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Abstract
Activity profiles of terrorist groups show frequent spurts and downfalls corresponding to changes in
organizational dynamics, e.g., changes in intentions/ideology, tactics/strategies, capabilities/resources,
etc. The goal of this work is the quick detection of such patterns and in general, prediction of
macroscopic trends in group dynamics. Prior work in this area are either based on time-series anal-
ysis techniques, self-exciting hurdle models, or hidden Markov models. While these approaches
detect spurts and downfalls reasonably accurately, they are all based on model learning – a task that
is difficult in practice because of the “rare” nature of terrorist attacks from a model learning per-
spective. In this paper, we pursue a non-parametric majorization theory-based framework for spurt
detection in activity profiles. In addition to being computationally simple, this approach can also
clearly delineate spurts as those arising due to changes in resilience and/or level of coordination in
the group.

Key Words: Change-point detection, non-parametric detection, terrorism analysis, spurt detection,
majorization theory

1. Introduction

Over the last few decades, terrorism has become a serious challenge with enormous im-
plications on many aspects of our day-to-day life. Thus, there has been a growing interest
in capturing different attributes of a terrorist group that impact its activity profile and in
mathematically modeling these relationships. Another problem of immense interest is the
quick detection of sudden and abrupt changes in behavioral trends of terrorist groups. Many
stakeholders such as those in government policy, counterinsurgency operations, coordina-
tion across multiple organizations, etc., critically depend on such decisions.

Broadly speaking, changes in terrorist group dynamics could be attributed [1] to changes
in some/all of the following underlying attributes: i) Intentions/ideology – What the group
wants?, ii) Capabilities/resources – What the group has?, iii) Tactics/strategies – How the
group uses what it has to get what it wants? Many of these attributes are however unobserv-
able/hidden and changes in these attributes have to be inferred from the group dynamics.
Thus, the most natural pathway is the development of a stochastic state-space model for
the terrorist group dynamics with the hidden attributes as states. Inferencing on changes in
attributes is performed after the model parameters of the underlying state-space model are
optimally estimated to meet certain appropriately chosen model learning criterion.

Examples of this philosophy include the use of classical time-series analysis techniques
such as the threshold vector auto-regression (TAR) model [2–4] and Cox proportional haz-
ards or zero-inflated Poisson models [5,6] for the short- and long-run behavior of world ter-
rorist activity. More recent focus has been on disambiguating the behavior of specific terror-
ist groups by developing individual models for different groups. In particular, self-exciting
hurdle models (SEHM) [7] (that have been classically used for seismic activity model-
ing [8]) have been used to model terrorism, inter-gang and insurgency dynamics [9–11].
An alternate framework based on hidden Markov models (HMM) assumes the dominance
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of the Capability attribute (relative to Intentions and Tactics) and explicitly models the
missing link between different levels of Capabilities of the group with the observables in
terrorism group dynamics [12]. Such a simplifying assumption can be reasonably justified
across many mature terrorist groups, which will also be an operating assumption in this
work.

With a focus on quick identification of a sudden spurt (or a sudden downfall) in the
activity profile of a group, [12] developed a parametric approach wherein the underlying
HMM parameters are learned over a training-period and the Viterbi algorithm is used to
estimate the most probable state sequence. This approach detects (and tracks) not only
non-persistent changes, but also has a low detection delay thus allowing the identification of
key geopolitical undercurrents (or events) that lead to sudden spurts/downfalls in a group’s
activity. However, this approach suffers from a significant and fundamental disadvantage
that renders it impractical. A sparse activity profile from the viewpoint of model learning
ensures that a good model fit comes at the cost of model efficaciousness in the context of
meaningful geopolitical event attribution. In other words, the overhead of model learning
always renders model stability and usefulness questionable.

