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Abstract 
By running life tests at higher stress levels than normal operating conditions, accelerated 
life testing quickly yields information on the lifetime distribution of a test unit. The 
lifetime at the design stress is then estimated through extrapolation using a regression 
model. To conduct an accelerated life test efficiently with constrained resources in 
practice, several decision variables such as the allocation proportions and stress durations 
should be determined carefully at the design stage. These decision variables affect not only 
the experimental cost but also the estimate precision of the lifetime parameters of interest. 
In this work, under the constraint that the total experimental cost does not exceed a 
pre-specified budget, the optimal decision variables are determined based on 
C/D/A-optimality criteria. In particular, the constant-stress and step-stress accelerated life 
tests are considered with the exponential failure data under time constraint as well. We 
illustrate the proposed methods using a case study, and under a given budget constraint, the 
efficiencies of these two stress loading schemes are compared in terms of the ratio of 
optimal objective functions based on the information matrix. 
 
Key Words: Accelerated life test, Constant-stress test, Cost constrained optimization, 
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1. Introduction 
 
The automated manufacturing systems are widely used in industries, and the evolution of 
flexible manufacturing systems (FMS) offers increasing flexibility and efficiency of 
production as well as cost effectiveness. With the global competition in manufacturing 
environments, planning and decision making process in the field of FMS are ever critical 
in order to meet higher quality, reliability, and responsiveness to customization while 
decreasing the total costs. With increasing reliability and substantially long life-spans of 
products, it is often difficult for standard life testing methods under normal operating 
conditions to obtain sufficient information about the failure time distribution of the 
products. This difficulty is overcome by accelerated life test (ALT) where the test units are 
subjected to higher stress levels than normal for rapid failures. By applying more severe 
stresses, ALT collects information on the parameters of lifetime distributions more quickly. 
The lifetime at the design stress is then estimated through extrapolation using a regression 
model.  
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In order to conduct ALT efficiently with constrained resources in practice, several 
decision variables such as the allocation proportions and stress durations should be 
determined carefully at the design stage. These decision variables affect not only the 
experimental cost but also the estimate precision of the lifetime parameters of interest. For 
this reason, the optimal ALT design has attracted great attention in the reliability literature. 
Miller and Nelson [11] initiated research in this area by considering a simple step-stress 
model with exponential failure time distribution under complete sampling. The 
fundamental model used was the one proposed by Sedyakin [15], which is known as the 
cumulative exposure model. This model was further discussed and generalized by 
Bagdonavicius [1] and Nelson [12]. Bai et al. [2] then extended the results of Miller and 
Nelson [11] to the time-censored situation. Nelson and Kielpinski [13] studied the 
optimally censored ALT for normal and lognormal distributions while Schneider [14] 
considered sampling plans for Weibull distribution using the maximum likelihood 
estimators (MLE). Khamis [7] compared constant-stress ALT and step-stress ALT under 
Weibull lifetime distribution for units subjected to stress. Meeter and Meeker [10] then 
developed the statistical models and ALT plans with a non-constant shape parameter. 
Later, Seo et al. [16] investigated the optimal ALT sampling plans for deciding the lot 
acceptability under Weibull distribution with a non-constant shape parameter and 
Type-I/II censorings. Under complete sampling, Hu et al. [6] studied the statistical 
equivalency of a simple step-stress ALT to other stress loading designs while Han and Ng 
[5] compared the efficiencies of general k-level constant-stress and step-stress ALT under 
complete sampling and Type-I censoring.   
 
The focus of this paper is to investigate the optimal ALT plans under the constraint that the 
total experimental cost does not exceed a pre-specified budget. In particular, the general 
k-level constant-stress and step-stress ALT are considered with the exponential lifetime 
distribution for units subjected to stress under Type-I censoring. Assuming a log-linear 
relationship between the mean lifetime parameter and stress level, with the accelerated 
failure time (AFT) model for the effect of changing stress in step-stress ALT, the optimal 
design variables are determined under various optimality criteria. The proposed methods 
are illustrated using a case study, and under a given budget constraint, the efficiencies of 
these two stress loading schemes are compared using the ratio of optimal objective 
functions based on the information matrix as a measure of relative efficiency. 
 
