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Abstract 
It is not uncommon to encounter stability data that are censored due to results being 
below a quantitation limit of the assay. Often various crude methods are applied to the 
data, such as imputing values or modeling only the portion of the stability trend that is 
uncensored. An alternative method is proposed utilizing Tobit regression applied in the 
mixed model context to account for test-to-test variation. We show the approach allows 
one to model the distribution mean across the entire stability profile and reduces bias due 
to censored values. 
 
Key Words: censored data, regression, Tobit, stability, quantitation limit, 
detection limit 
 
 

1. Introduction: Stability Designs, Data and Models 
 
Stability studies evaluate many quality features of a drug substance or drug product over 
time, typically up to 3 or 4 years. The quality features are often related to safety and 
efficacy and include, for example, % of label claim of the active ingredient or biological 
potency, impurities, and degradates, or may include characteristics of the drug that are 
just quality related, such as charge distribution, pH, and moisture, for example. Stability 
studies often test multiple batches of material stored in different containers or product 
images, at different conditions (temperature & humidity).  
 
Since each batch of material to be tested in a stability study has been stored at one 
condition, such as -70ºC or 2-8º/ambient and is then divided into different conditions at 
the start of the study when put into stability chambers, differences in conditions cannot 
have an effect on the trend until after time 0. This implies that the model must be 
constrained to have the same intercept at time 0 for multiple conditions of the same batch. 
This is also true for other factors where a division has occurred at time 0 and their effect 
begins after time 0.  
 
1.1 Example of stability data and model  

 
An example of stability data collected over 36 months is shown in the left plot of Figure 
1. The time 0 (TZ) data include two replicates that support the trends of both the -70ºC or 
2-8ºC/ambient conditions. Subsequent to time 0, the trends of the two conditions diverge 
with 2-8ºC/ambient showing a statistically significant loss in the quality characteristic.  
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Figure 1: (Left plot) constrained linear model fit to stability data for batch 1, (right plot) 
corresponding residual plot.  
 
The constraint is invoked in the model by leaving out the condition term from the 
intercept specification in Model 1. However, when looking at the residual plot (Figure 1, 
right) we see what appears to be evidence of lack-of-fit. We may consider that the trend 
is non-linear, but a more plausible explanation comes into focus when we understand that 
the two conditions for the same batch were tested in the same assay runs at each time 
point. The apparent lack-of-fit is likely the run-to-run (or test-to-test) variation of the 
assay. To capture this feature, the stability Model 1 includes an additional error term. 
 
Model 1 
݃൫Result௜௝൯ ൌ ௜ܻ௝ ൌ ሺLot,Temp,Monthsሻߤ ൅ ݁Test೔ ൅ ݁Residual೔ೕ, where 

ሺLot,Temp,Monthsሻߤ ൌ ሺߤ଴ ൅ Lotሻ ൅ ሺ1 ൅ Lot ൅ Temp ൅ Lot ∗ Tempሻ݂ሺMonthsሻ, 
factors Lot and Temp are appropriately expanded into dummy variables, 
݁Test೔݅݅݀	ܰ൫0, Testߪ

ଶ ൯, and independently ݁ୖୣୱ୧ୢ୳ୟ୪೔ೕ݅݅݀	ܰ൫0, Residualߪ
ଶ ൯,  

for monotonic transformations ݃ and ݂.  (Model 1) 
  
When there are multiple levels of variation in a regression model, sometimes one can 
simplify the analysis by averaging over the within variation, and then analyze the 
averages using only one error term. The example in Figure 1 shows a case where this is 
not possible since the within run variation is stratified by the condition factor. This latter 
situation is more likely in a well-designed stability study, because factors that are tested 
within sources of variation lead to higher precision contrasts than factors whose levels 
span a source of variation.  
 