In the goal of a non-parametric approach to address this problem, we attribute a change
in Capabilities in this work to either a spurt in the resilience or level of coordination (or
both) of the group. We then propose a majorization theory-based framework [13] where the
normalized attack vectors over a period of δ days (a vector with entries being the fraction
of attacks over the δ day period) are compared. We show that the class of Schur-convex
functions provides an analytical basis to classify spurts. Functions of the normalized attack
vector such as the negative Shannon entropy, p-th mean for p > 1, etc., serve as good
candidate functions for classifying spurts. The performance of the proposed strategies are
illustrated with open-source data from the RAND Database on Worldwide Terrorism Inci-
dents (RDWTI) [14].

2. Background: Changepoint Detection

The changepoint detection problem of detecting sudden and abrupt changes in the statistical
nature of observations has been studied for over sixty years. Considerable progress and
maturity have been achieved in the design of computationally efficient and near-optimal
changepoint detection algorithms (for different design criteria) under the assumption that
the univariate observations are independent and identically distributed (i.i.d.) in both the
pre-change and post-change settings and further that these distributions are known; see, for
example, [15–20] and the references therein for a summary of the state-of-the-art of the
area.

In the context of terrorist group dynamics, the observations are not only multivariate but
are also of a mixed1 type (time, location, intensity and impact of the attacks being the typ-
ical observables). In the more general setting where the observations are multivariate and
come from a complex network that bestows correlations in both time and spatial (network)
structure, changepoint detection theory is still a work in progress; see, for example, [21–26]
for typical problem formulations.

More importantly, despite the recent surge in media attention on trans-national terrorist
activities and insurgencies, terrorism incidents are “rare” (from the perspective of model
learning), even for some of the most active terrorist groups. For example, a typical dataset
considered in this work corresponds to 604 incidents over a nine-year period leading to
an average of approx. 1.29 incidents per week. While a case can be made that this dataset

1Both qualitative as well as quantitative variables.
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reports only a subset of the true activity, the fact that significant amount of resources have to
be invested by the terrorist group for every new incident acts as a natural dampener toward
more attacks. Thus, an online approach based on model learning (however good the model-
fit for the data is) is inherently difficult to utilize in practice because of uncertainty in the
applicability of the learned model (based on data from the significant past) to the current.
The fact that most models capture some underlying attribute of the group dynamics, which
in itself can change dramatically over a long time-period, makes assumptions of model
stability over such periods questionable.

Motivated by similar considerations, non-parametric online changepoint detection al-
gorithms that are independent of model parameters and that capture different facets of the
observations have also been extensively studied in the literature. In particular, tests based
on signs or signed rank statistics (with median scores and Wilcoxon scores) are studied
in [27–29]. On the other hand, robust sequential changepoint detection algorithms are con-
sidered in [30–36]. Despite this rich history, most of these works are difficult to apply in
the context of terrorist groups since the underlying distributions are completely unknown.
Further, the rich connections between the hidden states and the observables are not fully
exploited with these approaches. Toward establishing this connection, we now propose a
majorization theory based framework in this work.

3. A Majorization Theoretic Framework

With a focus on a terrorist group’s Capabilities, the goal here is on arriving at quick deci-
sions and to understand whether a spurt/downfall in the activity profile could be attributed
either to a change in the group’s level of resilience or a change in the level of coordination
between different sub-groups of the group or both of these aspects. In this work, resilience
is defined as the ability of the group to perpetrate attacks over successive days, whereas
coordination is defined as a measure of the number of independent attacks over the same
day. To illustrate, consider two extreme scenarios: i) a group conducting δ attacks on a
specific day over a δ-day time-window and no other attacks in this period, and ii) a group
conducting one attack on each day of the δ-day period. The former setting correlates well
with a group having a high-degree of coordination, whereas the latter setting would be more
amenable with the belief that the group has a high-degree of resiliency.

Rephrasing the above discussion, a metric that measures the degree of “well-spreadness”
of attacks (or its lack thereof) over an appropriately chosen time-window can be used as an
indicator of high resilience (or coordination). On this note, majorization theory provides a
theoretical framework to compare two vectors on the basis of their “well-spreadness” [13].