 
 

2. Model Description 
 
Let x(t) ∈ [0,1] be the given standardized stress loading (a deterministic function of time) 
for ALT. Then, let us define 0 ≡ x0 ≤ x1 < x2 < … < xk ≤ 1 to be the ordered stress levels used 
in ALT. It is further assumed that under any specific stress level, the exponential 
distribution describes the failure mechanism of a test unit. Also, it is assumed that under 
any stress level xi, the mean time to failure (MTTF) of a test unit, θi, is a log-linear function 
of stress given by 
               log θi = α + β xi                                            (1) 

 

where the regression parameters α and β need to be estimated. Here we consider two 
popular classes of ALT: constant-stress and step-stress. In constant-stress testing, a unit is 
tested at a fixed stress level until failure occurs or the life test is terminated, whichever 
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comes first. On the other hand, (step-up) step-stress testing allows the experimenter to 
gradually increase the stress levels at some pre-fixed time points during the test.  
 
 
 

3. Cost Constrained Optimization 
 
In order to conduct an ALT experiment efficiently with constrained resources in practice, 
several decision variables such as the allocation proportions and stress durations should be 
determined carefully at the design stage. It is because these decision variables affect the 
experimental cost as well as the precision of the parameter estimates of interest. There is a 
body of literature addressing the model optimization related to certain cost functions. 
Chien et al. [3] proposed a generalized replacement policy of systems subject to shocks 
from a non-homogeneous Poisson process, and optimized the model by minimizing the 
cost rate. Liao et al. [8] investigated a condition-based maintenance policy for 
continuously degrading systems and determined the optimum maintenance threshold while 
Zhu et al. [17] obtained the optimal maintenance schedule under a repair cost constraint in 
terms of the degradation threshold and the time to perform preventive maintenance. Using 
a mixed integer programming, an optimal progressively censored group acceptance 
sampling plan was developed by Fernandez et al. [4] via minimizing the expected test cost 
under several constraints.   
 
Under the constraint that the total experimental cost does not exceed a pre-specified 
budget, a typical decision problem of interest can be formulated as to optimize (minimize 
or maximize) an objective function of choice subject to CT ≤ CB, where CB is the total 
pre-specified budget and CT is the total cost for running an ALT. In general, for a life test at 
a constant stress level x with the sample size n under Type-I censoring at the time point τ, 
the total cost of test can be expressed in a simplified form as 
 

CT = Cset + n Cunit + Cop(x) min{Yn:n, τ} + Cins (       Yl:n + (n–nT) τ) + nT Cfail + (n–nT) Cunfail 
                                                 (2) 

 

where Yl:n is the l-th ordered failure time of n units from a lifetime distribution at the stress 
level x, characterized by, say, the PDF fx(t) and the CDF Fx(t) = 1–Sx(t). Here, nT denotes 
the total number of units failed until time τ while n–nT denotes the number of units 
censored at τ. 
 
Among the non-negative cost parameters in (2), Cset denotes the fixed cost for setting up an 
ALT experiment, which includes the costs of facility and testing chambers. Cunit is the cost 
of each test unit, including the costs of manufacturing, purchasing, and/or installation. 
Cop(x) is the operation cost of conducting an ALT per unit time under the given setup 
which depends on the applied stress level. Although both Cset and Cop(x) may increase with 
the scale of ALT (e.g., A larger n requires a larger facility to accommodate), here we 
assume that the changes in Cset and Cop(x) are negligible in a neighborhood of n under the 
optimal condition, keeping these costs constant and uniform. This is a reasonable 
assumption as the fixed costs accommodate a range of the sample sizes by absorbing the 
scaling/sizing effects until it is necessary to require additional resources (i.e., step-wise 
cost increments). Cins is the cost of inspection or measurement per unit time per test unit. 
The unit time is assumed in a natural time scale of measurement for convenience although 
different frequencies can be set for interval inspection in other situations. Cfail is the loss 

∑ =
Tn

l 1
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incurred by a failed unit in the inspection, which includes the costs of scrapping and waste 
management, while Cunfail is the loss incurred by an unfailed unit in the inspection, which 
includes the costs of refurbishing or disintegration. 
The most conservative way to protect the completion of an ALT experiment against the 
case of budget shortfall is to set the constraint that the largest possible total cost (i.e., the 
worst scenario) does not exceed the pre-specified budget (viz., max{CT} ≤ CB). Under the 
given time constraint τ, a fixed upper bound of the total experimental cost is 
 

         max{CT} = Cset + n (Cunit + Cfail) + Cop(x) τ + n Cins τ                     (3) 
 

with Cfail ≥ Cunfail. 
 