1.2 Example of Censoring in Stability 
 
Censoring is another feature of stability data that occasionally occurs in practice. In 
Figure 2, the data are censored below C= 0.06%, the limit of detection (LOD) for the 
assay. While the censored values were set to 0, the actual results can occur anywhere 
between 0 and 0.06%. We do not know where they fall because the assay does not have 
the resolution to recognize any % peak area below this limit. More commonly, the limit 
of quantitation (LOQ) acts as a censoring limit. The LOQ is a point beyond which the 
assay does not yield results of acceptable precision or accuracy.  
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Figure 2: (Left plot) left censored data, censored at C=0.06%. (right plot) Right censored 
data censored at 99.95%.  Data below (above) the censoring limit is set to 0% (100%). 
 
The right plot in Figure 2 shows an example of right censoring that can also occur, 
though is less common. In this case, the outcome is a % purity measure as measured as 
100%  % of peak area of an impurity. Since the impurity cannot be detected below 
0.05%, the purity cannot be detected above 99.95%.  
 
Several ad hoc methods are used when analyzing censored data that can lead to bias. For 
example, plugging in a value for the censored data such as C, C/2, C/√2, 0, where C = 
the censoring limit, tends to underestimate the steepness of trend and underestimate the 
variation. Another approach is to simply model only the time points with completely 
observed data. If there are enough data available, the uncensored data should give an 
approximately unbiased estimate of the trend.  
 
To address the bias problem while accounting for test-to-test variation, a mixed model 
implementation of the Tobit Type I model is proposed in section 2. In section 3 the bias 
and variance of the method is compared to the other ad hoc methods in simulations that 
demonstrate improved properties of the model parameters when using the Tobit method. 
A bias problem in the test-to-test component due to ML estimation is noted and addressed 
with a related method. Section 4 and 5 conclude with further discussion about this bias 
problem and other methods.  
 
 

2. Tobit Models 
 
2.1 Tobin’s Type I Model 
 
Tobin (1958) introduced a simple concept for modeling censored data. His method, now 
called the Tobit Type I model, imagines that the regression trend could continue below 
the censoring limit as if there were no censoring limit. It does away with the censoring 
problem (temporarily) by supposing a simple latent model (2) for all data, censored and 
uncensored.  
 
௜ݕ
∗ ൌ ࢏࢞

ᇱࢼ ൅ ݁௜
∗,   ݁௜

∗~ܰሺ0,  ଶሻ  (2)ߪ
 
The latent values, of course, are not valid data below the censoring limit, so the Tobit 
model links the latent data to actual data by censoring it as in (3), where latent values ݕ௜

∗  
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below C are rectified to C and those above C are left as is. That is, the Tobit model 
assumes that ݕ௜ ൌ ௜ݕ in the data is representative of a censored value ܥ

∗ ൑  .ܥ
 
௜ݕ ൌ ௜ݕሺܫܥ

∗ ൑ ሻܥ ൅ ௜ݕ
௜ݕሺܫ∗

∗ ൐  ሻ  (3)ܥ
 
The censoring in (3) implies that the distribution of ݕ௜ is a rectified normal distribution, 
rectified at the value C. As the latent model approaches C and eventually falls below C, 
the normal error distribution below C is cumulated into a discrete probability point 
(Figure 3, right plot). That is, the distributional model for the data is the discrete-
continuous distribution (4). 
 

௜ሻݕሺܨ ൌ ௜ݕሺܫ ൐ ሻΦܥ ቀ௬೔ି࢏࢞
ᇲࢼ

ఙ
ቁ. (4) 

 
The Tobit model can similarly be defined for an upper censoring limit or both upper and 
lower censoring limits. From this point forward we will only work with the lower 
censoring limit case as this is much more common in stability than other types of 
censoring. 
 

 
 

Figure 3: (Left Plot) illustration of data censored at censor limit C=0.3 generated by a latent 
model (blue) with least squares fit (black). (Right Plot) Latent regression model normal 
distribution rectified at point C. 
 
