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Abstract 
 
Many modern randomized clinical trials involve multiple treatment arms and use designs 
to achieve treatment groups of unequal size. Some rationales for using unequal allocation 
include better statistical efficiency of treatment comparisons, cost-efficiency in situations 
when some treatment protocols are more expensive than others, and potential ethical 
constraints. Recently, several designs expanding covariate-adaptive randomization 
procedures to trials with unequal allocation have been proposed in the literature. In this 
paper we consider several restricted randomization designs which are fully randomized 
and maintain throughout the trial the target allocation ratio (if necessary, within each 
stratum). We compare operating characteristics of these designs through a simulation 
study. We study such issues as balance, randomness of treatment assignments, variations 
in the allocation ratio, and type I error and power of statistical tests.  
 
 
Key Words: Allocation ratio preserving, Randomization design, Unequal allocation 
 
 

1. Motivating Example 
 
A randomized open-label proof-of-concept clinical trial is to be conducted to compare the 
effects of a high dose of an experimental drug (treatment 1) versus the reference 
(treatment 2) in chronic hepatitis C patients. A 2:1 active-placebo randomization rate is to 
be used, and the total planned study sample size is ݊ ൌ 120. It is thought that viral load 
measured at baseline is an important prognostic covariate. As such randomization will be 
stratified by viral load measured at screening (≥ 800,000 IU/mL (5.903 log10) or < 
800,000 IU/mL (5.903 log10)). A priori the patient population proportion for each stratum 
is unknown and it is difficult to project how many study patients will be enrolled in each 
stratum. 
 
The investigator emphasized the importance of maintaining the 2:1 treatment allocation 
ratio both within each stratum and overall in the trial. One strategy to achieve this goal is 
to use stratified permuted block design which achieves the desired allocation ratio after 
every cohort of 3 patients in each stratum; however since the study is open label, there 
may be a risk of selection bias with such a strategy. One may also consider increasing the 
block size to 6 or 9; however since the number of patients in each stratum is unknown a 
design with large block size may result in deviations from the desirable 2:1 allocation. 
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Which randomization design should be used in our trial example? A “good” design 
should be fully randomized and maintain the target allocation ratio within each stratum 
throughout the entire trial. In this paper we study several restricted randomization designs 
which can be used to achieve this goal. Although our motivating example is a two-arm 
trial, the discussed methodology is applicable in a general (ܭ ൒ 2 )-arm trial setup. 
Throughout the paper, we focus on stratum-specific randomization procedures; in other 
words, each stratum utilizes a separate restricted randomization sequence. The 
methodology can be also extended to more complex covariate-adaptive randomization 
procedures; however this is not done in this paper and is left for the future work. 
 
Therefore, the main focus of the current work is on statistical properties of restricted 
randomization procedures for ( ܭ ൒ 2 )-arm trials with pre-specified fixed unequal 
allocation which, if necessary, can be implemented within each stratum. We will attempt 
to identify a design that provides “best” tradeoff between balance (achieving the target 
allocation ratio) and randomness. 
 

2. Restricted Randomization for Multi-Arm Trials with Fixed Unequal 
Allocation 

 
Consider a clinical trial where ݊ subjects must be sequentially randomized among ܭ ൒ 2 
treatment groups to achieve some fixed allocation ratio ݓଵ:ݓଶ:… ௄ݓ: , where ݓ௜’s are 
positive, not necessarily equal,  integers with the greatest common divisor of 1. Let 
௜ߩ ൌ

௪೔

∑ ௪ೖ
಼
ೖసభ

 denote the target treatment allocation proportions, where 0 ൏ ௜ߩ ൏ 1  and 

∑ ௞ߩ ൌ 1௄
௞ୀଵ .  

 
In restricted randomization, treatment allocation probabilities for any subject are 
conditional on history of past treatment assignments (Rosenberger and Lachin, 2002). Let 
௜ܲ௝  denote the probability that subject ݆  is assigned to treatment ݅  ( 0 ൏ ௜ܲ௝ ൏ 1, 
∑ ௜ܲ௝
௄
௜ୀଵ ൌ 1). Let ௝ܶ  denote the treatment assignment for the ݆th subject ( ௝ܶ  can take 

values 1,… ,  A general restricted randomization design is defined as .(ܭ
 
௜ܲ௝ ൌ PrሺSubject	݆	is	assigned	to	treatment	݅ሻ

ൌ Pr൫ ௝ܶ ൌ ݅ห ଵܶ, … , ௝ܶିଵ൯ , ݆ ൌ 2, 3, … , ݊.
    (1) 

 
After ݊ subjects have been randomized among the ܭ treatments, the number of subjects 
assigned to treatment ݅  is ௜ܰሺ݊ሻ ൌ ∑ ૚ሼ ௝ܶ ൌ ݅ሽ௡

௝ୀଵ , where ૚ሼ⋅ሽ  denotes an indicator 

function. In general, ௜ܰሺ݊ሻ are random with ∑ ௜ܰሺ݊ሻ ൌ ݊௄
௜ୀଵ .  