 
 

4. Optimal Design Criteria 
 
Here, we define different optimality criteria for determining the optimal design points 
under the cost constraint, which then can be used to compare between the multi-level 
constant-stress test and step-stress test. For the k-level constant-stress testing, the focus is 
to determine the optimal allocation proportions π* = (π1*,π2*,…,πk*) with πk*=1–Σi=1

k
πi* 

while it is to determine the optimal stress durations ∆* = (∆1*,∆2*,…,∆k*) for the k-level 
step-stress testing. These objective functions are purely based on the Fisher information 
matrix In(α, β).  
 
 
 
4.1 C-Optimality 
In an ALT experiment, researchers often wish to estimate the parameters of interest with 
maximum precision and minimum variability possible. In both the constant-stress and 
step-stress settings under consideration here, such a parameter of interest is the mean 
lifetime of a unit at the use-condition (viz., θ0). For this purpose, we consider an objective 
function given by 
 

φ(.) = n AVar(log     ) = n AVar(    )                     (4) 
 

where AVar stands for asymptotic variance. The C-optimal design points are the ones that 
minimize (4).  
 
4.2 D-Optimality 
Another optimality criterion often used in planning ALT is based on the determinant of the 
Fisher information matrix, which equals to the reciprocal of the determinant of the 
asymptotic variance-covariance matrix. Note that the overall volume of the Wald-type 
joint confidence region of (α, β) is proportional to |In

-1(α, β)|1/2 at a fixed level of 
confidence. In other words, it is inversely proportional to |In(α, β)|

1/2, the square root of the 
determinant of In(α, β). Consequently, a larger value of |In(α, β)| would correspond to a 
smaller asymptotic joint confidence ellipsoid of (α, β) and thus a higher joint precision of 
the estimators of α and β. Motivated by this, our second objective function is simply given 
by  
           δ(.) = n-2 |In(α, β)|.                      (5) 
 

∑
−

=

1

1

k

i

0̂θ
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The D-optimal design points are obtained by maximizing (5) for the maximal joint 
precision of the estimators of (α, β).  
 
4.3 A-Optimality 
The last optimality criterion considered in our study is based on the trace of the first-order 
approximation of the variance-covariance matrix of the MLEs. It is identical to the sum of 
the diagonal elements of In

-1(α, β). The A-optimality criterion provides an overall measure 
of the average variance of the parameter estimates and gives the sum of the eigenvalues of 
the inverse of the Fisher information matrix. The A-optimal design points minimize the 
objective function defined by 
 

           a(.) = n tr(In
-1(α, β)).                      (6) 

 

It is of interest to note that for a simple constant-stress test, the D-optimal design allocates 
an equal number of test units at each stress level regardless of the stress levels used, the 
presence of Type-I censoring nor the time points of censoring at any stress level. All the 
optimality criteria considered here, as well as some other information-based criteria, have 
been used extensively in the design selection process for linearly designed experiments. 
From a practitioner’s point of view, the choice of the optimality criterion will be certainly 
guided by the objective of the experiment. In cases where the planner is more interested in 
the precise estimation of the MTTF θ0 at normal use-condition, the C-optimality is surely 
the criterion of choice. On the other hand, if one is more concerned about estimating the 
regression parameters α and β with high precision, a more reasonable criterion of choice 
should be the D-optimality or A-optimality. 
 
 
 

5. Case Study: Rear Suspension Aft Lateral Links ALT 
 
Lu et al. [9] described a step-stress ALT to estimate the reliability of a rear suspension aft 
lateral link. Four stress (load) levels ranging from 1500 lbs to 3000 lbs with an increment 
of 500 lbs were used to conduct a pilot study with the sample size of n = 25. The normal 
use-stress and the highest allowable stress were set to be 1500 lbs and 4800 lbs, 
respectively. Initially, a two-parameter Weibull distribution with a constant shape 
parameter was assumed to model the lifetime of this product at any stress level. However, 
the pilot data to estimate these Weibull parameters also supported modeling by an 
exponential distribution at any stress level. Consistent with our model assumptions, the 
cumulative exposure model was used to represent the effect of changing stress along with 
the log-linear parameter-stress assumption in (1). Fitting a regression model to the estimate 
of MTTF θi and the standardized log-stress level xi, the least square estimates of (α, β) were 
obtained to be (13.4337, –7.6836). Lu et al. [9] then proposed an eight-level step-stress 
ALT plan for data collection under Type-I censoring with n = 12 test units.   
 
