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Abstract

The Generalized Estimating Equations (GEE) approach proposed by Liang and
Zeger (1986) has become the most popular method in estimating parameters for
longitudinal data. This technique accounts for correlation inherent among re-
peated observations, allowing the researcher to specify the nature of this working
correlation. However, GEE presents major disadvantages when time-dependent
covariates (TDCs), special types of predictors involving a feedback loop, are
present (Pepe & Anderson, 1994; Fitzmaurice, 1995). Recently, Generalized
Method of Moments (GMM) has been proposed as an alternative to GEE when
estimating parameters of longitudinal data with time-dependent covariates (Lai &
Small, 2007).

There has been a lack of attention paid to GMM fit statistics in the literature. This
paper presents two statistics to assess the goodness-of-fit of models estimated us-
ing GMM in the presence of TDCs. Comparisons of identifying poor fit in nested
models is compared to similar capabilities of the quasi-likelihood information cri-
terion (QIC) using GEE.

Key Words: Generalized Method of Moments, time dependent covariates, longi-
tudinal data, goodness-of-fit, nested models, information criterion

1 Introduction

This paper presents two measures of assessment of overall goodness-of-fit of nested
models in which parameter estimates are obtained using Generalized Method of Mo-
ments (GMM) in the presence of time-dependent covariates (TDCs), special types of
predictors that create feedback loops in the data structure.

For classical maximum likelihood estimation of independently observed data, some
common statistics used in assessing model fit include the model deviance (Pregibon,
1981; Agresti, 1990; Dobson & Benett, 2008), Akaike’s Information Criterion, or AIC
(Akaike, 1973; Akaike, 1974), and Schwarz’s Bayesian Information Criterion, or BIC
(Schwarz, 1978). When using Generalized Estimating Equations (GEE) to estimate
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model parameters for correlated data, a modification of the AIC, known as the quasi-
likelihood information criterion, or QIC (Pan, 2001), is used. The literature is sparse in
the discussion of methods used to assess the goodness-of-fit for models in which param-
eters are estimated using the Generalized Method of Moments (GMM) approach. The
goal of this study is to present the need for such a statistic, as well as its establishment,
whose details will be outlined in Section 4.

2 Longitudinal Data Analysis in the Presence of
Time-Dependent Covariates

2.1 Time-Dependent Covariates

Time-dependent covariates (TDCs) are special types of predictors that oftentimes ap-
pear in longitudinal designs. Any covariate that changes over time and directly impacts
the outcome of a study is considered a time-dependent covariate. The age of a partic-
ipant in a longitudinal study to assess hypertension is an example of a time-dependent
covariate because the participant’s age will change (increase) over time. Annual glacial
coverage in an ongoing study to assess causation and impact of global climate change,
as well as the amount of chemical substance present in the half-life of a radioactive
material, are also examples of time-dependent covariates. These special types of co-
variates introduce correlation among variables over time, and this correlation must be
accounted for when constructing models for longitudinal data.

There are four types of time-dependent covariates, and distinctions are made based on
the nature of their feedback. From a mathematical standpoint, TDCs are covariates that
satisfy the expression:

E

[
∂µis(β0)

∂βj
{yit − µit(β0)}

]
= 0,

(1)

where µis is the mean response for subject i at time s, βj is the jth covariate, yit is
the response for subject i at time t, µit is the mean response for subject i at time t,
β0 is the vector of true parameters, and s and t are different observation times, where
s = (1, . . . , T ) and t = (1, . . . , T ). The four types of TDCs are defined by the combi-
nations of s and t that maintain the equality in Equation (1).

A type I time-dependent covariate satisfies the equality in Equation (1) for all s and t,
s = (1, . . . , T ) and t = (1, . . . , T ). This type of time-dependent covariate involves no
feedback; the current covariate affects only the current response.

When the current covariate affects both the current and future responses, it is a type
II time-dependent covariate. Type II TDCs satisfy the equality in Equation (1) for all
combinations of s and t such that s ≥ t.