2.2 Tobit Mixed Model for Stability Data 
 
The Tobit model is applied to stability data as shown in Model 2. Model 2 takes 
advantage of the latent model concept of the Tobit model by specifying Model 1 as the 
latent model, then rectifying the latent result per the censoring limit. An (optional) 
monotonic transformation ݃ may be applied to the result to meet regression assumptions 
of normality and constant variance, or to address a 0 boundary in addition to the 
censoring limit. 
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Model 2 

௜ܻ௝
∗ ൌ ሺLot,Temp,Monthsሻߤ ൅ ݁Test೔ ൅ ݁Residual೔ೕ, where 

ሺLot,Temp,Monthsሻߤ ൌ ሺߤ଴ ൅ Lotሻ ൅ ሺ1 ൅ Lot ൅ Temp ൅ Lot ∗ Tempሻ݂ሺMonthsሻ,  
factors Lot and Temp are appropriately expanded into dummy variables, 
݁Test೔݅݅݀	ܰ൫0, Testߪ

ଶ ൯, and independently ݁ୖୣୱ୧ୢ୳ୟ୪೔ೕ݅݅݀	ܰ൫0, Residualߪ
ଶ ൯, and  

݃ሺResult௜௝ሻ ൌ ௜ܻ௝ ൌ ቊ ௜ܻ௝
∗ if	 ௜ܻ௝

∗ ൐ ݃ሺܥሻ
݃ሺܥሻ if	 ௜ܻ௝

∗ ൑ ݃ሺܥሻ
 ,   

for monotonic transformations ݃ and ݂.  (Model 2) 
 
A useful way to express the Model (2) density for ௜ܻ௝  is in a two-stage form (5), 
conditioning on the test random effect.  
 

௜ܻ௝|݁Test೔~	 ଵ݂൫ݕ௜௝ห݁Test೔൯ ൌ

ቐ
ܰ൫ݕ௜௝|ߤሺLot,Temp,Monthsሻ ൅ ݁Test೔ , Residualߪ

ଶ ൯ if	ݕ௜௝ ൐ ݃ሺܥሻ

Φ ൬
௚ሺ஼ሻିఓሺLot,Temp,Monthsሻି௘Test೔

ఙResidual
൰ if	ݕ௜௝ ൌ ݃ሺܥሻ

  

 
݁Test೔~	 ଶ݂൫݁Test೔൯ 							ൌ ܰ൫0, Testߪ

ଶ ൯  (5) 
 
The conditional distribution ௜ܻ௝|݁Test೔ is given in two parts, a normal density for a linear 
model regression if the (transformed) result ݕ௜௝  is above the (transformed) censoring 
limit, and a discrete part that cumulates the area of the normal density at or below the 
censoring limit. Given that ݁Test೔ is fixed, it simply becomes part of the mean function 
along with the stability model mean ߤሺLot,Temp,Monthsሻ . It is understood by this 
notation that integration of ଵ݂ involves summing discrete parts and integrating continuous 
parts.  
 
2.3 Likelihood Estimation 
 
Model specification is comparatively easy compared to model estimation. The likelihood 
for the Tobit mixed model Mode 2 is given by (6): 
 
ܮ ൌ ∏ ׬ ଷ݂൫ݕ௜ห்݁೔൯ ଶ݂൫்݁೔൯்݀݁೔

ஶ
ିஶ

#௧௘௦௧௦
௜ୀଵ , where 

ଷ݂൫ݕ௜ห்݁೔൯ ൌ ∏ ଵ݂൫ݕ௜௝ห்݁೔൯
௡೔
௝ୀଵ ,  

௜ݕ ൌ ൫ݕ௜ଵ, ,௜ଶݕ … ,  ௜௡೔൯′ . (6)ݕ
 
The density ଷ݂൫ݕ௜ห்݁೔൯ is formed by recognizing that the test vector ݕ௜  is conditionally 

independent when conditioning on the test effect ்݁೔. ଷ݂ is then multiplied by ଶ݂൫்݁೔൯ to 
form a joint density on ݕ௜  and ்݁೔  from which ்݁೔  is integrated out to generate the 
marginal density of the test vector ݕ௜. The tests themselves are assumed independent, so 
the overall likelihood is formed as the product of the marginal test vector densities.  
 