 
We are interested in randomization procedures that attempt to achieve, at least 
approximately, the target treatment numbers ݊ߩଵ, … ,  ௄. In addition, if randomization isߩ݊
stratified and the number of subjects in each stratum is unknown at the trial outset, it is 
desirable that the treatment allocation proportions are close to the target proportions at 
every step; i.e. ݆ିଵ ௜ܰሺ݆ሻ ൎ ݅ ௜ forߩ ൌ 1,… , ݆ and ܭ ൒ 2. 
 
 

3. Randomization Designs Studied in This Paper 
 
In this paper we shall explore six competing randomization designs: 
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(i) Completely Randomized Design (CRD):  Every subject is randomized to treatment 
groups with fixed probabilities: 
 

௜ܲ௝ ൌ ݅    ,௜ߩ ൌ 1,… ,  (2)   .ܭ

The CRD is the most random procedure, but the actual treatment numbers may deviate 
far from the target numbers. 
 
(ii) Permuted Block Design (PBD): Treatment assignments are made at random within 
blocks of size ܾ ൌ ଵݓ ൅ ଶݓ ൅⋯൅  ௜ subjects are assigned toݓ ௄. In each block, exactlyݓ
treatment ݅. The PBD, by construction, achieves exactly the required treatment numbers 
after every cohort of ܾ patients, but it periodically results in treatment assignments that 
can be guessed with high probability which may lead to selection bias. 
 
(iii) Block Urn Design (BUD): This design was proposed by Zhao and Weng (2011), to 
provide a more random design than the PBD. The design can be described as follows. 
Consider two urns, Active and Inactive. At the beginning of the trial, the Inactive urn is 
empty and the Active urn contains ܾ ൌ ܹߣ  balls, where ܹ ൌ ∑ ௜ݓ

௄
௜ୀଵ  is a “minimal 

balanced set” and ݓ௜ is the number of balls representing the ݅th treatment. The parameter 
 is a small positive integer which determines the number of minimal balanced sets in the ߣ
block of size ܾ. Note that the BUD with ߣ ൌ 1 is equivalent to the PBD(bsize=ܹ).  
 
The treatment assignments are made sequentially by drawing balls at random from the 
Active urn. If type ݅ ball is drawn, treatment ݅ is assigned and the ball is placed in the 
Inactive urn. The procedure is repeated until a minimal balanced set is collected in the 
Inactive urn, at which instant these ܹ  balls are returned into the Active urn. The 
described procedure is further repeated until the pre-specified number of subjects has 
been enrolled in the study.  
 
Zhao and Weng (2011) provide a closed-form expression for the randomization 
probabilities for BUD. Let ௜ܰ,௝ିଵdenote the number of treatment ݅ assignments among 
the first ሺ݆ െ 1ሻ subjects, and let ௝݇ିଵ ൌ minଵஸ௜ஸ௠ሺintሺ ௜ܰ,௝ିଵ/ݓ௜ሻሻ denote the number of 
minimal balanced sets in previous assignments (intሺݔሻ returns the greatest integer less 
than or equal to ݔ). Then subject ݆ is randomized to treatments with probabilities  
 

௜ܲ௝ ൌ
௪೔ఒା௪೔௞ೕషభିே೔,ೕషభ
ௐఒାௐ௞ೕషభିሺ௝ିଵሻ

,    ݅ ൌ 1,… ,  (3)   .ܭ

 
The BUD results in deterministic assignments less frequently than the PBD, and the 
occurrence of deterministic assignments for the BUD is random. 
 
 
(iv) Drop-the-Loser Urn Design (DL): The DL design was developed by Ivanova 
(2003) in the context of multi-arm binary response trials with response-adaptive 
randomization. Here we consider its application for fixed unequal allocation. 
 
Consider an urn containing balls of ܭ ൅ 1 types: types 1,… ,  represent treatments and ܭ
type 0 is the immigration ball. Initially, the urn contains one immigration ball and ݓ௜ 
treatment balls.  The treatment assignments are made sequentially by drawing balls at 
random from the urn. If a type ݅ ball is drawn (݅ ൌ 1, … ,  treatment  ݅ is assigned to the ,(ܭ
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subject and the ball is not replaced into the urn. If type 0 ball is drawn, it is replaced into 
the urn along with ܽݓଵ,… , …,௄ balls of types 1ݓܽ ,  The parameter ܽ is some positive .ܭ
integer (larger values of ܽ imply greater amount of randomness in the experiment). The 
DL rule is a fully randomized procedure, and it is known to be asymptotically best (Hu et 
al. 2006). 
 