The nature of the feedback involved in the presence of type III time-dependent covari-
ates creates a complex feedback loop in which the current response affects the covariate

JSM 2014 - Biometrics Section

1205



at some future time, and the current covariate affects the response at some future time.
Type III TDCs satisfy Equation (1) for some s > t, and it is recommended that the
independent working correlation structure be used when this type of time-dependent
covariate is present in analyses (Lai & Small, 2007).

The last type of time-dependent covariate, type IV, can be thought of as the “opposite”
of type II TDCs. When type IV TDCs are present, the current response is associated
with the current covariate, and the current response can also be associated with the co-
variate at some future time. By definition, a type IV TDC satisfies Equation (1) for all
combinations of s and t such that s ≤ t.

Due to the nature of the feedback imposed by time-dependent covariates on the data
structure, the analysis of longitudinal data in the presence of TDCs can become chal-
lenging very quickly (Neuhaus & Kalbfleisch, 1998; Diggle et al, 2002). Moreover,
depending on the method of analysis chosen, algorithm non-convergence of parameter
estimation may be an additional hurdle in the process of obtaining model parameter
estimates (Shane, 2013).

2.2 Generalized Estimating Equations and Time-Dependent Covariates

One of the most popular techniques in the analysis of correlated data is the Generalized
Estimating Equations (GEE) approach (Liang & Zeger, 1986; Zeger & Liang, 1986).
The premise behind GEE uses the assumption of a working correlation structure for the
data under investigation. The researcher proposes a working correlation structure (e.g.,
compound symmetry, order-1 auto-regressive, exponential, etc.) that likely character-
izes the nature of the correlation prevalent among repeated response measurements.

GEE uses estimating equations of the form:

S(β) =
N∑
i=1

XT
i DiR

−1
i (Yi − µi) = 0,

where Xi is the design matrix, Di is a diagonal matrix, Ri is the working correlation
structure, Yi is the vector of responses, µi is the vector of mean responses, N is the
total number of subjects, and Vi = DiR

−1
i is the working covariance matrix (Liang &

Zeger, 1986; Zeger & Liang, 1986).

One advantage of using Generalized Estimating Equations in the analysis of longitudi-
nal data is that regardless of whether or not the “correct” working correlation structure
is selected, GEE parameter estimates are always consistent (Liang & Zeger, 1986; Fitz-
maurice, 1995; Neuhaus & Kalbfleisch, 1998). Additionally, the GEE approach does
not require full specification of the response distribution. It only requires information
involving the mean-variance relationship of the response, hence only assuming a quasi-
likelihood instead of the full likelihood (Liang & Zeger, 1986; Zeger & Liang, 1986).

However, using GEE to obtain parameter estimates in the presence of time-dependent
covariates can be very difficult. Pepe and Anderson (1994) and Fitzmaurice (1995)
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advise that the independent working correlation structure be used or that a critical as-
sumption behind the Generalized Estimating Equations process be checked when using
it for parameter estimation when time-dependent covariates are present in the data.

GEE relies on the equality of the marginal expectation:

E [Yit|Xit] = E [Yit|Xis, s = 1, . . . , T ],
(2)

where Yit is the response for subject i at time t (t = 1, . . . , T ), Xit is the covari-
ate value for subject i at time t, and Xis is the covariate value for subject i at time s
(s = 1, . . . , T ). This assumption states that the expected response at time t, given the
covariate value at that same time, should be equal to the expected response at time t,
given the covariate value at any time.

Oftentimes when time-dependent covariates are present, the equality in Equation (2)
does not hold (Pepe & Anderson, 1994; Fitzmaurice, 1995); moreover, using GEE
in the presence of TDCs may result in the loss of efficiency of parameter estimates
associated with those covariates (Fitzmaurice, 1995).

2.3 Generalized Method of Moments

An alternate approach that can be taken in estimating parameters for correlated data
is to implement Generalized Method of Moments (GMM) estimation. In comparison
to using the Independent GEE approach, the use of GMM estimation improves ef-
ficiency when time-dependent covariates are present. Results from Lai and Small’s
(2007) simulation study show that GMM estimators are more efficient than Indepen-
dent GEE estimators when time-dependent covariates of types I or II are involved, and
they are equally as efficient as Independent GEE estimators when a TDC of type III
is present. Moreover, in general, GMM estimators are equally as efficient as GEE
estimators when the working correlation structure is correctly specified, and they are
asymptotically more efficient than GEE estimators when the working correlation struc-
ture is misspecified (Lai & Small, 2007).

