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Abstract
We reconsider the classical problem of estimating the autocorrelation sequence of a stationary

time–series using quadratic–inverse spectrum estimates. This collapses the free–parameter expan-
sion ambiguity of quadratic–inverse spectrum estimates and results in estimates of autocorrelations
that have simultaneously low bias and variance.
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1. History and Introduction

The problem of estimating autocorrelations of time series was first studied by Cave–
Browne–Cave and Pearson (1902), shortly after Pearson introduced his estimate of cor-
relation. Progress was slow, but by the middle of the twentieth century opinion had largely
settled on Bartlett’s (1948) positive–definite estimate of autocovariance. AssumingN sam-
ples of a zero–mean stationary process x(t) with t = 0, 1, · · · , N − 1, Bartlett’s estimate
is defined by

R̂B(τ) =
1
N

N−1−|τ |∑
n=0

xn xn+τ , (1)

with modifications appropriate to the data. . This has become a fundamental tool in time
series analysis and is still used in most texts. It is, nonetheless, a rather poor estimate.

In what was probably the first simulation study of time series, Kendall (1946) noted
that, despite being biased towards zero, the estimates (1) decay slowly with τ . This was
emphasized by Bartlett (1960, Page 272) who commented “It must be remembered that an
observed correlogram always exhibits less damping than the theoretical, · · · ”.

The variance of the sample autocorrelations was derived by Bartlett in 1946 and, citing
this work, Kendall and Stuart (1963, Pg. 432, Vol. 3), remarked “This is awkward, for we
cannot estimate them all directly from a finite series.”. Somewhat earlier, Kendall (1954)
had opined “We are inclined to think that the problem is most likely to yield to a new
approach.” Numerous improvements have been proposed since then, many with the goal
of robustness, but the basic problem of finding a good estimate of the autocovariance for a
stationary Gaussian process has remained open.

In §2, this paper reviews one “new approach”, multitaper estimates and autocovari-
ances. Following this summary §3 describes a simple motivating example; §4 describes
basic quadratic–inverse expansions; and §4.1 discusses some problems. This is followed
by some notes on likelihood for times series, §5; §6 on Karhunen–Loève expansions in the
frequency domain; and the paper concludes, §7 with a short discussion.

2. Multitaper Estimates of Power Spectra and Autocovariances

Multitaper estimates of power spectra are becoming well known so only a short introduc-
tion to establish notation is given here. Assuming the same conditions given for Bartlett’s
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estimate, multitaper estimates begin by computing the eigencoefficients at a frequency f ,
Thomson (1982):

yk(f) =
N−1∑
n=0

x(n) v(k)
n (N,W ) e−i2πnf , (2)

for k = 0, 1, · · · ,K − 1 where v(k)
n (N,W ) is the kth Slepian sequence or discrete prolate

spheroidal sequence as defined in Slepian (1978). They are the real, orthonormal eigenvec-
tors of the Toeplitz matrix eigenvalue equation

λk(N,W ) v(k)
t (N,W ) =

N−1∑
n=0

sin 2πW (t− n)
π(t− n)

v(k)
n (N,W ) . (3)

that defines the sequences on [0, N − 1] with the maximum energy concentration in the
frequency range (−W,W )1. These sequences are ordered by their corresponding eigen-
values, 1 > λ0 > λ1 > · · · > λN−1 > 0. The λk decrease slowly with k (with a
corresponding increase in sidelobe level) until k ∼ 2NW where they drop abruptly to al-
most zero, K ≈ 2NW , is the number of samples required to represent the information in
(f −W, f +W ), called the “local” or “inner” band. The notation v

(k)
n (N,W ) is shortened

to v
(k)
n .
The raw eigencoefficients are usually adaptively weighted but here the weights appro-

priate to a low–range spectrum, the eigenvalues λk, are used. This gives the minimum MSE
estimates of the eigencoefficients, x̂k(f) = λk yk(f) and results in a “high resolution” es-
timate, Thomson (1982, (3.6)),

Ŝhr(f 	 ξ) =
1
N

∣∣∣∣∣
K−1∑
k=0

yk(f)λkVk(ξ)

