofN = 500 observations
and Nsim = 500 simulations carried out. Data were generated with the parameter values
given in Table 1. The simulation studies were conducted in R (R Core Team, 2014) and the
R package R2jags (Su & Yajima, 2014) was used for the Bayesian analysis.

3.1 Case 1: Measurement Error in the Explanatory Variable Only

Three separate simulations were performed for Case 1, each with a different value of the
measurement error variance (σ2u), resulting in reliability ratios of k = 0.8, 0.5, and 0.25.

JSM 2014 - Section on Bayesian Statistical Science

1447



−1.5 −1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4

a) k=0.8

Case 1: ME in X only
bias in estimate of β1

D
e

n
s
it
y

Naive
MOM
Simex
Bayes

−4 −2 0 2

0
1

2
3

4

b) k=0.5

Case 1: ME in X only
bias in estimate of β1

D
e

n
s
it
y

Naive
MOM
Simex
Bayes

−4 −2 0 2

0
1

2
3

4

c) k=0.25

Case 1: ME in X only
bias in estimate of β1

D
e

n
s
it
y

Naive
MOM
Simex
Bayes

Figure 2: Resulting bias distributions of β1 from the three simulations performed for Case
1. Bold vertical lines appear at a bias value of 0, which would indicate an unbiased estima-
tor. The method of moments correction is labeled MOM.

Three measurement error correction methods (method of moments, SIMEX with quadratic
extrapolation function, and the proposed Bayesian Method) were considered and compared
to the naive (ordinary least squares - no correction) estimator.

For the Bayesian method, JAGS (Plummer, 2003) was used to obtain samples from the
posterior distribution. Three independent chains, each with random starting values, were
used and the first 1000 samples were discarded as burn-in. Each chain was run for 60,000
iterations and a thinning rate of 12 was applied, resulting in a final chain length of 5,000
iterations. The prior distributions used were β0 ∼ N(0, 100000), β1 ∼ N(0, 100000),
τX ∼ gamma(0.5, 2), and τε ∼ gamma(0.5, 2). The gamma(a, b) notation in JAGS
specifies a Gamma distribution with mean a/b and variance a/b2.

Bias distributions for β1 (simulated β̂1’s - β1) resulting from the three simulations are
shown in Figure 2. For the Bayesian method, the mean of the posterior distribution from
each simulation is used as the estimate of β1. The naive estimator produced the most biased
results in all three cases. The SIMEX method is noticeably biased for all three cases, with
the magnitude of the bias increasing as the measurement error variance increases. The
method of moments correction method and the Bayesian correction method both appear
approximately unbiased for all three cases, however the method of moments correction
method becomes highly variable when the measurement errors are large (k = 0.25).

3.2 Case 2: Measurement Error in the Response Variable Only

Measurement error in the response variable is seldom taken into account since the naive
estimator of β1 is unbiased. In the naive models, the typical estimator of σ2ε includes
random variation and variation in responses due to measurement error, so is positively
biased and results in inflated standard errors for inferences on the slope coefficients. The
naive estimator of σ2ε when measurement error is only present in the response variable is

σ2ε,naive = σ2ε + σ2q . (17)

The bias in σ2ε,naive leads to bias in SE(β̂1) since

SE(β̂1) =
√
(σ2ε,naive)(X

TX)−1[2,2] =
√
(σ2ε + σ2q )(X

TX)−1[2,2]. (18)
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Figure 3: a-b) Distribution of posterior means for β1 and σ2ε from 500 simulations. The
solid black curve represents the case where σ2q = 0 while the other two curves represent
σ2q = 4. Bold vertical lines appear at the true value of each parameter. c) Effects of
increasing measurement error variance (σ2q ) on SE(β̂1) where σ2ε = 4.

To explore the performance of the Bayesian SLR measurement error model in Case
2, three situations were considered: a Bayesian SLR model using the responses observed
without measurement error, a naive Bayesian SLR model that does not account for mea-
surement error in the mismeasured response, and a Bayesian SLR measurement error model
using the mismeasured response. As a reminder, the Bayesian SLR model with no measure-
ment error is very similar to the Bayesian SLR measurement error model given in Section
2.2, with the only difference being the absence of Equation 12.

Three separate simulations were performed for Case 2, each with a different value of
the measurement error variance (σ2q ) given in Table 1. For each Bayesian model, JAGS was
used to obtain samples from the posterior distribution using three independent chains, each
with random starting values, and the first 1000 samples were discarded as burn-in. Each
chain was run for 60,000 iterations and a thinning rate of 12 was applied, resulting in a final
chain length of 5,000 iterations. The prior distributions used were β0 ∼ N(0, 100000),
β1 ∼ N(0, 100000), and τε ∼ gamma(0.5, 2).

