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ABSTRACT. Recurrent events data arise in biomedical, engineering, sociological, 

business, and many other applications. Despite over 25 years of literature articles and 

books on analysis of such data, some current medical studies of recurrent diseases still 

use only each patient's first recurrence time and ignore subsequent ones, thus losing 

information. This article provides an introduction to modern analysis of recurrent events 

data and gives new results on how much added information and accuracy are gained by 

the use of all recurrences. 

 

1. INTRODUCTION   

 Motivation. I suffered three episodes of blood clots (thromboses) while taking 

Coumadin, a standard treatment. My last episode included dangerous embolisms in my 

lungs and required six days in the hospital. Recently my doctor suggested that I take 

Xarelto, which was recently approved to prevent thromboses. Concerned, I searched the 

Web and found detailed information on Xarelto, including clinical studies of its 

effectiveness compared to Coumadin. Although blood clots are recurrent events, the data 

analyses of those studies used only patients' first occurrence time in the study and ignored 

later recurrences, obviously a loss of information.    

 Background. The practice of using only a patient's first occurrence time started 

before recurrent-events methods were widely known and uses well-known survival data 

methods. Considerable journal literature on recurrent events methods goes back at least 

25 years, for example, Nelson (1988).  Also, books for practitioners have been available 

for years, for example, Nelson (2003) and Cook and Lawless (2007), which also survey 

the literature. Nevertheless, the wasteful practice of using only the first occurrence time 

persists, perhaps due to analysts' ignorance of this specialized topic. To increase 

awareness, this article also presents basic models and analyses for recurrence data in 

Sections 2 and 3, where readers need only basic statistics. 

Overview. Section 2 presents the basic nonparametric and Poisson models for 

recurrent events. Section 3 shows how much information is lost when only first 

occurrence times are used. Section 4 gives derivations of the results of Section 3. Those 

who are familiar with basic recurrent events methodology may wish to skip to Section 3. 

 

2. MODELS 

Overview. This section presents the basic nonparametric model for recurrent 

events, key concepts, and the Poisson model and its properties. 

2.1  Nonparametric Model 

 Purpose. This section presents basic concepts for recurrent events data: 

cumulative history functions, the nonparametric population model, population 

distributions, the population mean cumulative function (MCF), and recurrence rate. 

Data. Typical recurrence data are the patient's exact time under treatment at each 

recurrence and how long the patient was observed, the censoring time. Such data are 

called exact with right censoring. For example, Figure 1.1 is a time-line display of Byar 
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bladder tumor data (Nelson, 2003, p. 8) for 48 Placebo patients. Here the length of a line 

shows a patient's months under study until censored, and each x shows a recurrence time. 

More generally, recurrence time data may be interval data and may have right, left, or gap 

censoring, as described by Nelson (2003, Ch. 1) and Cook and Lawless (2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  Display of tumor recurrences x for Placebo patients. 
 

 

 Cumulative history functions.  Figure 1.2 shows a typical sample cumulative 

history function of a population unit; it is the time-line data (on the horizontal axis) 

depicted as a step function for the cumulative number of recurrences over time. In most 

parametric models, like the Poisson process, the increments/steps are all 1, as 

simultaneous events are impossible in such models.  More generally for counts of events, 

increments can be any integer 1, 2, 3, ···. For example, births data could contain twins, 

triplets, etc. The general model here also allows for negative increments. For example, 

the number of people or production units in a waiting line can increase and decrease 
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Figure 1.2  Cumulative history function for the number of recurrences. 
 

 
Model. The nonparametric population model is the population of the uncensored 

cumulative history functions of a target population of patients. That is, the model is a 

population of step functions. Such a population of cumulative functions is depicted in 

Figure 1.3 as continuous curves, because a staircase functions would coincide and  be 

unreadable.  

 
Figure 1.3   Population of cumulative histories for the number of recurrences. 

MCF. At any age t, there is a population distribution of the cumulative number 

events as shown in Figure 1.3. The mean Λ(t) of this distribution is a function of t. Λ(t) is 

called the mean cumulative function (MCF) for the number of events. Λ(t) is also called 

the cumulative intensity function. This function can be regarded as the population "mean 

curve," as it is the pointwise average of all population cumulative values at age t. For a 

finite population, Λ(t) is a step function with many small steps, one for each event in the 

population. For many applications, the mean curve is regarded as continuous. Λ(t) 

provides most of the information sought from recurrence data.  
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Applications. Figure 1.4 shows the MCF estimate (middle line) for recurrences 

of bladder tumors under Placebo treatment from the Byar data. Figure 1.5 from Prof. 

Richard Cook shows MCF estimates for recurrences of herpes episodes under two 

therapies with Valtrex: 1) taken only during episodes and 2) taken daily to suppress 

episodes; Cook and Lawless (2007, Sec. 5.3.4) provide more detail. Both figures use all 

recurrences. Theory for the MCF estimates requires that sample units are obtained with 

true  random sampling of the population. Nelson (1988,2003) and Cook and Lawless 

(2007) show how to calculate a sample estimate Λ*(t) of the population Λ(t) and plot it as 

in Figures 1.4 and 1.5. These sample MCFs are near linear. In most engineering and other 

applications, an MCF estimate is usually curved. The values of upper and lower curves at 

time t are approximate 95% confidence limits for Λ(t). These limits are given by Nelson 

(1995,2003) and Cook and Lawless (2007).  Commercial software that provide such plots 

include SAS Proc Reliability, JMP, Minitab, ReliaSoft RDA, and SuperSMITH Visual.  