∣∣∣∣∣
2

, (4)

where the notation 	 indicates the restriction |ξ| < W . Note, first, that this estimate has a
χ2

2 distribution and so is relatively unstable. However, it has the same frequency resolution
as the periodogram but, when adaptive weighting is used, without the bias; and second, (4)
is a form of free–parameter expansion for the spectrum because, for any given fo and f
within W of fo, the pair f and ξ = f − fo give an estimate of S(fo). In Thomson (1982)
this was resolved by the expedient of averaging over the band (fo −W, fo +W ) to get the
usual multitaper estimate with a χ2

2K distrbution. This multitaper spectrum estimate is

Ŝmt(f) =
1

2W

∫ W

−W
Ŝhr(f 	 ξ) dξ (5)

=
1

2NW

K∑
k=0

λk|yk(f)|2 . (6)

where the λk are the Slepian eigenvalues. This weighting gives the minimum mean–
square–error for relatively white spectra and is used here instead of the more commonly
used adaptive weights. Excluding frequencies near 0 and the Nyquist frequency, f = 1

2
,

each of the terms, |yk(f)|2, in this sum is an ordinary direct spectrum estimate and has
a chi–squared distribution with two degrees–of–freedom (DoF), χ2

2. Because the tapers
are orthonormal, the different terms are nearly uncorrelated so their average, Ŝ(f), has a
chi–squared distribution with 2K DoF. Note that in most spectra, (5) is not used and the
adaptively weighted form is used. Thus, instead of simply truncating the series at K terms,
the |yk(f)|2’s are weighted to minimize their variance, see Thomson (1982).

1Appendix B of Thomson (1990a) describe an efficient method for computing Slepian sequences. Appendix
A defines a convenient notation for their Fourier transforms, the Slepian functions, for data analysis purposes.
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2.1 Multitaper Estimates of Autocovariance

One “new approach,” but now over thirty years old, is a multitaper estimates of autoco-
variance. In Thomson (1982, 1990a) a multitaper spectrum estimate and used and the
Einstein–Wiener–Khintchine (EWK) theorem2 applied to obtain the corresponding autoco-
variance estimates. This was done without much more thought than that a better spectrum
estimate should correspond to a better autocorrelation estimate following the comments in
§9 of Thomson (1990b). This gives the multitaper estimate of autocovariance,

R̂mt(τ) =
∫ 1

2

− 1
2

Ŝmt(f) ei2πfτ df . (7)

Expanding the multitaper spectrum estimate from (5) and (2) gives a triple sum over indices
m, n, and k, plus the integral over frequency. The integral becomes a Kronecker δ, so
m = n− τ and the expression simplifies to

R̂mt(τ) =
1

2NW

K∑
k=0

λk

N−1∑
n=τ

x(n) v(k)
n x(n− τ) v(k)

n−τ (8)

as the “direct” form of the multitaper estimate of autocovariance.
The estimate is an average ofK autocovariances of the tapered sequences, {x(n) v(k)

n }.
Taking expected values, one has

E{R̂mt(τ)} = R(τ) · L̄(τ) , (9)

where the “lag–window” is given by

L̄(τ) =
1

2NW

K∑
k=0

N−1∑
n=τ

λk v
(k)
n v

(k)
n−τ . (10)

Note, however, that this does not imply that multitaper estimates are just another form of
Blackman–Tukey estimates. Estimates made with sample autocovariances (1) and the lag–
window (10) can fail to be positive definite; see Thomson et al. (2007, § V–E. ). These
“equivalent estimates” may have the same mean, but do not have the same distribution and,
unlike (5) that is obviously positive, can be negative.