Let P(δ) denote the space of probability vectors of length δ with M = [M1, · · · ,Mδ] ∈
P(δ) =⇒ Mi ≥ 0 for all i = 1, · · · , δ and

∑
iMi = 1. Without loss in generality, we can

assume that the entries of M are arranged in non-increasing order (M1 ≥ · · · ≥ Mδ).

Definition 1 (Majorization). Let {M , N} ∈ P(δ). We say that M is majorized by N and
denote it as M ≺ N if

k∑
i=1

Mi ≤
k∑

i=1

Ni, k = 1, · · · , δ. (1)

Note that equality holds in (1) for k = δ because {M , N} ∈ P(δ), which implies that∑
iMi = 1 =

∑
iNi.
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We now provide two illustrations of majorization relationships. We have[
1/δ, · · · , 1/δ︸ ︷︷ ︸

δ times

]
≺ · · · ≺

[
1/k, · · · , 1/k,︸ ︷︷ ︸

k times

0, · · · , 0︸ ︷︷ ︸
(δ−k) times

]
≺ · · · ≺

[
1, 0, · · · , 0︸ ︷︷ ︸

(δ−1) times

]
.

As k decreases from δ to 1, we proceed to the right on the majorization relationship in the
above equation. In particular, any length δ probability vector M satisfies:[

1/δ, · · · , 1/δ︸ ︷︷ ︸
δ times

]
≺ M ≺

[
1, 0, · · · , 0︸ ︷︷ ︸

(δ−1) times

]
.

Definition 2 (Schur-convex and -concave functions). A function f : (R+)
δ 7→ R is said

to be Schur-convex if for any M and N with M ≺ N implies that f(M) ≤ f(N). A
function f(·) is Schur-concave if −f(·) is Schur-convex. That is, M ≺ N implies that
f(M) ≥ f(N).

We now provide some examples of Schur-convex and Schur-concave functions.

Proposition 1. The Number of elements function, defined as,

NO(M) ,
∑
i

11 ({Mi > 0})

is Schur-concave on P(δ). Further, the Shannon entropy and geometric mean functions,
defined as,

SE(M) , −
∑
i

Mi log(Mi), GM(M) ,
(∏

i

Mi

)1/δ

are also Schur-concave on P(δ). The power mean function corresponding to an index α,
defined as,

PM(M , α) ,
(∑

i

Mα
i

)1/α

is Schur-convex in P(δ) if α ≥ 1 or α ≤ 0. On the other hand, if 0 ≤ α ≤ 1, then
PM(M , α) is Schur-concave in P(δ). If Mi = 0, −Mi log(Mi) is extended continuously
to 0 and Mα

i is extended continuously to 0 if α > 0 and ∞ if α < 0. A straightforward
consequence of the above results is that the normalized power mean, defined as,

NPM (M , α) , PM (M , α)

NO (M)

is Schur-convex if α > 1.

Proof. To see that NO(M) is Schur-concave, assume that M ≺ N and let

N = [N1, · · · , Nr, 0, · · · , 0]

with Nr > 0. A rewriting of the condition in (1) is:

δ∑
i=k

Mi ≥
δ∑

i=k

Ni, k = 1, · · · , δ. (2)
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With k = r in (2), we have
∑δ

i=r Mi ≥ Nr > 0. We have a contradiction if Mr = 0 since
{Mr, · · · ,Mδ} are arranged in non-increasing order and all of them have to be 0. Thus,
Mr > 0 and this implies that∑

i

11 ({Mi > 0}) ≥
∑
i

11 ({Ni > 0}) .