(v) Doubly Adaptive Biased Coin Design (DBCD): The DBCD procedure was 
proposed by Hu and Zhang (2004) in the context of response-adaptive randomization. 
Here we consider its application for fixed unequal allocation. 
 
Let ሺߩଵ, … , ௄ሻߩ  denote the vector of target allocation proportions (ߩ௜ ൌ

௪೔

∑ ௪ೖ
಼
ೖసభ

, ݅ ൌ

1,… ,  Initial treatment assignments are made completely at random (2) until each .(ܭ
group has at least one subject.  Subsequent treatment assignments are made as follows. 
Let ௜ܰ,௝ିଵdenote the number of treatment ݅ assignments among the first ሺ݆ െ 1ሻ subjects. 
Then the treatment randomization probabilities for the ݆th subject are 
 

௜ܲ௝ ൌ
ఘ೔ቆ

ഐ೔
ಿ೔,ೕషభ/ሺೕషభሻ

ቇ
ം

∑ ఘೖቆ
ഐೖ

ಿೖ,ೕషభ/ሺೕషభሻ
ቇ
ം

಼
ೖసభ

,  ݅ ൌ 1,… ,  (4)   ,ܭ

where ߛ ൒ 0 is a user-defined parameter controlling the degree of randomness (ߛ ൌ 0 is 
most random and ߛ → ∞  is almost deterministic procedure). Importantly, treatment 
allocation proportions of the DBCD procedure follow an asymptotically normal 
distribution: ඥ݆൫ ௜ܰ௝/݆ െ ௜൯ߩ → ܰ൫0, ሺ1 ൅ ௜ሺ1ߩሻିଵߛ2 െ ,௜ሻ൯ߩ ݅ ൌ 1,… ,  .ܭ
 
(vi) Minimum Quadratic Distance Constrained Balance Randomization (MinQD): 
The design was proposed by Titterington (1983), in the context of multi-arm randomized 
trials with covariate-adaptive randomization and balanced allocation. Here we consider 
an extension of this procedure to clinical trials with unequal allocation.  
 
Consider a point in the trial when ݆ െ 1 subjects have been randomized among the ܭ 
treatments, and let ( ଵܰ,௝ିଵ, … , ௄ܰ,௝ିଵ ) denote the corresponding treatment numbers 
(∑ ௜ܰ,௝ିଵ

௄
௜ୀଵ ൌ ݆ െ 1). The randomization rule for the ݆th subject is as follows.  

 
 For ݇ ൌ 1,… ,  ௞, the hypothetical “lack of balance” which resultsܤ compute ,ܭ

from assigning the ݆ th subject to treatment ݇ ௞ܤ : ൌ maxଵஸ௜ஸ௄ | ௜ܰ௝
௞/݆ െ |௞ߩ ,  

where ௜ܰ௝
௞ ൌ ቊ ௜ܰ,௝ିଵ ൅ 1, ݂݅	݅ ൌ ݇;

௜ܰ,௝ିଵ, ݂݅	݅ ് ݇. 

 The treatment randomization probabilities for the ݆th subject ሺ ଵܲ௝, … , ௄ܲ௝ሻ are 

determined as a solution to the constrained optimization problem: 

  minimize௉భೕ,…,௉಼ೕ ∑ ൫ ௜ܲ௝ െ ௜൯ߩ
ଶ௄

௜ୀଵ      

  subject to ∑ ௜ܤ ௜ܲ௝
௄
௜ୀଵ ൑ ሺଵሻܤߟ ൅ ሺ1 െ ∑ሻߟ ௜ߩ௜ܤ

௄
௜ୀଵ   

  and ∑ ௜ܲ௝
௄
௜ୀଵ ൌ 1;     0 ൑ ௜ܲ௝ ൑ 1, ݅ ൌ 1, … ,  (5)   ,ܭ

Essentially, the idea is to quadratic distance between the vector of randomization 
probabilities and the target allocation vector subject to a constraint on expected “lack of 
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balance”. The user-defined parameter ߟ  ( 0 ൑ ߟ ൑ 1 ) that controls the degree of 
randomness in the experiment (ߟ ൌ 0 is most random and ߟ ൌ 1 is almost deterministic 
procedure). 
 