Generalized Method of Moments, like the Generalized Estimating Equations, is a method
that accounts for correlation inherent in the data due to repeated measurements taken
on the same subjects. However, it relies on the use of moment conditions rather than on
the derivation of the likelihood or quasi-likelihood functions. Moment conditions are
products of derivative and residual terms at different times:

∂µis
∂βj

(yit − µit),

where µis is the mean response for subject i at time s (s = 1, ..., T ), yit is the response
value for subject i at time t (t = 1, ..., T ), µit is the mean response for subject i at time
t, βj is the jth covariate, and i = 1, ..., N denotes the subject.
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Moment conditions that are considered “valid” are placed into a vector, gi, of moment
conditions, where “valid” is defined by Lai & Small (2007) as:

E [g(Yi,Xi, β0)] = 0,

where Yi is the vector of responses for subject i, Xi is the vector of covariates for sub-
ject i, and β0 is the vector of true parameters.

Once the vectors of “valid” moment conditions are obtained, they are averaged over all
N subjects to obtain GN , a vector of averaged moment conditions:

GN =
1

N

N∑
i=1

g(Yi,Xi, β0)

Then, a quadratic form, QN , is constructed using GN :

QN = GN
TWNGN ,

where WN is a weight matrix, with optimal choice being the inverse of the covariance
matrix of the moment conditions, V̂ −1

N (Hansen, 1982). Hansen (2007) additionally
suggested the use of an iterative procedure in which an initial consistent GEE estimator
β̃ is used to obtain cov {g(yi, xi, β0)}−1, then estimating βGMM using V̂ −1

N , yielding
an estimator that is as asymptotically efficient as the traditional 2-Step GMM estimator
and has consistent asymptotic variance (Hansen, 2007; Lai & Small, 2007), given by:


(

1

N

N∑
i=1

∂g(yi, xi, β)

∂β

)T {
1

N

N∑
i=1

g(yi, xi, β̃) g(yi, xi, β̃)T

}−1(
1

N

N∑
i=1

∂g(yi, xi, β)

∂β

)
−1

,

where ∂g(yi,xi,β)
∂β is evaluated at β = β̂GMM (Hansen, 2007).

In order to obtain GMM parameter estimates, this quadratic form is minimized over β
(Lai & Small, 2007).

3 Measures to Assess Model Goodness-of-Fit

The natural step that follows statistical modeling involves the assessment of model
goodness-of-fit. Section 3 outlines several exisiting statistics used to measure overall
model fit. Several statistics are listed for assessing the goodness-of-fit of models in
which observations were taken independently, as well as for assessing the fit of models
constructed from correlated data. Lastly, the need for a new fit statistic is presented at
the end of Section 3.
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3.1 Existing Fit Statistics For Uncorrelated Data

3.1.1 Model Deviance

To assess the fit of any model based on independently observed data, the model de-
viance is commonly used. Deviance is a very useful tool in assessing the goodness-of-
fit of a model because it can be used to: 1) measure the deviation of a specific model
from the data, and 2) compare two nested models.

Regardless of the comparison – whether a candidate model is compared to the full data
or two candidate models are compared – deviance is always calculated as the different
in the log-likelihoods of the two models, the likelihood ratio (Agresti, 1990). It is the
information not explained by a specified model. Moreover, the model deviance always
follows a Chi-square distribution with degrees of freedom equal to the difference in the
number of parameters of the two models being compared:

D(y; µ̂2)−D(y; µ̂1) = 2 [L(µ̂2; y)− L(µ̂1; y)] ∼ χ2
p ,

where p denotes the difference in the number of parameters in the two models, and
L(µ̂; y) is the maximum value of the log-likelihood under the given models (Agresti,
1990). In the case where a specific model is compared to the data, p = N−k, whereN
denotes the number of observations in the data, and k denotes the number of parameters
in the specified model (Agresti, 1990).