Estimation with the likelihood in this form requires numerical integration techniques. 
SAS proc NLMIXED can fit this model when provided with initial estimates. The initial 
estimates can be taken from the fit to the uncensored data. Example SAS code is given 
below. 
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proc nlmixed data=stability; 
  Parms b0=-0.1 b1=0.033 Cov_test=0.05 Cov_Residual=0.05; 
  bounds Cov_Residual>0, Cov_Test>0; 
  C     = 0; *censor limit; 
  linp  = b0 + b1*Mo + Test; *linear model of the mean; 
*normal CDF function for point mass at censor boundary C, conditional on Test 
random effect; 
  Phi   = probnorm((C-linp)/sqrt(Cov_Residual));  
*normal pdf for data > C, conditional on Test random effect; 
  f = exp(((Result-linp)**2)/(-2*Cov_Residual))/sqrt(2*3.141592654*Cov_Residual);  
*log discrete-continuous mixture likelihood, conditional on Test random effect; 
  ll = (censor=0)*log(f) + (censor=1)*log(Phi);  
  model Result ~ general(ll); 
*random effect for sample/test variance component; 
  random Test ~ normal(0,Cov_test) subject=TestID ;  
run; 
 
 

2.4 Mean Model 
 
Although the stability model is linear after taking transformations possibly in response or 
time, the mean model for the Tobit model is non-linear due to the censoring artifact and 
the convention that the censored data be set to the value C. Recalling that the Tobit model 
is a discrete-continuous mixture distribution, the approximate marginal expectation of a 
result is given by (7) (see the Appendix for details). It is clear from expression (7) that as 
the regression moves away from (above) the censoring limit, z becomes more negative 
and hence the expectation in (7) on the transformed scale ݃ approaches the usual linear 
stability model. On the other hand as the regression moves toward and below the 
censoring limit, z becomes positive and the expectation in (7) on the transformed scale ݃ 
approaches the censoring limit C.  
  

ሾResultሿܧ ≅ ݃ିଵ ቀ݃ሺܥሻΦሺݖሻ ൅
ఙ

√ଶగ
ଶሻݖሺെ0.5݌ݔܧ ൅ ߤ ൈ ሺ1 െ Φሺݖሻሻቁ, where 

ݖ ൌ
௚ሺ஼ሻିఓ

ఙ
, 

ߤ ൌ ሺLot,Temp,Monthsሻߤ ൌ ሺߤ଴ ൅ Lotሻ ൅ ሺ1 ൅ Lot ൅ Temp ൅ Lot ∗
Tempሻ݂ሺMonthsሻ, 

ߪ ൌ ට்ߪ௘௦௧
ଶ ൅ ோ௘௦௜ௗ௨௔௟ߪ

ଶ    (7) 

 
It is important to note that setting the censored data to the value C for the Tobit model is 
not the same as doing so for an ordinary regression. Recall that the Tobit model explicitly 
accounts for the censoring as cumulative area of the latent model distribution below C. 
Also, while the approximate expectation in (7) is for the Tobit model data set, it does not 
necessarily reflect the true mean of the assay results near the censoring limit. Ultimately 
these are unknown. 
 
The mean function (7) is illustrated on example stability data in Figure 4. The assay for 
this example had a very low detection limit close to 0. The mean model is approximately 
the linear latent model when it is away from the censoring limit, but becomes non-linear 
and limits toward the censoring limit as the latent model (not shown) approaches and 
drops below the censoring limit.  
 
The Tobit model also provides an estimation of the censoring rate, Φሺݖሻ. The right plot in 
Figure 4 illustrates the rapid drop in censoring rate for some of the stability trends as they 
move away from the censoring limit. Interestingly, the censoring rate can increase if the 
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latent model (not shown) has a negative trend. The negative latent trend in this model is a 
reflection of the partial censoring at early time points, followed by fully censored data at 
later time points. Likely, the true trend is flat with a constant rate of censoring. 
 

