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Abstract
The hglm package is a hierarchical-likelihood-based solution for mixed models. Apart from gen-

eralized linear mixed models (GLMM), hierarchical generalized linear models (HGLM) can also
solve models with non-Gaussian random effects, structured dispersion parameters, and correlated
random effects. hglm provides a unified approach to various statistical modeling problems. We
describe examples in our interdisciplinary research based on the hglm package, dealing with large-
scale biological data, chemometrics data and geographical data. Thereafter, we discuss some big
challenges that empirical scientists desire to solve using mixed models, including modeling high-
dimensional interaction effects, having random effects in the mixed model dispersion parameters,
joint modeling of spatial and genetic correlations, and multivariate analyses with random effects.

Key Words: R/hglm package, hierarchical generalized linear models, generalized linear mixed
models, high-dimensional data, correlated random effects, non-Gaussian random effects.

1. Introduction

Nowadays, random effects modeling is becoming more and more essential for understand-
ing complex data in empirical sciences. The complexity in the “big data” contains grand
challenges in terms of size, structure and interpretation, for which random effects models,
a.k.a. linear mixed models, have great potentials to dissect the problems.

The hglm package implements the estimation algorithm for hierarchical generalized
linear models (HGLM; Lee and Nelder, 1996). The package fits generalized linear models
(GLM; McCullagh and Nelder, 1989) with random effects, where the random effect may
come from a conjugate exponential-family distribution (normal, gamma, beta or inverse-
gamma). The user may explicitly specify the design matrices both for the fixed and random
effects, which means that correlated random effects as well as random regression models
can be fitted. Dispersion parameters in the model may also be modeled.

hglm produces estimates of fixed effects, random effects, variance components as well
as their standard errors. In the output it also produces diagnostics quantities such as de-
viances and leverages and related plots.

Generalized linear mixed models (GLMM) have previously been implemented in sev-
eral R (R Development Core Team, 2011) procedures, such as the glmer() function in
the lme4 package and in the glmmPQL() function in the MASS package. In GLMM, the
random effects are assumed to be Gaussian whereas hglm allow for other distributions for
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the random effects. hglm extends the fitting algorithm of the dglm package by including
random effects in the linear predictor for the mean. Moreover, the model specification in
hglm can be given as a formula or alternatively in terms of y, X, Z and X.disp, where y is
the vector of observed responses, X and Z are the design matrices of the fixed and random
effects, respectively, and in the linear predictor for the mean, X.disp is the design matrix
of the fixed effects for the dispersion parameter. This enables a more flexible modeling of
the random effects than specifying the model by an R formula. Consequently, this option
is not as user friendly but gives the user a possibility to fit random regression models and
random effects with known correlation structure. Such an input feature can be particularly
useful when dealing with complex correlated data (e.g. spatial data) or high-throughput
data (e.g. DNA sequencing data). Specifically, the bigRR = TRUE option enables hglm
to interact with another package of ours, bigRR (Shen et al., 2013), to efficiently fit high-
dimensional data (“p � n”).

Here, we present examples in our interdisciplinary research based on the hglm package,
dealing with different types of data in biology and chemistry. We highlight some important
challenges in these fields that require further investigation in statistical modeling using
random effects.

2. Applications using hglm

Although one of the unique features in hglm is to fit non-Gaussian random effects, dealing
with correlated random effects, modeling dispersion parameters and even handling high-
dimensionality appear to be more useful features in hglm according to our empirical appli-
cations. We provide examples in this section, illustrating different data types and how we
have modeled these data using hglm.

2.1 hglm and large-scale “omics” data

One of the ultimate goals in genetics or even the general biology is to understand the link
between our phenotypes (i.e. complex traits and diseases such as height, weight, blood
presure, cancer, etc.) and our genetic materials or genotypes (i.e. information written in the
DNA). Modern biotechnology allows us to sequence the DNA of a large number of indi-
viduals, which produces “big data” containing information of many positions (a.k.a. loci)
along the genome. Using such data, one could, for instance, test the association between a
particular phenotype against each position of the genome, in order to infer functional genes
for the phenotype. This strategy is known as genome-wide association study (GWAS).

Since Klein et al. (2005) reported a causal polymorphism of complement factor H that
regulates age-related macular degeneration (AMD) in a cover letter of Science published
nine years ago, more and more genes/loci have been identified via GWAS, regulating for
instance, human disease-related traits such as blood pressure (Levy et al., 2009), blood
lipids (Aulchenko et al., 2009; Teslovich et al., 2010), coronary heart disease (CARDIo-
GRAMplusC4D Consortium et al., 2013) and breast cancer (Turnbull et al., 2010), as well
as complex traits in other species such as mice (Valdar et al., 2006), maize (Tian et al.,
2011), Arabidopsis (Atwell et al., 2010) and so on. Many statistical methods have been de-
veloped for GWAS or genomic data analysis (see reviews by Balding, 2006; Cantor et al.,
2010), together with quite a few computational tools (e.g. Aulchenko et al., 2007; Purcell
et al., 2007; Yang et al., 2010).