3.1.2 Akaike’s Information Criterion

To assess the fit of models derived using maximum likelihood estimation, researchers
oftentimes rely on Akaike’s Information Criterion (AIC), an information-based fit statis-
tic proposed by Akaike (1973). AIC assumes no distribution; rather, it is a single value
that is used descriptively to represent the amount of information lost from fitting a spe-
cific model to the data. It does not require the comparison of two nested models but
rather compares a model to the actual data (Akaike, 1973). AIC is:

AIC = −2 L(β; y) + 2k ,

where L(β; y) is the maximum of the log-likelihood of the specified model, and k is
the number of parameters in the model, not including interaction terms.

AIC is an information-based theoretical criterion that can be used to compare nested
models (Akaike, 1974). It can be used to compare models with different numbers of pa-
rameters. The process involves maximizing the likelihood function individually for all
potential nested models being compared and choosing the model that gives the largest
discrepancy between its maximized likelihood and the dimension of the model (Akaike,
1974; Schwarz, 1978). Better fitting models are associated with having smaller AIC
values.
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This statistic can be used to compare models with varying numbers of parameters be-
cause models with greater numbers of parameters are penalized more (by the term 2k).
Thus, AIC can be thought of as a fit statistic that almost always selects parsimonious
models. It takes into account the value of the maximum of the log-likelihood, then adds
the penalty to it; thus, the larger the value of the AIC, the farther the model deviates
from the observed data. In the sense of multiple regression models, the value of AIC
for models with different combinations of predictors can be used to select which model
is most “ideal” (Akaike, 1974).

3.1.3 BIC

Another commonly used information criterion that measures the goodness-of-fit of a
model is the Bayesian Information Criterion (BIC), proposed by Schwarz (1978):

BIC = −2 L(β; y) + k · ln(n) ,

where L(β; y) is the likelihood derived from the data, k is the number of predictors in
the model, and n is the number of observations in the data.

BIC is very similar to AIC in that it uses the maximum value of the log-likelihood of
the model, and it penalizes for the number of parameters included in the model. The
penalty for BIC (i.e., the term k · ln(n)) is larger than that of the AIC because BIC
penalizes a model for the number of parameters it includes, as well as for the number
of observations in the data. The larger the number of observations in the data, the larger
the value ln(n) grows. For this reason, BIC tends to favor more parsimonious models
than AIC (Schwarz, 1978).

3.2 Existing Fit Statistics For Correlated Data

3.2.1 QIC

When assessing the fit of models with parameters estimated using maximum likelihood
estimation procedures, either the model deviance or information-based goodness-of-
fit statistics, such as AIC and BIC, are used. These statistics required the use of the
full likelihood of the response. When using the Generalized Estimating Equations ap-
proach, we use a quasi-likelihood instead of the full likelihood. Analogously, in as-
sessing the fit of models with parameters estimated using GEE, the quasi-likelihood
information criterion (QIC), proposed by Pan (2001), is commonly used:

QIC = −2Q(β̂(R); I, Y ) + 2 · trace(Ω̂I V̂r) ,

where Q is the quasi-likelihood of the response under the independence model (in this
case), β̂ is the vector of parameter estimates obtained using GEE, I is the indepen-
dent correlation structure, Y is the vector of observed responses, and Ω̂I V̂r denotes the
working covariance structure. The independent working correlation structure has been
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specified here because it has been shown in simulation studies that the working inde-
pendence model shows best performance (Pan, 2001).

QIC can be used to select a working correlation structure in GEE. The QIC is cal-
culated for various working correlation structures, and the one with smallest QIC is
selected (Pan, 2001). Using this information criterion in this way, a small value of the
QIC suggests that the specified working correlation is very close to the true correlation
structure present in the data.

3.2.2 QICu

An alternative statistic to the QIC is also available. Pan (2001) shows that when all
modeling specifications in GEE are correct, Ω̂−1

I is asymptotically equivalent to V̂r,
and trace(Ω̂I V̂r) ≈ trace(I) = p, then the QIC is equivalent to the AIC (Pan, 2001)
and can be estimated using:

QICu ≡ −2Q(β̂(R); I, Y ) + 2p ,

where, again, p is the number of parameters in the specified model.

QICu can be used for variable selection, but it cannot be used to select the working
correlation structure (Pan, 2001). To select a model, the QICu should be calculated for
all candidate models (i.e., various combinations of predictors), and the model with the
smallest QICu is selected.