By restricting attention to the subset of indices with non-zero entries, without loss in
generality, we can assume that Mδ > 0. For N , we begin by considering the setting
where Nδ > 0. The proof of the Schur-convexity or -concavity of the different candi-
date structures in the statement of the proposition follow from the main result [13] that
if g : (0, ∞) 7→ R is convex (or concave), then M 7→

∑
i g(Mi) is Schur-convex (or

Schur-concave). In the setting where N ∈ P(δ), but {Nr+1, · · · , Nδ} = 0, all the in-
equality relations corresponding to Schur-convexity and -concavity hold trivially with the
appropriate continuous extensions.

At this stage, it is important to note that majorization theory only provides a partial
ordering of vectors in P(δ) and not a complete ordering. For example, it can be seen that
both M ≺ N and N ≺ M are false with the choices M = [0.4, 0.35, 0.15, 0.1] and
N = [0.45, 0.27, 0.25, 0.03]. Thus, two arbitrary probability vectors in P(δ) cannot be
compared by a majorization relationship. Further, while Schur-convexity and -concavity
allow an ordering of vectors on R, we seek a reverse majorization theory where f(M) ≤
f(N) for an appropriate choice of f(·) implies that M ≺ N .

These two requirements are partially met by the notion of catalytic majorization (also
known as trumping).

Definition 3 (Catalytic majorization). Let {M , N} ∈ P(δ). We say that M is catalyti-
cally majorized by N if there exists some P ∈ P(m) such that

M ⊗ P ≺ N ⊗ P , (3)

where ⊗ denotes the Kronecker product operation:

M ⊗ P = [M1P1, · · · ,M1Pm, M2P1, · · · ,M2Pm, · · · , MδP1, · · · ,MδPm] .

Note that the δm inequality relations corresponding to (1) need to be checked for M ⊗
P after reordering the entries of M ⊗ P in non-increasing order. It can also be checked
that

∑δ
i=1

∑m
j=1MiPj =

∑
iMi ·

∑
j Pj = 1 =

∑
iNi ·

∑
j Pj =

∑δ
i=1

∑m
j=1NiPj .

Further, no specific conditions are imposed on the length m of P nor on the uniqueness
of P . Without reference to P , we denote the relationship in (3) as M ≺T N , with T
standing for “trumping.”

While it is not clear if ≺T is a complete ordering on P(δ), the following result states
that the set of vectors that can be catalytically majorized is strictly larger than the set that
can be majorized [37, 38].

Proposition 2. M ≺ N implies that M ≺T N for any P ∈ P(m). The converse is true
if δ ≤ 3. In general, if δ ≥ 4 and if N has at least four distinct entries, there exists an M
such that M ≺T N , but M ̸≺ N .
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While the previous discussion showed that neither M ≺ N nor N ≺ M are true with
M = [0.4, 0.35, 0.15, 0.1] and N = [0.45, 0.27, 0.25, 0.03], however, M⊗P ≺ N⊗P
with the choice P = [0.6, 0.4]. The main result from [39] on reverse catalytic majorization
is provided next.

Proposition 3. Let {M , N} be distinct elements of P(δ) with Mδ > 0. Under the as-
sumption that Nδ > 0, M ≺T N if and only if all the following conditions hold true:

i) PM(M , α) < PM(N , α) if α > 1 or α < 0,

ii) PM(M , α) > PM(N , α) if 0 < α < 1,

iii) SE(M) > SE(N),

iv) GM(M) > GM(N).

On the other hand, if Nδ = 0, M ≺T N if and only if all the following conditions hold
true:

i) PM(M , α) < PM(N , α) if α > 1,

ii) PM(M , α) > PM(N , α) if 0 < α < 1,

iii) SE(M) > SE(N).