However, most of the existing methods and studies consider only the genomic informa-
tion (DNA level), ignoring that it is a complex regulative process from DNA to phenotype.
A chain of interconnected information is available nowadays (Figure 1), with data from
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Figure 1: Hierarchical structure from fundamental genomics to personalized treatment for
diseases. Each level of omics data contain plenty of information contributes to the ultimate
disease incidence. Properly combining all the omics information could improve our un-
derstanding of disease mechanism. However, modeling such high-throughput hierarchical
data structure is a great challenge both statistically and computationally.

DNA (genomics), RNA (transcriptomics), proteins (proteomics or metabolomics), etc. The
hierarchical nature of these omics data can hardly be neglected and requires more investi-
gation through statistical modeling.

In our preliminary analysis of approx. 10,000 people (data description not provided
due to confidentiality), we considered genomics and metabolomics to be two, potentially
interacting, contributors to the phenotype, the following model with multiple correlated
random effects was be fitted using hglm:

y|β,g,m,a,θ ∼ N(Xβ + g + m + a, Iσ2) (1)

g ∼ N(0,Gσ2
g) (2)

m ∼ N(0,Mσ2
m) (3)

a ∼ N(0,G ◦Mσ2
gm) (4)

where y is the phenotypic response vector, β the fixed effects (sex and age) with design ma-
trix X, g the random genomic effects, m the random metabolomic effects and a the random
interaction effects between the genome and metabolome. θ denotes the vector of variance
components (σ2

g , σ
2
m, σ2

gm, σ2)′. Each of the random effects terms are correlated due to the
genomic relationship (given by G) and similarity in metabolomic profiles (given by M) of
the individuals. The correlation structure for the interaction between the two is constructed
as the Hadamard product G ◦ M as described earlier in relation to modeling of random
epistatic effects (Rönnegård et al., 2008). This is a direct polygenic-poly-metabolite way
to test the contribution of each level of omics data using a linear mixed model. After com-
puting the matrices G and M in R, model (4) can be fitted by the following commands:

svd.G <- svd(G) ## SVD is used here and onwards
## because it’s numerically more stable
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svd.M <- svd(M)
svd.GM <- svd(G*M)
Z.G <- svd.G$u %*% diag(sqrt(svd.G$d)) ## calculating design matrix for

## genetic effects
Z.M <- svd.M$u %*% diag(sqrt(svd.M$d)) ## calculating design matrix for

## metabolites effects
Z.GM <- svd.GM$u %*% diag(sqrt(svd.GM$d)) ## calculating design matrix for

## the interaction effects
require(hglm)
model1 <- hglm(y = y, ## response vector

X = model.matrix(~ sex + age), ## fixed effects design matrix
Z = cbind(Z.G, Z.M, Z.GM), ## 3 random effects design matrices
RandC = c(ncol(Z.G), ncol(Z.M), ncol(Z.GM)) ## column numbers
)

The model fitting results indicated that omics data beyond genomics, such as metabolomics,
could explain, e.g. approx. 5 times more observed variance of body mass index (BMI) than
the genome itself. Although this is a rather crude way of incorporating different types of
omics data, one can realize the potential of modeling “big data” in the biological regulative
hierarchy.

Another strategy that we have investigated is to “weight” different genomic markers
(predictors) differently, in order to obtain a model with better predictive performance. With-
out information beyond the genome, a double HGLM (DHGLM) can be fitted by iterating
between two HGLMs, one for the mean, the other for the dispersion parameter of the ran-
dom effects (Shen et al., 2011). For a complex trait, the phenotype y (n × 1 vector) is
postulated as a random effect model

y = Xβ + Zg + e (5)

where g ∼ N(0, diag(λ)) are the effects of genomic markers, λ = (λ1, λ2, . . . , λm)′ are
the variances of the SNP effects, and the residuals e ∼ N(0, σ2I). The fixed effects β
included an intercept and other fixed effects to reduce the residual errors. The variance
components λ are modeled as

log λ = 1a + b (6)

with an intercept a as fixed effect and normally distributed random effects b. When b is
i.i.d., the above model is equivalent to the well-known “BayesA” model (Meuwissen et al.,
2001) in the genomic prediction area. Such a model, even though it uses nothing else
but the genomic information, applies variable shrinkage to the loci effects and therefore
better predictive power. However, due to the high-dimensionality in the big genomic data,
fitting this DHGLM can be computationally very heavy or even impossible within a reason-
able time frame. We showed that such DHGLM can be simplified as a 2-step generalized
ridge regression, which is much more efficient to compute, without losing its predictive
performance (Shen et al., 2013). Our generalized ridge regression model was named “het-
eroscedastic effects model” (HEM) and implemented in the bigRR package. With the data
y, X and Z loaded, the above model can be fitted as:

require(bigRR)
RR <- bigRR(y = y, X = X, Z = Z) ## fitting a big ridge regression