3.3 GMM and Model Goodness-of-Fit

The literature is sparse in its discussions involving the assessment of fit of model param-
eters estimated using Generalized Method of Moments when time-dependent covariates
are present. Existing measures of fit – including deviance, AIC, BIC, QIC, and QICu –
are not appropriate statistics in assessing the fit of models in which parameter estimates
were obtained using GMM because these statistics were derived using either the full
likelihood or the quasi-likelihood of the data, whereas GMM does not employ the use
of any likelihood function.

The majority of discussions involving GMM and model fit revolve around the idea of
overidentification of models (Newey, 1985; Hall, 1999; Andrews, 1999; Hansen, 1982;
Hansen, Heaton, & Yaron, 1996). Overidentification results when more than the nec-
essary number of moment conditions are used in the estimation of model parameters.
However, this is not a primary interest in this study.

Useful results about the distribution of the minimum of the GMM quadratic form,
QN (β), is presented by Hansen, Heaton, and Yaron (1996). It has been shown that
the minimand of the quadratic form multiplied by the number of subjects, N , follows
a Chi-squared distribution with degrees of freedom equal to the difference between the
number of moment conditions in the population and the number of estimated parame-
ters (Hansen, Heaton, & Yaron, 1996):
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min(QN (β)) ∼ χ2(m− k),
(3)

where m denotes the number of moment conditions used in the estimation process, and
k denotes the number of parameters in the model.

Results presented in the form of Equation (3) allow researchers to test hypotheses about
the quadratic form, which gives insight as to whether or not “sufficient” moment con-
ditions were used in the estimation process. However, this assesses the appropriate
inclusion – or exclusion – of a set of moment conditions rather than assessing the over-
all fit of the model.

The results from Newey (1985) and Hall (1999) point in a similar direction. Hall (1999)
establishes hypotheses tests for the overidentifying moment conditions based on the
mathematical results presented by Newey (1985), but very little is discussed about the
overall goodness-of-fit of the model.

Discussions involving a GOF-like statistic presented by Lai and Small (2007) introduce
hypothesis test for time-dependent covariate type. The statistic used in this hypothesis
test relies on the difference in minimands of quadratic forms under the two models:

CN = N
[
Q1(β̂GMM )−Q2(β̂GMM )

]
∼ χ2(r − q),

where Q1 and Q2 are the minimums of quadratic forms of two candidate models, and
r − q is the difference in dimensions of these models.

The main goal of our research is to establish a fit statistic – an information-based cri-
terion, much like AIC or BIC – that has no distribution but is represented by a scalar
to assess overall goodness-of-fit of models that were constructed using Generalized
Method of Moments. Specifically, interest is geared toward establishing a statistic for
the fit of models in which parameter estimates were obtained using GMM using data
with at least one time-dependent covariate.

4 Statistics for Assessing Model Fit

Section 4 outlines the process for obtaining two statistics that can be used in conjunc-
tion with each other to assess the overall fit of models constructed using Generalized
Method of Moments in the presence of time-dependent covariates. These methods rely
neither on the likelihood, nor the quasi-likelihood, but rather on the use of moment
conditions, as is the case with the GMM process.

4.1 GMM Model Fit Statistic

Currently, there is no universal method in assessing the goodness-of-fit of models in
which parameters are estimated using Generalized Method of Moments in the presence
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of time-dependent covariates. One approach is to use the minimum of the quadratic
form to assess the overall “goodness” of the model; the smaller the minimum of the
quadratic form, the better the model.

Distributional results from Hansen, Heaton, and Yaron (1996), as well as Hall’s (1999)
discussion on non-nested models (§4.6), can be used to form hypothesis tests for overi-
dentifying restrictions of moment conditions. However, these methods test whether or
not an estimate β formed from a set of moment conditions deviates from β0; it does not
test overall model fit.

Additionally, there is no published work in the body of literature that suggests any of
these methods were employed in the presence of time-dependent covariates. There is
the need to establish a statistic that is based on moment conditions rather than on the
specification of the full likelihood or quasi-likelihood functions. Further, there is a need
for a more information-based fit statistic to assess the overall goodness-of-fit of models
in which parameters are estimated using GMM in the presence of TDCs. Without such
a statistic, it would be difficult to assess whether or not a model and its parameter
estimates are reasonable or even meaningful.