A critical step was McWhorter and Scharf’s (1998) proof that the basic definition of
autocovariance implies that acceptable estimates must be multitapers. This was followed by
several papers, e.g., Hanssen (2000); Erdöl and Günes (2005), and then by Thomson (2012)
that derived sampling properties of multitaper autocovariance estimates. These work well
for simple cases when there is enough data so that the corresponding spectrum estimate is
reasonably resolved, but can be badly biased with short data series. This small–sample bias
was the basic reason for developing “quadratic–inverse” spectrum estimates, introduced in
Thomson (1990a). This theory showed that the resolution of a nonparametric spectrum
estimate is effectively limited to one–half the Rayleigh resolution, R = 1/T = 1/(Nδt).
Typical multitaper spectra of large data sets have resolution of 3R to 8R, but there are
many cases where higher resolution is needed, but more data is simply unattainable.

2The basic theory of stationary processes was not well developed until the 1940’s and even the relation
between the power spectrum and autocovariance sequence was not understood until the work of Wiener (1930)
and Khintchine (1934). It was later discovered that Einstein (1914) had preceded them in a short note, with Ya-
glom (1987) commenting that Einstein’s derivation was more satisfactory than either Wiener’s or Khintchine’s.

JSM 2014 - Section on Physical and Engineering Sciences

1161



3. An Example

The example in this paper consists of a sample of sizeN = 100 defined on t = 0, 1, · · ·N−
1 = 99 assumed to be drawn from a real–valued, Gaussian, stationary process. The time
step, δt = 1, so the Nyquist frequency is 1/(2δt) = 1

2
, and cyclic frequency, f , is defined on

[− 1
2
, 1
2
). Similarly the Rayleigh resolutionR = 1/(Nδt) = 0.01. All frequencies are given

in units of cycles per sample, denoted by “c/s”. The covariance structure of the process is
defined by its power spectrum, S(f), a Lorentzian line, that is,

S(f) =
A

1 +
[
f−fc

∆h

] 2 . (11)

This form is commonly used to describe simple resonances. As an example, Table 1 of
Masters and Widmer (1995) lists over 1100 seismic modes of the Earth giving their cen-
ter frequencies and Q’s, where Q is the ratio of center frequency to full–width at half–
maximum (FWHM). Our example is for a stationary case, so is more appropriate, e.g., for
the study of seismic “hum”, see Webb (2008), than for the transient case when the normal
modes are excited by large earthquakes.

In this example, shown in Figure 1 the center frequency fc = 0.20 c/s and the (FWHM)
of the peak 2∆h = 0.02 c/s. The peak powerAwas chosen to be 100.0 to give a reasonable
plotting range.

Because the process is real–valued the spectrum is even, S(−f) = S(f). Data was
generated using pseudo–random Gaussian variates using the spectral representation with a
2000–point FFT. The process autocovariance sequence, R(τ), was similarly obtained by
taking the Fourier transform of S(f).

A multitaper estimate with a time–bandwidth product CR = NW = 5 and K = 10
tapers was deliberately chosen because, with N = 100 samples, the full bandwidth 2W =
0.10 c/s, is inadequate to resolve the 0.02 c/s width of the peak. TheK = 10 tapers give an
estimate with a nominal stability of 20 degrees–of–freedom. When the spectrum is “locally
white,” the 10% and 90% points for the spectrum estimate are 0.622 and 1.421 times the
spectrum. However, when the slope of the spectrum is large the degrees–of–freedom are
reduced. The time–bandwidth of 5.0 is typical of that used in applications where the range
of the spectrum, the ratio of the maximum to minimum of S(f), is moderately large.

A standard multitaper estimate of the spectrum of a single sample of such a process is
shown in the left panel of Fig. 1, and it can be seen that, as expected, the peak is poorly
resolved. Outside the band (fc −W, fc +W ), the estimate agrees reasonably with S(f).

The right panel of this figure shows the QI test for “unresolved structure” defined in
Thomson (1990a, Pg 555) using L = 14 basis functions. This test has an approximate
χ2
L−1 distribution and clearly shows that the estimated spectrum, Ŝ(f), is not resolving

details around the peak. This test does not assume knowledge of the true spectrum.

4. Basic Quadratic–Inverse Estimates

This section describes another “new approach”; Quadratic–Inverse (QI) estimates of auto-
covariance. Formal sampling properties have not yet been obtained, but here an example is
shown. Empirical evidence implies that the maximum–likelihood extension of QI is almost
unbiased and has a variance approaching that of the best parametric estimates.