## without b in eq. (6)
HEM <- bigRR_update(RR, Z = Z) ## fitting heteroscedastic effects model

Our algorithm and implementation in R are quite efficient especially when the number
of observations is not very big, e.g. a HEM with 100 observations and 1,000,000 predictors
can be fitted in approx. 3 minutes on an ordinary laptop. It would be ideal that one can
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incorporate other types of omics data or biological information of different genomic mark-
ers into the dispersion part of the model, however, no successful improvement in prediction
has been found in our trials, and this topic remains a challenge to genetisists.

2.2 hglm and high-dimensional chemometric analysis

Prediction problems using high-dimensional data exist in various fields of research, e.g.
analytical chemistry or chemometrics. One aim in chemometrics is to infer the contents of
a chemical mixture according to a spectrum profile from e.g. Fourier transform infrared
spectroscopy (FTIR) containing signals at different wavelengths. The major reason for
performing such prediction analysis is that determination of chemical compounds in a mix-
ture through separation methods such as high-performance liquid chromatography (HPLC)
is very costly. Successful inference of the mixture contents via a unified FTIR spectrum
would reduce the cost and also improve efficiency. Different from the genomic prediction
problem in biology, the predictors from FTIR (i.e. the Z matrix using the notation above)
are actually determined by the response variable y, but the mathematical association be-
tween y and Z can be treated similarly as in genetics.

Partial least squares (PLS) regression has been a classic and popular method to conduct
chemometric prediction. While recently, we showed that in our real experimental silage
samples, HEM, as a representative of DHGLM, out-performed PLS and ridge regression
(RR) in terms of predictive power (Shen et al., 2014). For about 70% of the cases, HEM,
a linear mixed model with structured dispersion of random effects, predicted better than
PLS, and for approx. 90% of the cases, HEM dominated RR. One reason why such a linear
mixed model with re-weighted random effects could perform well, is that the architecture
inherited in the data fits the intermediate shrinkage of the model. In both genetics and
chemometrics, one can find that only a small number of the predictors have relatively large
effects, whereas the rest of the predictors cannot be ignored either since the sum of their
small effects contributes significantly to the prediction. HEM or similar DHGLMs allow
us to properly penalize the random effects differently according to their contributions to the
variance of the response variable.

2.3 Spatial modeling using hglm

In hglm, dealing with correlated random effects through flexible user-defined design ma-
trices is a useful feature that most mixed model packages misses. The reason why we
implemented the package in this way initially was that many of our modeling problems in
practice require correlated structure in the random effects. Besides relatedness among indi-
viduals due to genetics introduced above, spatial relatedness due to e.g. different sampling
locations could also be considered. From version 2.0 of hglm, we developed and included
a new algorithm for fitting spatially correlated random effects (Alam et al., 2014). A new
random effects family CAR is included for fitting such spatial generalized linear models
with conditionally autoregressive (CAR; Besag, 1974) random effects.

Using this new feature, we carried out a novel analysis, trying to incorporate both the
genetic and spatial correlation structure in approx. 600 Scots pines sampled in northern
Sweden by The Forestry Research Institute of Sweden, SkogForsk. The trees’ height y
was modeled by a linear mixed model:

y = µ + Za + Ws + e (7)

where µ is an intercept term, Z and W incidence matrices connecting the individual ran-
dom effects with the observed phenotypes, a normally distributed additive genetic effects
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with variance-covariance matrix Aσ2
a with A being the additive relationship matrix (e.g.

see pp. 442-444 of Pawitan, 2001), e ∼ N(0, Iσ2
e) the residuals, and s are the random

spatial effects that follow a CAR model, i.e. the inverse of the variance-covariance matrix
of s is given by

Σ−1 =
1
τ
(I− ρD) (8)

where τ is a spatial variance parameter, ρ a spatial correlation parameter, I the identity
matrix, and D is a neighborhood matrix having elements 0’s and 1’s indicating which
seedlings are adjacent to each other. In hglm 2.0, with data y, A and D loaded, the above
linear mixed model including two random effects terms with different distributions can be
fitted as:

svd.A <- svd(A)
Z.A <- svd.A$u %*% diag(sqrt(svd.A$d))
n <- length(y)
require(hglm)
model2 <- hglm(y = y, ## response vector

X = matrix(1, n, 1), ## intercept-only fixed effect
Z = cbind(diag(n), Z.A), ## 2 random effects design matrices
rand.family = list(CAR(D = D), gaussian()), ## different families
RandC = c(100, 20) ## column numbers specified
)

The estimated spatial correlation parameter was ρ̂ = 0.126. Compared to a linear
mixed model with only the genetic effects, including the spatial effects reduced the genetic
variance estimate by a quarter and the residual variance estimate by a third. These results
confirmed the importance of including spatial effects in plant trials.