Since a simple step-stress ALT is easier to carry out and its test duration could be shorter 
by exposing test units to a higher stress level than the original test plan, Hu et al. [6] 
devised a simple (step-up) step-stress testing plan, which is Type-III Statistically 
Equivalent (SE) to the original eight-level step-stress ALT. Without loss of estimation 
precision, the simple SE step-stress ALT plan is to use the standardized log-stress levels of 
(x1, x2) = (0.52, 1) with the stress change time point at 8257. Based on the resulting Fisher 
information matrix with n = 12, the objective functions in (4), (5), and (6) yields φss = 

JSM 2014 - Section on Physical and Engineering Sciences

1427



 

11.311, δss = 0.057, and ass = 28.829, respectively. It is also assumed that at an appropriate 
cost measurement unit, Cset

ss = Cset
cs = 10, Cunit = 1.0, Cfail = 0.5, Cunfail = 0.2, and Cins = 

0.001. Also, the operation cost is set to be Cop(x1) = 0.521 and Cop(x2) = 1.001, which forms 
a linear function of the standardized stress levels. Then, the SE step-stress ALT has the 
expected total cost of E[CT

ss] = 5187.29 and the upper bound of the total cost at max{CT
ss} 

= 12810.66 with the expected termination time of test Tεss = 9022.01. 
 
Table 1: Optimal step durations, objective optima, mean experimental costs, and mean 
termination times of the simple step-stress test under Type-I censoring 
k = 2 Unconstrained (CB = ∞) Constrained (CB = 16000) 
Step ∆C* ∆D* ∆A* ∆C* ∆D* ∆A* 
Duration 13223.34 8566.20 10041.75 10317.15 8566.20 10041.75 

φss* δss* ass* φss* δss* ass* Optima 
10.144 0.057 28.300 10.486 0.057 28.300 

Tεss 13852.02 9323.28 10760.59 11028.72 9323.28 10760.59 
E[CT

ss] 7678.17 5342.96 6085.03 6223.36 5342.96 6085.026 
max{CT

ss}  20499.05 13289.33 15573.63 15999.98 13289.33 15573.63 
     
 Now, with the pre-specified budget constraint at CB = 16000, it is desired to determine the 
optimal design points under the cost and time constraints for planning a simple ALT 
experiment, and investigate the relative efficiency of step-stress ALT compared to 
constant-stress ALT. For the simple step-stress ALT, Table 1 presents the values of the 
optimal step duration ∆C*, ∆D*, ∆A*, and the corresponding optima of each objective 
function described in Section 4 with/without the cost constraint. The expected total costs 
E[CT

ss] and the upper bounds of the total costs max{CT
ss} are also presented in Table 1 

along with the expected termination time of test Tεss, computed by the formulae in Han and 
Ng [5]. From Table 1, it is observed that ∆C* > ∆A* > ∆D* in the unconstrained, globally 
optimal situation. The same order is also followed by Tεss, E[CT

ss], and max{CT
ss}. Under 

the cost constraint at CB = 16000, the D- and A-optimality still yield the globally optimal 
designs since their largest experimental costs did not exceed CB at the unconstrained 
optimal conditions. Only ∆C* got however reduced considerably in order to meet the cost 
constraint although its fold change in the corresponding optima is almost negligible; see 
also Table 3. 
 
Table 2: Optimal allocation proportions, objective optima, mean experimental costs, and 
mean termination times of the simple constant-stress test under Type-I censoring 
k = 2 Unconstrained (CB = ∞) Constrained (CB = 16000) 
Allocation πC* πD* πA* πC* πD* πA* 

Proportion 
(0.703, 
0.297) 

(0.500, 
0.500) 

(0.627, 
0.373) 

(0.718, 
0.282) 

(0.500, 
0.500) 

(0.627, 
0.373) 

φcs* δcs* acs* φcs* δcs* acs* Optima 
13.499 0.029 40.046 15.006 0.029 40.046 

Tεcs 13799.95 9311.31 10682.23 10884.55 9311.31 10682.23 
E[CT

cs] 7628.32 5304.72 5980.85 6057.23 5304.72 5980.85 
max{CT

cs} 20340.37 13186.54 15453.13 15876.17 13186.54 15453.13 
     
Using the optimal step durations obtained in Table 1 as the censoring time points at each 
stress level, the allocation proportions π = (π1,π2) were then optimized for a simple 
sequential constant-stress test under Type-I censoring. Table 2 presents the values of these 
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optimal allocation proportions πC*, πD*, and πA* along with the corresponding optima of 
each objective function described in Section 4 with/without the cost constraint CB = 16000. 
Like in Table 1, the expected total costs E[CT