QI estimates are extensions of multitaper estimates where, instead of simply finding
the average power in a band (f −W, f + W ) centered on a frequency f , one expands the
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Figure 1: Left panel A multitaper spectrum estimate around an unresolved Lorentzian
peak with a FWHM of 0.02 = 2R. The estimator had a time–bandwidth of NW = 5,
K = 10 tapers, andN = 100 so is incapable of resolving the peak. The standard multitaper
estimate is shown in solid black, and the theoretical spectrum in dashed red. The five
vertical dashed blue lines show the center frequency of the peak, ±1 R, and ±W .
The Right panel shows the quadratic–inverse test for unresolved structure in this estimate.
Here L = 14 basis functions were used, so the test has an ≈ χ2

13 distribution. The median
across frequency is 12.0 and the maximum is 64.6, an event with probability ∼ 7.7 ×
10−9. The maxima of the unresolved structure test occur approximately where the squared
derivatives [ d

df lnS(f) ]2 are high.

spectrum in this band on an orthogonal basis, that is,

ŜQI(f 	 ξ) =
L−1∑
l=0

b̂l(f)Bl(ξ) (12)

where the 	 is a reminder that |ξ| < W , the Bl(ξ)’s are the basis functions, and the
b̂l(f)’s are the QI expansion coefficients. The process of determining the b̂l(f)’s has close
connections to maximum–likelihood and the Karhunen–Loève expansion. Because, for
some given frequency fo, there are a continuum of expansions with f = fo + ξ, this is a
form of free–parameter expansion. Formally, the EWK theorem is used to collapse these,
obtaining the QI autocorrelations in the process. In practice, a tapered moving average is
used because this reduces some of the Gibbs ripples.

The K eigencoefficients at each frequency are collected into a vector

X(f) = [x0(f), x1(f), · · · , xK−1(f)]T . (13)

The covariance of the eigencoefficients can be estimated by Ĉ(f) = X(f) X†(f), where
superscript † indicates conjugate–transpose. This estimate is rank 1. Assuming stationarity,
the expected values of the elements of C are given by

Cjk(f) =E{xj(f)x∗k(f)} (14)

≈ 1√
λjλk

∫ W

−W
Vj(ξ)V ∗k (ξ)S(f − ξ) dξ . (15)
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If the spectrum is “locally white”, that is, approximately constant across the inner band,
C(f) ≈ S(f) · IK so the trace, the simple multitaper estimate, Ŝmt(f), is efficient. How-
ever, at frequencies where this is not a good approximation, Ŝmt(f) can have significant
local bias.

Quadratic–inverse spectrum estimates were defined in Thomson (1990a) in a study of
how well one could resolve the spectrum within the band (f−W, f+W ). One begins with
a local expansion (12). After initial experiments attempting to express the local spectrum
with Taylor’s series and standard orthogonal expansions, it became obvious that there was
a preferred basis set, the eigenfunctions of the Fejér kernel, defined by

glBl(f) =
∫ W

−W

[
sinNπ(f − ξ)
sinπ(f − ξ)

] 2

Bl(ξ) dξ (16)

and standardized by
1

2W

∫ W

−W
Bl(f)Bm(f) df = δl,m . (17)

Note that the kernel in (16) is the absolute square of the Dirichlet kernel of the Slepian
functions.

Given that one wants to use Ĉ(f) to estimate the coefficients b̂l(f) in (12), define the
sequence of K ×K complex matrices B(l) by

B
(l)
jk =

1√
λjλk

∫ W

−W
Vj(ξ)V ∗k (ξ)Bl(ξ) dξ . (18)

These matrices are trace orthogonal, that is,

tr{B(l)B(m)†} = gl δl,m . (19)

Assuming that the true spectrum can be expanded in this basis and using (12) in (14) gives

C(f) ≈
L−1∑
l=0

bl(f)B(l) . (20)