4. Design Performance Metrics 
 
4.1 Balance and Randomness 
 
Two important characteristics of a restricted randomization procedure are the Imbalance 
and the Forcing Index (measure of lack of randomness).  
 
For a randomization design with ݊ subjects, treatment imbalance can be defined as a 
distance, in some metric, between the achieved allocationሺ ଵܰሺ݊ሻ, … , ௄ܰሺ݊ሻሻ  and the 
target allocation ሺ݊ߩଵ, … ,   ௄ሻ. In Euclidean metric, imbalance is defined asߩ݊
 

ሺ݊ሻܾ݉ܫ ൌ ට∑ ሺ ௜ܰሺ݊ሻ െ ௜ሻଶ௄ߩ݊
௜ୀଵ    (6) 

Small values of ܾ݉ܫሺ݊ሻ are desirable; ܾ݉ܫ ൌ 0 corresponds to a perfectly balanced trial. 
 
A Forcing Index for the ݆-th subject (ܫܨ௝ ) is defined as the distance from vector of 
treatment randomization probabilities for the subject ࡼ௝ ൌ ሺ ଵܲ௝, … , ௄ܲ௝ሻ  to the 
“completely random” vector of randomization probabilities࣋ ൌ ሺߩଵ, … , ௝ܫܨ .௄ሻ, i.eߩ ൌ

ට∑ ൫ ௜ܲ௝ െ ௜൯ߩ
ଶ௄

௜ୀଵ . If ܫܨ௝ ൌ 0 , then the treatment assignment for patient ݆  is made 

completely at random. A Forcing Index for the design is defined as (Heritier et al. 2005) 
 

ሺ݊ሻܫܨ ൌ ݊ିଵ ∑ ௝ܫܨ
௡
௝ୀଵ    (7) 

The smaller ܫܨሺ݊ሻ is, the less predictable is the randomization procedure (the value of 
zero corresponds to complete randomization). 
 
In general, procedures with low imbalance have high forcing index and vice versa. 
Atkinson (2002) suggested plotting imbalance versus lack of randomness for a range of 
sample sizes to find admissible randomization procedures. 
 
4.2 The Allocation Ratio Preserving (ARP) Property 
 
Kuznetsova and Tymofyeyev (2014) discuss a very important feature of a restricted 
randomization procedure targeting unequal allocation—the ARP property. Let ࣋ ൌ
ሺߩଵ, … ,  ௄ሻ denote the target allocation. Let Ω denote the set of all allocation sequencesߩ
࣓ ൌ ሼ߱ଵ,… , ߱௡ሽ  the allocation procedure can produce.  Here ௝߱ ൌ ݅  if treatment ݅  is 
assigned at the ݆th allocation (݆ ൌ 1,… , ݊).  Let ݌ሺ࣓ሻ denote the probability with which 
sequence ࣓ occurs in Ω.   
 
A randomization procedure is said to possess the ARP property if for all ݆ ൌ 1, … , ݊ and 
݅ ൌ 1,… ,  ,ܭ
 

∑ ሺ࣓ሻ૚ሼ݌ ௝߱ ൌ ݅ሽ࣓∈ஐ ൌ  ௜.   (8)ߩ
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The left-hand side of (8) represents the unconditional probability of allocating treatment ݅ 
at the	݆th allocation.  
 
In essence, an ARP procedure maintains the unconditional allocation ratio at each step, 
whereas a non-ARP procedure has variations in the allocation ratio from allocation to 
allocation which may provide a potential for selection, evaluation and accidental bias 
even in double-blind studies (Kuznetsova and Tymofyeyev, 2014). As such, an ARP 
procedure is desired. 
 
 
4.3 Power and Type I Error 
 
In practice, it is important that the randomization design results in valid and powerful 
statistical inference. Validity means that the type I error rate is maintained at the nominal 
level (e.g. 5%), and high power of statistical test is desired to detect treatment difference 
when such exists. 
 

5. Simulation Study 
 
A simulation study was performed to compare the performance of six randomization 
designs described in Section 2, for a two-arm trial with 2:1 allocation, for a range of 
sample sizes up to 200. Specifically, the designs are: (i) CRD; (ii) PBD(bsize=3); (iii) 
BUD(ߣ ൌ 2); (iv) DL(ܽ ൌ 2); (v) DBCD(ߛ ൌ 2); and (vi) MinQD(ߟ ൌ 0.50). For each 
design and each sample size, the operating characteristics were computed based on 
10,000 simulation runs. 
 