cs] and the upper bounds of the total costs 
max{CT

cs} are also presented in Table 2 with the expected termination time of test Tεcs, 
computed by the formulae in Han and Ng [5]. From Table 2, it is observed that π1,C* > π1,A* 
> π1,D* = 0.5 in the unconstrained, globally optimal situation. As mentioned in Section 4, 
the D-optimality allocates an equal number of test units at two stress levels. Similar to the 
results for the simple step-stress ALT in Table 1, Tεcs, E[CT

cs], and max{CT
cs} all follow the 

same order. Since CB = 16000 was exceeded by the maximal cost of the C-optimal design 
only at the unconstrained optimal condition, under the cost constraint, πC* alone had to be 
changed, allocating more test units at the first stress level in order to meet the budget 
constraint. No changes were made for the D- and A-optimal designs under the cost 
constraint. 
 
Table 3: Efficiency of the simple constant-stress and step-stress tests under Type-I 
censoring with/without the cost constraint 

 Optimality 
Efficiency C D A 
Unconstrained Constant-stress vs. Type-III SE Step-stress 0.84 0.50 0.72 
Unconstrained Step-stress vs. Type-III SE Step-stress 1.12 1.01 1.02 
Constrained Constant-stress vs. Type-III SE Step-stress 0.75 0.50 0.72 
Constrained Step-stress vs. Type-III SE Step-stress 1.08 1.01 1.02 
Constrained Constant-stress vs. Unconstrained 
Constant-stress 

0.90 1.00 1.00 

Constrained Step-stress vs. Unconstrained Step-stress 0.97 1.00 1.00 
Unconstrained Step-stress vs. Unconstrained Constant-stress 1.33 2.00 1.42 
Constrained Step-stress vs. Constrained Constant-stress 1.43 2.00 1.42 

 
Using the results obtained in Tables 1 and 2, Table 3 tabulates the efficiency of the 
constant-stress ALT and the step-stress ALT under the unconstrained/constrained optimal 
conditions. Without the cost constraint, the optimal step-stress designs achieve higher 
efficiency than the simple Type-III SE step-stress plan, especially for the C-optimality. 
The constant-stress designs, however, do not even attain the same efficiency to the 
Type-III SE plan. Hence, under the cost constraint, the constant-stress C-optimal design 
performs even worse although the other two designs attain the same efficiency of the 
unconstrained Type-III SE plan, owing to their maximal costs strictly less than CB. The 
situation is similar for the constrained step-stress designs. Table 3 also shows that only the 
C-optimal design experiences reduction in efficiency due to introduction of the cost 
constraint, and that reduction in efficiency is less severe for the step-stress ALT than for 
the constant-stress ALT. Comparing between the constant-stress and step-stress tests, the 
highest efficiency is again achieved by the D-optimality, followed by the A-optimality, and 
then by the C-optimality in general. Under the cost constraint, the step-stress C-optimal 
design shows even higher efficiency to the constant-stress one when compared to the 
unconstrained, globally optimized condition. Overall from Table 3, the step-stress test is 
again shown to be more efficient compared to the corresponding constant-stress one in all 
cases under the unconstrained/constrained optimal situations.   
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6. Summary 
 
In this work, we investigated the constrained optimal ALT plans subject to the total 
maximal experimental cost not exceeding a pre-specified budget. In particular, the general 
k-level constant-stress and step-stress ALT were considered with exponential failure time 
distributions under Type-I censoring. Assuming a log-linear relationship between the 
mean lifetime parameter and stress level, with the AFT model for the effect of changing 
stress in step-stress ALT, the MLEs of the regression parameters were derived along with 
the associated Fisher information. Then, the optimal settings of stress durations and 
allocation proportions were determined according to the C/D/A-optimality criteria based 
on the information matrix under a given cost constraint. The proposed methods were 
illustrated using a case study, and under a given budget constraint, the relative efficiencies 
of the two stress loading schemes under consideration were measured in terms of ratios of 
the optima in each criterion. Regardless of the stress loadings, the C-optimal design was 
generally found to take the longest to complete the test and hence, cost the most. It was also 
the most severely affected by a given cost constraint, taking heavy reduction in its 
efficiency, while the D-optimal design was the least affected. The results of a further 
numerical study quantified the advantage of using step-stress ALT compared to 
constant-stress one. The step-stress tests were demonstrated to be overall more efficient 
compared to the corresponding constant-stress tests under the unconstrained/constrained 
optimal situations.  
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