To estimate the coefficients in this expansion we substitute Ĉ(f) for C(f) and use (19) to
obtain the quadratic form of the estimate,

b̂l(f) =
1
gl

X†(f)B(l)†X(f) . (21)

It was shown in Thomson (1990a) that this estimate is unbiased.
It can now be shown that the multitaper “high resolution” estimate is biased. Expand

(4) by expanding in the Bl basis to obtain

hl(f) =
1

2W

∫ W

−W
Ŝhr(f 	 ξ)Bl(ξ)dξ . (22)

Expanding, and using (18) gives

hl(f) =
1

2NW

K−1∑
j,k=0

B
(l)
j,kxj(f)x∗k(f) . (23)

Comparing this with (21) shows that hl(f) is biased, that is,

hl(f) =
gl

2NW
gl(f) . (24)

This, in a sense, parallels some of the problems surrounding the development of Bartlett’s
estimate; that is, should one keep the 1/N in (1) and have a positive–definite estimate, or,
alternatively, use 1/(N−τ), the “unbiased” form. In the following we resolve this quandry
by using a maximum–likelihood form of the estimate.
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Figure 2: The Left panel shows six individual quadratic–inverse maximum–likelihood
(QIML) expansions crossing the Lorentzian peak. These expansions have center frequen-
cies spanning 0.15 to 0.25 cycle/sample and are offset by 2R = 0.02 c/s. Begining at
the left, 0.15 c/s they are color coded as blue, red, magenta, green, blue, and orange. The
centers of their domains, all ±5R, are represented by filled dots of the same colour. The
true spectrum is shown as the underlying solid black curve. The expansions on both sides
of the peak have to cope with a range, Smax/Smin of 100 across their individual domains
and so suffer worse Gibbs ripples than the expansions spanning the peak where the range
drops to about 20. That is, the “blue” expansion on the left is over the frequency domain
(0.1, 0.2) corresponding to values of the true spectrum that range from 1.0 to 100. In
contrast, the expansion centered on the peak at f = 0.2 covers the domain (0.15, 0.25),
where the range of the spectrum runs from 5.0 to 100.
Right panel The QIML averaged over the regions where the unresolved structure test
is high, so a partial QIML, (PQIML) estimate. There are some remaining Gibbs ripples
visible near the highest gradient parts of the frequency range. The dashed red curve shows
the true spectrum.

4.1 Problems

This approach raises some questions:
First, the expansion assumed in (12) may not exist, but a goal of Thomson (1990a) was
to establish bounds on nonparametric spectrum estimation. For an assumed spectral shape
one can check (12) using the Bessel inequality.
Second, the eigenvalues gl ∼ 2NW − l/2 so the factor 1/gl in (21) suggests that the b̂l’s
for larger l’s will be unreliable.
Third, the basic equation, (12) is again, in common with (4), a form of free parameter
expansion. That is, for any specific frequency fo = f 	 ξ, all frequencies f within ±W
of fo give an estimate and these estimates differ. They are also expansions in a truncated
set of orthogonal basis functions so one expects Gibbs ripples and this tends to be worse
where the expansion must cover a large dynamic range. Here this occurs on the flanks of
the peaks. This may be seen in Figure 2L. Near 0.12 c/s the red and blue curves mostly
cancel, but near 0.275 c/s, the blue and orange curves have a common deep minimum.
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Figure 3: Autocovariance Estimates. Left panel The true autocovariance is shown in
dashed red, the PQIML estimate in black (the two curves are nearly indistinguishable for
lags . 20), and the standard Bartlett estimate in blue. For this example, the MSE of
the Bartlett estimate is 0.091, while that for the QIML is 0.00156, a factor of 58 lower.
(Both have been divided by the process variance.) The Right panel shows the errors in the
PQIML (solid black) and Bartlett estimate (dashed blue)

5. Likelihood for Time Series

Frequency–domain expressions for the likelihood of a Gaussian process go back to Whit-
tle’s (1952) papers. Defining the discrete Fourier transform of the series x(t), with
t = 0, 1, · · · , N − 1 at a frequency f , − 1