4. Proposed Nonparametric Detection Procedure and Case-Study

We now apply the theoretical framework developed in Sec. 3 to detect changes in resilience
and coordination. Let the first and last days of the time-period of interest on the terror-
ist group be denoted as Day 1 and Day N , respectively. We consider a time-window
of δ days to aggregate the activity of the group and assume that changes in the under-
lying group dynamics occur over this time-scale. Let the time-windows be denoted as
∆n, n = 1, 2, · · · ,K corresponding to the period ∆n = {(n − 1)δ + 1, · · · , nδ} with
K = ⌈Nδ ⌉. Let M = [M1, · · · ,Mδ] capture the distribution of frequency of attacks over
a certain time-window. We call M the attack frequency vector and note that by definition
M ∈ P(δ), provided that there is at least one attack over ∆n.

While the discussion in Sec. 3 clearly establishes the importance of certain Schur-
convex and -concave functions in comparing two different attack frequency vectors, we
find the number of attacks over the time-window (denoted as Zn), NPM

(
M
∣∣
∆n

, α
)

for

some α > 1, and SE
(
M
∣∣
∆n

)
to be of importance. Rephrasing the main conclusion of

Sec. 3, a vector that corresponds to a large Zn and is more spread-out (indicating a high
resilience in the group) results in a larger value for SE

(
M
∣∣
∆n

)
. On the other hand, a

vector that corresponds to a large Zn and is less spread-out (indicating a high coordination
in the group) results in a larger value for NPM

(
M
∣∣
∆n

, α
)

. Finally, a small value for Zn

suggests that the group is an Inactive state.
We now propose a simplistic birth-death process model to track changes in resilience

and coordination. For this, we define two functions that compare the Shannon entropy
and the normalized power mean over ∆n with the corresponding running sample means as
follows:

Xn =
SE
(
M
∣∣
∆n

)
1
∆

∑∆
i=1 SE

(
M
∣∣
∆n−i

) ; Yn =
NPM

(
M
∣∣
∆n

, α
)

1
∆

∑∆
i=1 NPM

(
M
∣∣
∆n−i

, α
) .
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We then update two functions that capture the two facets of interest, R(n) and C(n), as
follows:

R(n) = R(n− 1) + τR, n ≥ 1, R(0) = 0,

C(n) = C(n− 1) + τC , n ≥ 1, C(0) = 0,

where pR and pC are appropriately chosen Inactive state penalties, and

τR = 11 (Xn > γR, Zn > τ)− 11
(
Xn < γR, Zn > τ

)
− pR · 11 (Zn ≤ τ)

τC = 11 (Yn > γC , Zn > τ)− 11
(
Yn < γC , Zn > τ

)
− pC · 11 (Zn ≤ τ) .

To restate, τR and τC take four possible values: 1, −1, 0, and pR (or pC), depending on
whether the group is resilient/coordinating, non-resilient/non-coordinating, neither resilient
nor coordinating, and Inactive, respectively.

We now consider a case-study corresponding to the activity profile of FARC obtained
from RDWTI. The FARC dataset covers the time-period from 1998 to 2006 with a total
of 604 terrorist incidents. We use the following parameters in our study: δ = 15 days,
∆ = 5, α = 2.5, τ = 4, pR = 0.2, pC = 0, γR = γC = 0.6770, and γR = γC = 0.4513.
Fig. 1(a) plots the two statistics, R(n) and C(n), against the backdrop of Z(n). It can
be seen that R(n) decreases initially before starting to rise in early 2002 (coinciding with
Plan Columbia) and again in 2006 coinciding with the re-election period. On the other
hand, C(n) shows only minor spurts over the same period indicating that FARC was a
more resilient group than a group coordinating multiple attacks.

In Table 1, we consider the seven month period from Jan. 1, 2002 to July 29, 2002
corresponding to the election period of Alvaro Uribe and early days of Plan Colombia
more closely. This time-period consists of 14 time-windows of δ = 15 days. The HMM
approach of [12] classifies all the 14 time-windows as Active. The earliest time-window
classified as Active over this period is the Jan. 1 to Jan. 15 fortnightly period. As can be
seen from Table 1, while FARC activity over this period indicates resilience, the earliest
time-window where the FARC’s coordinating capacity is seen is over the Apr. 15 to Apr.
30 fortnightly period. Thus, the proposed approach allows the classification of different
facets of terrorist groups.