Figure 1 displays interplay between balance and randomness. Figure 1A is a plot of 
median imbalance versus sample size. The ranking of the procedures (most balanced to 
least balanced) is as follows: PBD(bsize=3); DL( ܽ ൌ 2 ) and MinQD( ߟ ൌ 0.50 ); 
DBCD(ߛ ൌ 2); BUD(ߣ ൌ 2); and CRD. Figure 1B shows median Forcing Index versus 
sample size. The most random design is CRD (ܫܨ ൌ 0) and the least random design is 
PBD(bsize=3) (ܫܨ ൎ 0.3). Interestingly, DL(ܽ ൌ 2) and BUD(ߣ ൌ 2) designs are very 
similar in terms of randomness (ܫܨ ൎ 0.13), and MinQD(ߟ ൌ 0.50) design has a much 
higher degree of determinism (ܫܨ ൎ 0.26). At the same time, DBCD(ߛ ൌ 2) is similar to 
DL(ܽ ൌ 2) and BUD(ߣ ൌ 2)  designs for small sample sizes, and it becomes more 
random as sample size increases. Figure 1C shows a plot of the distance from (Median 
Imbalance, Median Forcing Index) to (0,0). For an “admissible” design, this distance 
should be small. From Figure 1C, it is clear that the DL(ܽ ൌ 2) rule has best overall 
performance: for sample sizes less than 50, it outperforms all designs except for the 
PBD(bsize=3); however for sample sizes greater than 50, the DL(ܽ ൌ 2) rule is a clear 
winner.  
 
Figure 2 shows simulated unconditional probability of assigning treatment 1 for five 
randomization designs (PBD(bsize=3), BUD(ߣ ൌ 2), DL(ܽ ൌ 2), DBCD(ߛ ൌ 2), and 
MinQD(ߟ ൌ 0.50)) for sample size up to ݊ ൌ 120 (the CRD is not considered here as it 
possesses the ARP property by definition). For an ARP design, the randomization 
probability for treatment 1 should be ~0.67 for any sample size. One can see from Figure 
2 that MinQD(ߟ ൌ 0.50)) design is a non-ARP procedure as it has fluctuations in the 
allocation probability. However, the other four designs maintain the allocation probability 
close to the target value of 2/3 (ARP procedures). 
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Finally, Table 1 shows simulated type I error and power of a 2-sample t-test with the 
fixed total sample size ݊ ൌ 24 and 2:1 allocation for six randomization designs. For each 
design, data (responses) were simulated according to the model: ௝ܻ ൌ ൫1 െ ߤ௝൯ߜ ൅ ௝ߝ , 
݆ ൌ 1, … ,24, where ߜ௝ ൌ 1 (or 0) if the ݆th subject is assigned to treatment 1 (or 2) and	ߝ௝ 
are independent error terms, with standard normal distribution. From Table 1, all designs 
approximately maintain the type I error at 5% (the column ߤ ൌ 0).  The DL rule is 
generally most powerful among the six designs studied (the columns ߤ ൌ ߤ ,0.5 ൌ 1 and 
ߤ ൌ 1.5).  
 

(A) Median Imbalance (B) Median Forcing Index 

 
(C) Distance from (Median Imbalance, Median Forcing Index) to (0,0) 

 
Figure 1: Imbalance and Forcing Index of six randomization designs. 
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(A) PBD(bsize=3) (B) BUD(ࣅ ൌ ૛) 

(C) DL(ࢇ ൌ ૛) (D) DBCD(ࢽ ൌ ૛) 

(E) MinQD(ࣁ ൌ ૙. ૞૙)  

 

 
Figure 2: Simulated unconditional allocation probability for treatment 1. 
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6. Concluding Remarks 

 
In this paper we studied statistical properties of (stratified) restricted randomization 
designs with unequal allocation targets. These designs attempt to maintain some pre-
specified fixed unequal allocation ratio throughout the trial. We focused on a simple case 
of two treatment arms and 2:1 allocation; our findings provide important insight into the 
performance of various randomization designs. Further research and simulation studies 
are warranted for ሺܭ ൐ 2ሻ- arm trials with unequal allocation. 
 
We found that the drop-the-loser rule of Ivanova (2003) applied with fixed unequal 
allocation provides the best tradeoff between balance and randomness for a range of 
sample sizes. Importantly, this procedure possesses the ARP property (the unconditional 
allocation probability is held constant at each step) and the design results in valid and 
powerful inference using two-sample t-test. In our ongoing and future work we plan to 
consider covariate-adaptive extensions of the DL rule to multi-arm trials with discrete 
and continuous covariates and unequal allocation targets. 
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MinQD(ࣁ ൌ ૙. ૞૙) 0.057 0.207 0.581 0.892 
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