2
≤ f < 1

2
, as

y(f) =
N−1∑
t=0

x(t) e−i2πf(n−N−1
2

) . (25)

Whittle’s expansion depended on two ideas: first, that the coefficients of a Fourier ex-
pansion of the series, y(j/N), are uncorrelated; and, second, that the periodogram,
P (f) = |y(f)|2/N , is asymptotically unbiased. The major problem is with the second
idea. There are many statements in the statistical literature stating that the periodogram
is asymptotically unbiased, but these should be ignored. Examples where this bias is so
overwhelming that there is no existing sample size where this is true, range from quality
control, see Figure 18 of Thomson (1977), to barometric pressure, see Figure 1 of Thom-
son and Haley (2014). (In the latter example a sample size of N & 108 would be required,
meaning one would need a continuous record at a 10 second sampling rate with a duration
& 30 years.) The independence assumption in Whittle likelihood is also incorrect for such
processes, but secondary to the bias problem. These problems with unwindowed Fourier
transforms exclude Whittle’s approach from consideration.

The problem has been rigorously considered; see Dzhaparidze (1986), the references
therein, and the citations to this book (currently over 140). Most of these methods depend
on a Karhunen–Loève expansion, that is given the autocovariance function of the process,
R(τ), define the orthonormal eigenfunctions, φp(t), by

θp φp(t) =
N−1∑
n=0

R(t− n)φp(n) , (26)

JSM 2014 - Section on Physical and Engineering Sciences

1166



for p = 0, 1, · · · , N − 1 and standardized by θ0 ≥ θ1 · · · ≥ θN−1 > 0. Expanding the data
x(t) on this basis,

cp =
N−1∑
t=0

φp(t)x(t) (27)

it is well–known that the coefficients are uncorrelated with variances Var{cp} = θp. When
the process is Gaussian the likelihood follows immediately. This expansion is transformed
into the frequency domain in the following. This has two advantages: First, one does many
small eigenvalue expansions instead of one large one. This is a major advantage because
R(τ) is unknown, and the purpose is to estimate it. This might be considered a variant of
an inverse eigenvalue problem. Second, Fourier transforms of reasonable data tend to be
Gaussian, Mallows (1967), so approximate likelihoods are more accurate.

6. Frequency Domain Karhunen–Loève Expansions

Expanding the data inside (−W,W ) in a Karhunen–Loève expansion expresses that part
of the data as an orthogonal series with uncorrelated coefficients. Because the eigenco-
efficients are often computed from large quantities of data, their distribution approaches
complex Gaussian, allowing local likelihoods to be evaluated. Written in the frequency
domain, the K-L eigenvalue equation is

θpφ̃p(f) =
∫ 1

2

− 1
2

S(ξ)
sinNπ(f − ξ)
sinπ(f − ξ)

φ̃p(ξ) dξ , (28)

where θp is the eigenvalue, and φ̃p(f) the frequency–domain eigenfunction. In this section
the explicit dependence on the center frequency is omitted, and f is restricted to the domain
(−W,W ). The Slepian functions, Vj(f), are complete in (−W,W ), so φ̃p(f) is expanded
on this basis

φ̃p(f) =
K−1∑
j=0

AjpVj(f) (29)

Substituting (29) into both sides of (28), multiplying by V ∗k (f), and integrating over fre-
quency, one obtains

θpAjp =
K−1∑
k=0

∫ W

−W
Vj(ξ)V ∗k (ξ)S(f − ξ) dξ Akp . (30)

Identifying the integral as C(f) defined in (14), and denoting the vector of Akp’s by Ap(f)

θp(f)Ap(f) = C(f) Ap(f) (31)

where, as before, f denotes the center frequency of the band. This shows that the eigenval-
ues of C are the same as the Karhunen–Loève eigenvalues.