Distributions of posterior means of β1 and σ2ε are given in Figure 3 for the simulation
with σ2q = 4. The two other simulations showed similar results, therefore the plots are
omitted. Panel a) reiterates that the naive estimator of β1 is unbiased when measurement
error is present in the response variable only and also shows that models using the variable
measured with error are slightly more variable than the model using the uncontaminated
response variable. In a real world application involving measurement error, you would not
have the value of the response variable that is not contaminated by measurement error. This
scenario was included in the simulation study to see the effects of measurement error on
the width of the distribution of β1 as compared to what we would see if measurement error
was not present. Panel b) displays the positive bias associated with σ2ε,naive and also shows
that the corrected estimate obtained from the measurement error model is approximately
unbiased. Panel c) shows the effect of increasing measurement error on the SE(β̂1) based
on Equation 18 for the last simulated data set. The SE(β̂1) is approximately 40% larger
when σ2q = 4 as compared to what would have been observed had measurement error not
been present (0.066 versus 0.0467).
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Figure 4: Simulation results from one simulation (Nsim = 500) with data containing mea-
surement error in both the explanatory and response variable. a) Resulting bias distributions
of β1 for Case 3. A bold vertical line appears at a bias value of 0, indicating an unbiased
estimator. b) Resulting distributions of σ2ε for the Bayesian measurement error correction
method (Bayes) and for the naive Bayesian model (BayesN). The true value is indicated
with a bold vertical line.

3.3 Case 3: Measurement Error in the Response and Explanatory Variable

Three separate simulations were performed for Case 3, each with different values of the
measurement error variances (σ2u, σ2q ) given in Table 1. Three measurement error correc-
tion methods (method of moments, SIMEX with quadratic extrapolation function, and the
proposed Bayesian Method) were considered and compared to two naive methods (ordinary
least squares method and the naive Bayesian method).

For the Bayesian methods, JAGS was used to obtain samples from the posterior dis-
tribution. Three independent chains, each with random starting values, were used and the
first 1000 samples were discarded as burn-in. Each chain was run for 60,000 iterations
and a thinning rate of 12 was applied, resulting in a final chain length of 5,000 iterations.
The prior distributions used for the measurement error model were β0 ∼ N(0, 100000),
β1 ∼ N(0, 100000), τX ∼ gamma(0.5, 2), and τε ∼ gamma(0.5, 2) while the priors
used for the naive model were the same as given for the naive model in Section 3.2.

Bias distributions for β1 resulting from the simulation with (σ2u, σ
2
q ) = (4, 4) are shown

in Panel a) of Figure 4. Similar results were obtained for the other two cases, therefore the
plots are omitted. Measurement error in the response variable does not affect the bias
associated with β1, therefore this plot looks nearly the same as the plot in Panel b) of
Figure 2 and the results presented in Section 3.1 hold. Panel b) contains the distribution of
posterior means for σ2ε from the two Bayesian models. Since measurement error is present
in both the explanatory and response variables, a much larger positive bias is associated
with σ2ε,naive as compared to Case 2. The Bayesian measurement error model produces an
estimator of σ2ε that is much closer to the true value than the naive model.

4. Discussion

Measurement error in the explanatory variable is often the focus of measurement error cor-
rection methods, as the naive estimator of β1 is biased towards 0. Simulation studies were
used to compare three measurement error correction methods in this scenario. The mag-
nitude of the measurement error variance (σ2u) relative to the variance of the unobserved
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explanatory variable (σ2X ) can have a big impact on the performance of the methods, as
seen in Section 3.1. All methods performed relatively well when the measurement error
variances were small, however the SIMEX method and the method of moments correc-
tion had noticeable performance issues when measurement error variances increased. The
SIMEX method consistently underestimated the value of β1. Although the method of mo-
ments correction provided an estimator that appeared unbiased in all cases, it is highly
variable when measurement error variances are large. The Bayesian measurement error
model provided an approximately unbiased estimator of β1 in all cases considered in the
simulation study and results were as variable or less variable than the method of moments
estimator.

Although the naive estimator of β1 is unbiased when measurement error is present in the
response variable only, there are still reasons to fit a measurement error model to account
for the extra variability present. The measurement error model can help guide researchers
in future studies with deciding where to focus resource allocation. If measurement error is
present in the response variable only, and if reducing or eliminating it is possible in future

studies, a
√

σ2
ε

σ2
ε+σ

2
q
∗ 100% reduction in SE(β̂1) is possible, resulting in an increase in

power. Also, models are sometimes built with the goal of prediction. In order to obtain
a prediction interval, the estimated value of σ2ε is used. When prediction intervals are of
interest, the posterior predictive intervals computed using the Bayesian measurement error
model will be more precise than those computed from the naive Bayesian model.

When uncorrelated measurement error is present in both the explanatory and response
variable, the naive estimator of β1 is biased towards 0 and the naive estimator of σ2ε is too
large. A measurement error model in this case allows researchers to obtain better (less
biased) estimates of β1 and can also help researchers with making decisions regarding
future studies, as it may be possible to obtain more precise estimates of β1 if reducing the
measurement error in the response variable is possible.

Measurement errors should be taken into account when they are present in order to ob-
tain the most accurate and precise results. The Bayesian measurement error model provides
approximately unbiased results and easily extends to cases where non-constant measure-
ment error is present and also to other models (multiple linear regression, nonlinear re-
gression, etc.), suggesting a variety of different areas of application for these methods. The
impacts and adjustments for correlated measurement errors in the response and explanatory
variables are a subject for future work.
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