5. Concluding Remarks

In the light of recent interest in modeling and studying terrorist activity, this work focussed
on detecting sudden spurts in the activity profile of terrorist groups. Most work in this
area are parametric in nature, which renders their real-life application difficult. In partic-
ular, parametric approaches to spurt detection often rely on past behavior for prediction,
but terrorists’ behavior changes quickly enough to make some of this analysis useless. To
overcome this fundamental difficulty, we proposed a non-parametric approach based on
majorization theory to detect sudden and abrupt changes in the Capabilities of the group.
Leveraging the notion of catalytic majorization, we developed a simple approach to incre-
ment/decrement an appropriate statistic that captures different facets of the terrorist group
(such as resilience and level of coordination) in this work. Future work will consider the
application of this approach to a broad swathe of terrorist groups’ activity profiles.
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[25] H. Zhang, O. Hadjiliadis, T. Schäfer, and H. V. Poor, “Quickest detection in stochastic
coupled systems,” SIAM Journal on Control and Optimization, vol. 52, no. 3, pp.
1567–1596, 2014.

[26] G. Sokolov, G. Fellouris, and A. G. Tartakovsky, “Unstructured sequential change
detection in sensor networks,” Proc. Fourth International Workshop in Sequential
Methodologies, Athens, GA, 2013.

[27] G. K. Bhattacharya and R. A. Johnson, “Nonparametric tests for shifts at an unknown
time point,” Ann. Math. Stat., vol. 39, no. 5, pp. 1731–1743, 1968.

[28] A. N. Pettitt, “A non-parametric approach to the changepoint problem,” Appl. Stat.,
vol. 28, no. 2, pp. 126–135, 1979.

[29] D. A. Wolfe and E. Schechtman, “Nonparametric statistical procedures for the
changepoint problem,” J. Stat. Planning and Inf., vol. 9, pp. 389–396, 1984.

[30] J. M. Lucas and R. B. Crosier, “Robust CUSUM: A robustness study for CUSUM
quality control schemes,” Comm. Stat. Theory Methods, vol. 11, no. 23, pp. 2669–
2687, 1982.

[31] D. McDonald, “A CUSUM procedure based on sequential ranks,” Naval Research
Logistics, vol. 37, no. 5, pp. 627–646, Oct. 1990.

[32] L. Gordon and M. Pollak, “An efficient nonparametric detection scheme for detecting
a change in distribution,” Ann. Stat., vol. 22, no. 2, pp. 763–804, 1994.

[33] L. Gordon and M. Pollak, “A robust surveillance scheme for stochastically ordered
alternatives,” Ann. Stat., vol. 23, no. 4, pp. 13501375, 1994.

[34] M. Pollak, “A robust changepoint detection method,” Seq. Anal., vol. 29, no. 2, pp.
146–161, 2010.

[35] B. E. Brodsky and B. S. Darkhovsky, Nonparametric Methods in Change-Point Prob-
lems, Kluwer Academic Publishers, 1993.

JSM 2014 - Quality and Productivity Section

1202



[36] B. E. Brodsky and B. S. Darkhovsky, Non-Parametric Statistical Diagnosis: Prob-
lems and Methods, Kluwer Academic Publishers, 2000.

[37] S. Daftuar and M. Klimesh, “Mathematical structure of entanglement catalysis,”
Physics Review A, vol. 64, no. 042314, Sept. 2001.

[38] D. W. Kribs and R. Pereira and S. Plosker, “Trumping and power majorization,”
Linear and Multilinear Algebra, vol. 61, no. 11, pp. 1455–1463, Sept. 2013.

[39] M. Klimesh, “Inequalities that collectively completely character-
ize the catalytic majorization relation,” 2007, Available: [Online].
http://arxiv.org/abs/0709.3680v1.

JSM 2014 - Quality and Productivity Section

1203