3. Grand challenges

Besides hglm, there are other R packages that solve linear mixed models, and together as a
R-based framework, we face quite a few practical challenges for which the current mixed
model packages have not yet been well established. We propose the future developments to
handle the following issues based on linear mixed models. We foresee the great importance
of such contributions to empirical scientific research.

3.1 Challenge I: high-dimensionality

“Big data”, as a fashionable term, has been emphasized in various disciplines. Generally
speaking, “big data” are large, population-scale data sets, typically from innovations in
high-throughput technology, e.g. genome sequencing, internet technology, image process-
ing, etc. These “big data” are so large and so high-dimensional that even storing, transfer-
ring and visualizing can be quite difficult. The data are usually collected by many different
ways and different groups and require advanced computational tools and new statistical
methods to analyze. Therefore, the first challenge we normally face in practical data analy-
sis is to handle high-dimensional data, by fitting a feasible high-dimensional mixed model
for instance, on an accessible computer. For example, our HEM method described above
is a reduced DHGLM, which is capable of estimating hundreds of thousands of effects,
although sacrificed the full likelihood. The size of “big data” could be the first practical
concern in the future developments of mixed model packages.

3.2 Challenge II: correlated random effects & multicollinearity

The high-dimensional random effects or predictors usually show another characteristic in
real data, i.e. some of the variables, usually adjacent to each other according a sequential
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order, can be highly correlated (see Figure 1 in Shen et al., 2014, for a visualization of
such correlation in genomic and FTIR spectrum data). Although it is not a computational
problem for fitting linear mixed models or ridge regression in such data, properly modeling
such multicollinearity structure, e.g. in the dispersion parameter of the random effects,
could dramatically improve the estimation and predictive power.

3.3 Challenge III: hierarchical data structure

As we have introduced in Figure 1, it has been a very challenging problem to model hier-
archical omics data structure in biology. Superficially, we obtained a collection of different
types of explanatory variables or predictors, but the underlying biological meaning of the
data told us that one set of these predictors may have effects on another. A naive model for
such structure underlying a complex trait y could be:

y = µ + Za + Wu + e (9)

where a ∼ N(0,Gσ2
g) are the genetic effects, u ∼ N(0,Mσ2

m) the higher-level omic
effects such as metabolomic effects, µ = Xβ the fixed effects and e the residuals. Note
that both a and u are individual effects, having the same size as y, which means both Z
and W are square matrices. In this way, the omics effects could be further modeled by the
genetic effects according to the hierarchy:

u = µ′ + Za′ + e′ (10)

where a′ ∼ N(0,Gσ′2
g ) are the genetic effects, µ′ = Xβ′ the fixed effects and e′ the

residuals. Thus, we obtain a unified mixed model:

y = µ + Wµ′ + Za + WZa′ + We′ + e (11)

where the term WZa′ should explain the variance in y that is due to the “chain” of DNA
- protein - phenotype, rather than the direct genetic effects Za and omics effects We′.
Such a model with multiple correlated random effects will be our next investigation, and in
general, modeling hierarchical data structure is a strongly needed topic that requires more
theoretical and empirical investigations.

3.4 Challenge IV: structured dispersion

We have described examples of modeling dispersion parameters as DHGLM, however, a
general and flexible framework for including fixed and random effects in different disper-
sion parameters is still far from well established. An ideal mixed model toolbox should
contain a mixed model module that can be adopted in different parts of a model - the mean
and any dispersion parameter. This is particularly important since more and more empir-
ical evidence of variance heterogeneity has been found in genetics (e.g. Shen et al., 2012;
Geiler-Samerotte et al., 2013). Dispersion parts of linear mixed models would become as
essential as the regular linear mixed model for the mean (Lee and Nelder, 2006; Lee et al.,
2006).

3.5 Challenge V: high order corrections for discrete responses

A major drawback of hglm is the use of extended quasi-likelihood (EQL) method which
might produce biased results, especially for discrete responses such as binary or Poisson
data. In the latest version of hglm, we have implemented HL11 correction to reduce this
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problem. The HL11 method gives improved estimates compared to EQL for a Poisson
GLMM when the number of levels in the random effect are large and i.i.d. (see hglm vi-
gnette for simulation results). The implementation follows the Appendix in Lee and Lee
(2012). However, higher order corrections may be more useful, but they would make the es-
timation procedure considerably slow. Implementation of efficient higher order corrections
for discrete data is challenging and would benefit the use of mixed models.
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