Figure 4: (Left Plot) Approximate expectation based on % peak area stability data fit with a 
Tobit mixed model. (Right Plot) Plots showing the estimated censoring rates for the fitted models. 
 

3. Simulation Study 
 
A simulation study was conducted to understand the performance of the Tobit mixed 
model. The Tobit method was compared to other ad-hoc approaches such as plugging in 
censored values and analyzing with multiple regression, fitting the uncensored data only, 
and a conditional approach that is explained below.  
 
3.1 Methods compared via simulation 
 
The following methods were compared: 

1. Tobit: The Tobit mixed model (Model 2) 
2. Plug in: mixed model fit to data with a single imputation of censored values set 

to the censoring limit C 
3. Uncensored: mixed model fit only to the time points that have no censoring 
4. Conditional: use of the uncensored method to obtain REML estimates of the 

variance components, followed by Tobit maximum likelihood estimation 
conditional on the estimated variance components. 

 
Uncensored is only a viable option if the stability slope is sufficiently steep such that a 
meaningful number of time points remain uncensored. This method cannot be exactly 
unbiased when taking into account the selection process that identifies uncensored time 
points, but it would be expected to be approximately unbiased since upon knowing the 
time points that are unlikely or very unlikely to be censored, the censoring problem is 
essentially not present.  So the issue with this method is not bias, but rather higher 
variance as the estimates will be less precise being based on less data.  
 
Along these lines, it is of particular interest how much the precision of trend is improved 
in the Tobit method, having utilized the partial and fully censored data to help inform the 
model estimates, especially the precision of the slope and predictions at a future time 
points. The simulation also aims to understand how this precision depends on the degree 
of censoring and the between and within variance of test results. 
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3.2 Simulation Set up 
 
The simulation involved two batches tested at time points 0,1,3,6,9,12, and 18 months. 
One test per time point per batch with two replicates per test were generated using latent 
model Model 3, with censoring limit C=0.5.  
 

௜ܻ௝
∗ ൌ ଴ߚ ൅ 0 ∗ 2ሻ	݄ܿݐܽܤሺܫ ൅ 0.3 ∗ ݄ݐ݊݋ܯ ൅ 0 ∗ ݄ݐ݊݋ܯ ∗ 2ሻ	݄ܿݐܽܤሺܫ ൅ ݁Test೔ ൅ ݁Residual೔ೕ, where  

݁Test೔~ܰ൫0, Testߪ
ଶ ൯,  ݁ୖୣୱ୧ୢ୳ୟ୪೔ೕ~ܰ൫0, Residualߪ

ଶ ൯, and ܫሺ݄ܿݐܽܤ	݅ሻ is an indicator function 

indicating Batch i.  (Model 3) 
 
Two values of ߚ଴ ൌ െ0.1, െ0.7, were used to invoke two mean levels of censoring of 
28% and 41%, respectively. Two levels of between and within variance ratio, 1 and 4 
were set with the total variance, ߪTest

ଶ ൅ Residualߪ
ଶ  held fixed at 0.1. A variance ratio of 1 

corresponds to a cluster correlation of 0.5 and a variance ratio of 4 corresponds to a 
cluster correlation of 0.8. N = 5,000 simulations were performed.  
 
3.3 Simulation Results and conclusions 
 
The simulation results (Table 1) are divided into a number of sections. The bottom rows 
of the table focus on prediction at 24 months (6 months past the range of the data) and the 
top portion of the table considers the parameter estimates themselves. These sections are 
further divided into 4 sections of variance ratio 1 and 4 and mean censoring rates of 41% 
and 28%.  
 
Considering the parameter estimates first, it is noted that the plug in method has a high 
degree of bias from the true parameters for every parameter except those contrasting the 
batch 1 and 2 slope difference (b2 and b4). The plug in method is clearly not 
recommended. Next, note that the Monte Carlo expectations of the uncensored method 
have low bias, with a few exceptions for the intercept. It is not clear why the lower rates 
of censoring tend to have more intercept bias.  
 