4.2 Moment-Based Goodness-of-Fit Statistics

Two measures may be used in conjunction with each other to assess the goodness-of-fit
of a model in which parameter estimates are obtained using Generalized Method of
Moments in the presence of time-dependent covariates. This method relies on neither
the likelihood function, nor the quasi-likelihood function; instead, it relies on the use of
moment conditions and an established measure of distance. The first statistic utilizes the
minimum of the quadratic form used in the GMM estimation process, and the second
statistic is the Kullback-Leibler information statistic (Kullback & Leibler, 1951).

4.2.1 Minimum of the GMM Quadratic Form

Based on Hansen, Heaton, and Yaron’s (1996) findings, the goodness-of-fit of two
nested models, M1 and M2, can be compared using the statistic:

C = (minimumQF1 −minimumQF2) ∼ χ2
(m),

wherem denotes the difference in the number of parameters between the two candidate
models. In other words, the difference between the minimum of the GMM quadratic
forms of two competing models follows a Chi-squared distribution with degrees of
freedom equal to the difference between the number of parameters in the two models
(Hansen, Heaton, & Yaron, 1996).

This statistic, C, can be used to test the hypothesis:

H0: The candidate model with less parameters is sufficient in explaining the
variation in the response.

HA: The candidate model with less parameters is not sufficient in explaining the
variation in the response.
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If the true model, M0, is known and fully specified using the full data, the statistic C
can be used to assess whether or not an alternate model with less parameters is adequate
in explaining the variability present in the response, due to trivial deviation from the full
model (Hansen, Heaton, & Yaron, 1996; Hall, 1999).

4.2.2 Kullback-Leibler Information Criterion

The Kullback-Leibler information based measure of distance can be used as a measure
to assess the discrepancy of a candidate model from the “null” model – i.e, the data
(Kullback & Leibler, 1951; Csiszár, 1975; White, 1982).

Using an estimation process such as the 2-Step Generalized Method of Moments (Lai
& Small, 2007), a set of parameter estimates, β̂, is obtained. This β̂ is used to calculate
an estimate for the Kullback-Leibler Information Criterion (KLIC):

̂KLIC = min
γ

(
1

N

N∑
i=1

eγ
T gi(yi,β̂)

)
,

where γ is a vector of unknown parameters.

The Kullback-Leibler information statistic is similar to other measures of goodness-of-
fit, such as AIC, BIC, QIC, and QICu, in that it is represented by a single number and
follows no distribution; therefore, no hypothesis test can be formed using the Kullback-
Leibler information based measure of distance as a basis for inferential conclusions.

Rather, the Kullback-Leibler information statistic can be used to compare nested mod-
els. The candidate model with the smallest value of the Kullback-Leibler information
criterion is selected.

5 Conclusions

This paper highlighted the need for an information-based criterion, similar to Akaike’s
Information Criterion or the Quasi-likelihood Information Criterion, that can be used to
assess the overall goodness-of-fit of models in which parameter estimates are obtained
using Generalized Method of Moments in the presence of at least one time-dependent
covariate. Because the algorithm behind GMM employs the use of moment conditions
rather than the likelihood or quasi-likelihood functions, there is a need for a measure of
fit that is derived from moment conditions.

In Section 4, two statistics were proposed as methods to assess the overall goodness-of-
fit of models constructed using Generalized Method of Moments estimation: the first
approach utilizes the difference in minimums of the GMM quadratic forms, and the
second method uses the Kullback-Leibler information criterion. Neither method relies
on the derivation of the likelihood or the quasi-likelihood; both rely on the use of mo-
ment conditions, similar to the process behind GMM.

In theory, the two methods should yield results that agree; the candidate model with the
smallest value of the estimated Kullback-Leibler information criterion should also be
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the most parsimonious model that does not deviate significantly from the full data, in
terms of accounting for response variability.

Some alternatives may exist for assessing the fit of correlated models, but more work is
necessary to establish a statistic that is universally agreed upon.
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