Substituting the expansion (20) for C(f) gives

θpAkp =
L−1∑
l=0

bl

K−1∑
j=0

B
(l) †
k,j Ajp . (32)

A scheme to find a maximum–likelihood estimate of C was outlined in §4 of Thomson
(1990a), but (32) is simpler because a perturbation on the bl’s enter as an additive pertur-
bation on the spectrum. There are also ∼ 4NW of the bl’s, but only K eigenvalues so it
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is feasible to find a set of bl’s at each frequency that maximizes the likelihood. The details
of this perturbation expansion are too long to be included here. These estimates by are
denoted b̃l(f) and turn to the resolution of the free–parameter expansion.

The Fourier transforms of the Bl(ξ)’s are index limited to 2N − 1 points, so formally,
write the inverse of (7) as

Ŝq(f) =
N−1∑

τ=1−N
R̂q(τ) e−i2πfτ . (33)

Now minimize the squared difference between the global expansion (33) and the local
expansions (12)

E2 =
∫ W

−W
df

∫ W

−W
dξ
[
ŜQI(f − ξ)− Ŝq(f)

] 2
(34)

with respect to the R̂q(τ)’s.
Practically, a tapered sum of the local QI expansions across the frequency range where

the unresolved structure test, Figure 1R, is large was used. These expansions were stepped
by a Rayleigh resolution. Moreover, the bl coefficients were not chosen by the quadratic
form (21) because these sometimes resulted in negative spectrum estimates. Instead, they
were determined by directly maximizing the Karhunen–Loève likelihood numerically. A
reasonably old optimizer, Gay (1983), was used for this test, and it would occasionally fail
to converge, so a better optimization procedure is needed. Ironically, most of the failures
occured in the more mundane parts of the spectrum, the range from 0.3 to 0.5 c/s while
performance on the peak was usually excellent. In these regions, however, the unresolved
structure test shown in Figure 1R is within an acceptable range for the “locally white”
assumption to be satisfied. In these cases the ordinary multitaper estimate is known to
be approximately maximum–likelihood, Stoica and Sundin (1999), implying that, at best,
only a slight improvement could be obtained. However, as shown in Figure 3, the re-
sulting estimates of autocovariance give a vast improvement on the conventional Bartlett
estimate. In the figure, the relative mean-square error of the PQIML (Partial Quadratic–
Inverse Maximum–Likelihood) estimate is a factor of 58 smaller than that of the Bartlett
estimate. Here the Bartlett estimate “rings” for the duration of the sample while the QI
estimate damps at about the same rate as the true autocovariance.

Looking at the averaged spectrum, around the peak, Figure 2R, the estimate is very
close to the the true spectrum with the errors being competitive with parametric models. In
this example, the peak of the estimate is about 15% lower than that of the true spectrum but
the center frequency and peak width at the half–power point are almost exact so an estimate
of Q would be accurate.

7. Discussion

This brief paper has outlined an approach to improving estimates of spectra and autoco-
variances in a common class of problems where frequency resolution is limited by sample
size.

This work should be considered as a feasability study, rather than as a finished prod-
uct. One can show that this overcomplete set of spectrum estimates can be reduced to a
single estimate by expanding in terms of autocorrelations, and that this expansion largely
eliminates the dependence on the nearly arbitrary choice of the bandwidth parameter W .
However, how one characterizes the sampling properties of these estimates remains to be
determined.
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Erdöl, N. and Günes, T. (2005). Multitaper covariance estimation and spectral denoising.
In Circuits, Systems, and Computers, pages 1144–1147. IEEE Press.

Gay, D. M. (1983). ALGORITHM 611 — subroutines for unconstrained minimization
using a model/trust–region approach. ACM Trans. Math. Software, 9, 503–524.

Hanssen, A. (2000). On multitaper estimators for correlation. In Proc. Tenth IEEE Signal
Processing Workshop, pages 391–394, Pocono Manor, PA. IEEE Press.

Kendall, M. G. (1946). Contributions to the study of oscillatory time–series. Cambridge
University Press, Cambridge.

Kendall, M. G. (1954). Note on bias in the estimation of autocorrelation. Biometrika, 41,
403–404.

Kendall, M. G. and Stuart, A. (1963). The Advanced Theory of Statistics. Hafner, New
York.

Khintchine, A. (1934). Korrelationstheorie der stationären stochastischen Prozesse. Math-
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