Similarly, the Tobit mixed model has generally low bias. However, the Tobit model also 
has a disturbing pattern of underestimation of the test-to-test variation that appears to be 
slightly worse with higher rates of censoring. Much of this bias can be explained by the 
use of maximum likelihood for estimation instead of REML. Indeed, estimation of the 
latent model data with ML would also show an underestimation of test-to-test variation. 
For linear mixed models with balanced data, REML corrects for the degrees-of-freedom 
(DF) instead of the sample size. If one corrects the test-to-test variance component 
estimate by the sample size to DF ratio (= 14 tests/10 DF = 1.4x), some of the bias, but 
not all, is eliminated. Unfortunately we know of no simple way to implement REML in 
the nonlinear Tobit model context. Current experience suggests that this bias does not 
have a meaningful impact on the mean and confidence intervals of the mean. For 
example, prediction at 24 months in the simulation produced low bias for all methods 
except the plug in approach.  
 
The bias in the test-to-test variance component motivates a hybrid conditional approach 
which uses REML to estimate the variance components on the uncensored data, but 
maximizes the likelihood for the Tobit model conditional on these variance component 
estimates. While there is some information loss in not utilizing all the data for the 
variance components, it is expected that the censored data provide less information about 
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the variation than the mean. As Table 1 shows, the Monte Carlo expected values of the 
parameter estimates for the conditional method have overall little bias.  
 
 

 
 
Table 1: Simulation results comparing for methods: Tobit: Tobit mixed model, Plug in: mixed 
model with censored data set to C, Uncens.: mixed model fit to only the timepoints that are 
uncensored, Cond. Tobit: REML on uncensored, Tobit conditional on REML var comp. The 
Monte Carlo expectations and standard errors are reported at the worst observed precisions of the 
simulations, meaning that any changes in the values at the reported precision reflect more than 2x 
standard error shifts with respect to Monte Carlo error. The expectations with more noteworthy 
bias are in bold. About 99.9% of the Tobit fits converged and >97% of the conditional Tobit fits 
converged among 5,000 simulation runs. 
 
As hoped, utilization of the censored data improves the precision of the parameter 
estimates beyond the precision that can be achieved modeling only the uncensored data. 
In all cases the parameter standard errors for the Tobit model were as small or smaller 
than the uncensored method standard errors. The conditional method also had this 
property. For the prediction of the mean at 24 months, we see an approximate 10% 
reduction in standard error for every case for both the Tobit and Conditional methods. 
While the lowest standard errors are achieved by the plug in method, the bias of this 

Var. 

Ratio

Mean 

Censor 

Rate Parameter True

tobit 

mean

plug in 

mean

Uncens. 

mean

Cond. 

tobit

mean

tobit

SE

plug in

SE

Uncens. 

SE

Cond. 

tobit

SE
1 41% Cov_Residual 0.05 0.05 0.03 0.05 0.05 0.02 0.01 0.02 0.02

Cov_Test 0.05 0.02 0.15 0.05 0.05 0.03 0.05 0.05 0.05
b0 ‐0.7 ‐0.71 0.07 ‐0.67 ‐0.74 0.30 0.07 0.38 0.30
b1 0 0.01 0.00 0.00 0.01 0.42 0.10 0.54 0.42
b2 0.3 0.30 0.24 0.30 0.30 0.03 0.01 0.03 0.03
b3 0 0.00 0.00 0.00 0.00 0.04 0.02 0.04 0.04

28% Cov_Residual 0.05 0.05 0.03 0.05 0.05 0.02 0.02 0.02 0.02
Cov_Test 0.05 0.03 0.07 0.05 0.05 0.03 0.03 0.05 0.05
b0 ‐0.1 ‐0.10 0.22 ‐0.05 ‐0.12 0.22 0.09 0.31 0.22
b1 0 ‐0.01 0.00 ‐0.01 ‐0.01 0.30 0.13 0.43 0.30
b2 0.3 0.30 0.27 0.30 0.30 0.02 0.01 0.03 0.02
b3 0 0.00 0.00 0.00 0.00 0.03 0.02 0.04 0.03

4 41% Cov_Residual 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.01 0.01
Cov_Test 0.08 0.04 0.17 0.08 0.08 0.03 0.06 0.07 0.07
b0 ‐0.7 ‐0.73 0.07 ‐0.69 ‐0.76 0.34 0.08 0.42 0.33
b1 0 0.00 0.00 0.01 0.01 0.48 0.11 0.59 0.47
b2 0.3 0.30 0.24 0.30 0.30 0.03 0.01 0.03 0.03
b3 0 0.00 0.00 0.00 0.00 0.04 0.02 0.05 0.04

28% Cov_Residual 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.01 0.01
Cov_Test 0.08 0.05 0.09 0.08 0.08 0.03 0.04 0.06 0.06
b0 ‐0.1 ‐0.10 0.21 ‐0.05 ‐0.13 0.24 0.10 0.32 0.24
b1 0 ‐0.01 0.00 0.00 ‐0.01 0.34 0.15 0.46 0.34
b2 0.3 0.30 0.27 0.30 0.30 0.02 0.02 0.03 0.02
b3 0 0.00 0.00 0.00 0.00 0.03 0.02 0.04 0.03

1 41% Pred. 24 mo. 6.50 6.51 5.83 6.48 6.54 0.38 0.29 0.42 0.38
28% Pred. 24 mo. 7.10 7.10 6.81 7.06 7.12 0.34 0.29 0.39 0.35

4 41% Pred. 24 mo. 6.50 6.52 5.82 6.49 6.54 0.42 0.32 0.46 0.42
28% Pred. 24 mo. 7.10 7.10 6.81 7.06 7.12 0.37 0.31 0.41 0.37
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method dominates in comparisons of mean squared error, with both the Tobit and 
Conditional Tobit methods performing the best.  
 

4. Other Methods and Future Research 
 
For a model with one level of nesting, as with the Tobit model here, numerical 
integration methods can be used to maximize the likelihood. However, for more complex 
models, for example a model accounting for random batch effects and test-to-test 
variation, the integrations become too difficult to do numerically. Hughes (1999) derived 
the EM algorithm for linear mixed models with censored data and proposed computing 
expectations for the E step using Gibbs sampling, i.e., using simulation instead of direct 
numerical integration. Hughes derived both ML and REML methods of estimation, but in 
his simulations he evaluated only the ML method and noted as I did that the variation of 
the between variance component is underestimated. He attributed all of the bias to the use 
of maximum likelihood instead of REML, though he did not use the REML version of his 
method to improve the estimates.  
 
Another common method addressing missing data is multiple imputation. Multiple 
imputation, unlike single imputation, accounts for the uncertainty in the model due to 
censoring. The difficulty is in specifying the model from which imputations will be 
generated. If there are enough data, modeling the uncensored data may be a good choice, 
though with a smaller sample size, the imputed values may have excessive variation. The 
Tobit model should not be used as this already underestimates the test-to-test variation. 
Wu (2010) proposed using a Bayesian posterior predictive distribution for imputation, 
although it seems one should move entirely to the Bayesian context in this case. 
 
Since most methods either rely on simulation, or need to if more than two error terms are 
included in the model, it seems obvious that Bayesian methods should be considered. 
Gelman et. al. (2004) showed how to implement censoring into a Bayesian model using 
the same fundamental idea of the Tobit model; cumulating area of the latent density 
beyond the censoring point. More recently, Dagne and Huang (2013) have proposed a 
Bayesian method using the Tobit idea, though in a much more complex setting involving 
a mixture model for censored observations and covariates with measurement error. 

 
In all of these methods, a key question that needs to be answered with respect to the 
stability model is whether the test-test variation is underestimated as was shown with the 
Tobit mixed model, and possibly, whether higher level variance components such as 
batch-to-batch variation are underestimated.  
 

5. Conclusions 
 
Test to test variation, usually as the result of assay run-to-run variation is common in 
stability studies. Sometimes censoring plays a role in stability too, usually left censoring 
due to an assay limit of quantitation or a limit of detection. A Tobit mixed model was 
proposed as a suitable model to account for both test-to-test variation and censoring.  
 
Through simulations we observed that the Tobit model nearly eliminated all bias 
observed in the plug in, single imputation method that plugs in the censoring limit for the 
censored values. However, the Tobit model was also observed to underestimate the test-
to-test variation. This bias appeared to have little impact on predictions at 24 months, 
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nevertheless, an alternative conditional method was proposed that used REML on the 
time points with only fully observed data then maximized the likelihood of the Tobit 
model conditional on these variance component estimates. The conditional method was 
observed to eliminate the test-test variance bias of the Tobit method, but retained Tobit ’s 
higher precision of model parameters and predictions compared to the uncensored 
method.  
 
Future research is needed to compare the Tobit mixed model to other methods including 
EM estimation for mixed models, multiple imputation methods, and Bayesian methods. 
Of keen interest is whether the test-to-test variance component is underestimated by any 
of these methods. It is recognized that extensions to additional variance components, such 
as batch-to-batch variation significantly complicates all of the methods, except perhaps 
multiple imputation. Additional variance components effectively require most methods to 
use simulation in one form or another.  
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Appendix 
 

Details of the expectation approximation (7) are shown here. First approximate the Tobit 
mixed model, Model 2, using the marginal distribution of the latent model and set this 
marginal distribution up as a Tobit model. This yields the univariate discrete-continuous 
mixture model 

 ݂൫ݕ௜௝൯ ൌ ൝
ܰ൫ݕ௜௝|ߤ, ଶ൯ߪ if	ݕ௜௝ ൐ ݃ሺܥሻ

Φቀ௚
ሺ஼ሻିఓ

ఙ
ቁ if	ݕ௜௝ ൌ ݃ሺܥሻ

, where 

ߪ is the latent mean model and ߤ ൌ ට்ߪ௘௦௧
ଶ ൅ ோ௘௦௜ௗ௨௔௟ߪ

ଶ . Then calculate 

ሾܧ ௜ܻ௝ሿ ൌ න ௜௝ݕ௜௝ሻ݀ݕ௜௝݂ሺݕ
ஶ

ିஶ
 

ൌ 	݃ሺܥሻΦቆ
݃ሺܥሻ െ ߤ

ߪ
ቇ ൅න ,ߤ|௜௝ݕ௜௝ܰ൫ݕ ௜௝ݕଶ൯݀ߪ

ஶ

௚ሺ஼ሻ
 

 
The latter quantity is the upper partial expectation of the normal, and via change of 
variables can be shown to be  

	ߤ ൬1 െ Φቀ௚
ሺ஼ሻିఓ

ఙ
ቁ൰ ൅

ఙ

√ଶగ
׬ ௜௝ሻ݁ݕሺݖ

ି
భ
మ
௭ሺ௬೔ೕሻమ݀ݖሺݕ௜௝ሻ

ஶ
௭ሺ௚ሺ஼ሻሻ , where ݖሺݕሻ ൌ

ߤെݕ

ߪ
. 

For the second part, another change of variables yields 
ఙ

√ଶగ
݁ି

భ
మ
ቀ
೒ሺ಴ሻషഋ

഑
ቁ
మ

, thus,  

ሾܧ ௜ܻ௝ሿ ൌ 	݃ሺܥሻΦሺݖሺ݃ሺܥሻሻሻ ൅
ఙ

√ଶగ
݁ି

భ
మ
ሺ௭ሺ௚ሺ஼ሻሻሻమ ൅ ൫1	ߤ െ Φሺݖሺ݃ሺܥሻሻሻ൯.  
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