 
Figure 1.4  Sample MCF of tumor recurrences with Placebo. 
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Figure 1.5   Sample MCFs of herpes episodes under two therapies. 
 

 

Recurrence rate.   Usually one assumes that Λ(t) is continuous and has a 

derivative 

  λ(t) ≡ dΛ(t)/dt ,       (1.1) 

which is called the population instantaneous recurrence rate or intensity function. It is 

called "instantaneous" because it depends on the age t. The word "instantaneous" is often 

omitted but implied.  λ(t) is the mean number of recurrences per month per population 

unit, for example, the mean number of herpes recurrences per month per patient. In 

medicine, reliability, and other applications, one usually wants to know if the recurrence 

rate increases or decreases over time. Figure 1.3 shows an MCF with a decreasing 

recurrence rate (derivative) over time. Figures 1.4 and 1.5 have a constant recurrence 

rate, which is common in medical applications. Then patients do not get better or worse 

under a treatment, which just reduces the recurrence rate. 

Censoring. For the population model, a cumulative history function of a patient 

is regarded as potentially observable over any time range of interest. In contrast, history 

functions of sample patients are during the study, and later yet unobserved recurrences 

are said to be censored. Censoring is a property of the data and its collection, not of the 

population model. Throughout it is assumed that the censoring is random 

(noninformative), that is, statistically independent of subsequent recurrences. In some 

applications, the histories of some units terminate before their planned censoring times. 

For example, some patients may die or vanish before a study ends. Such histories may 

not be randomly censored. Then the model and theory here must be modified to handle 

such termination. For example, Wang et al. (2001) deal with such informative censoring. 

Cost/value histories.  In this nonparametric model, the increment (step) of a 

cumulative history function can be a cost or "value" of each observed event. Any measure 

of "value" of an event may be used, for example, cost of treatment or days in hospital. 

Also, more generally, history functions may have negative increments, for example, 
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withdrawals from a bank account or customer returns of purchases. Nelson (1988, 2003, 

Ch. 2) provides a population model and data analyses for the cumulative cost or value of 

recurrences. An MCF for the cost of recurrences is denoted by M(t) to distinguish it from 

an MCF Λ(t) for the number of recurrences. 

Types of events. Such history functions may include all types of events, selected 

types of events, or a single type of event. The choice of what to include depends on the 

application and the desired information. In practice, one may analyze a data set any 

number of times using different choices of the types of events and their values. For 

example, in a Xarelto study, minor and major bleeding are types of events. Nelson (2003, 

Ch. 6) gives models, data analyses, and applications for such data.  

 Not assumed. Note that this nonparametric model does not use a parametric 

stochastic process to generate cumulative history functions and entails no assumptions 

about the history functions; anything can physically produce them. Nelson (2003) gives 

the few assumptions for this nonparametric model and describes added assumptions of 

other models. 

 

2.2  Poisson Model 

Overview. The well-known Poisson process is the simplest parametric model for 

the cumulative number Y of recurrences in an observed time t. It can be a model for a 

single unit or a population of units all with the same constant recurrence rate λ > 0. 

defined below. Reviewed below are a definition of the Poisson process, its density, mean, 

and interarrival times. For more details, see Nelson (2003, Chap. 8). 

Definition. The Poisson model is usually defined by the following properties: 

1>  The potential random number Y of recurrences in any time interval (0,t) is unlimited.  

2>  The chance of a recurrence is the same for each point in time with a constant 

recurrence rate λ defined below. In practice, few populations have a constant recurrence 

rate. Then the widely-used Poisson model may serve as a first approximation. 

3>  The numbers of recurrences in any number of nonoverlapping intervals are all 

statistically independent (called the "independent increments" assumption). This is not so 

if population units have different recurrence rates λi. In practice, few populations have 

independent increments. In  medical studies, patient λi usually differ. 

4>  All population units have the same constant recurrence rate λ.  

Then the random number Y of recurrences in any period (0,t) has a Poisson distribution 

(given below) with mean Λ(t) = λt. The main goal of Poisson analysis is to accurately 

estimate λ for a single treatment or for treatments being compared. Also, this simple 

model is used to build more realistic models. 

Density and mean. The Poisson density function f(y) for the probability of y 

recurrences between time 0 and time t is 

f(y) ≡ Pr{Y=y}= (1/y!)(λt)
y 
exp(−λt),   y = 0, 1, 2, ⋅⋅⋅.                    (2.1) 

In medicine, the dimensions of λ > 0 are recurrences per unit "time" per patient. Some 

authors use a single parameter µ = λt, which is the expected (mean) number of 

recurrences per patient up to time t. The mean of Y is EY = λt, and the variance is V(Y) = 

λt. 
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MCF. The Poisson mean cumulative function (MCF) for the number of 

recurrences up to time is EY = Λ(t) = λt. Figure 2.1 depicts the Poisson process and 

shows that Λ(t) is a straight line through the origin. It also shows the Poisson density 

(histogram) of the cumulative number of population recurrences at two ages. In 

biomedical work, Λ(t) is often called the cumulative intensity function. These near linear 

MCF estimates in Figures 1.4 and 1.5 suggest that the Poisson process is a plausible first-

approximation; there the slope of an MCF plot is the recurrence rate.  
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Figure 2.1   Poisson process depicted. 

Times between recurrences. A patient′s times, D1, D2, D3, ···  between 

successive recurrences are called interarrival times. For a Poisson process with 

recurrence rate λ, these Dj are statistically independent and from an exponential 

distribution with hazard rate λ. That is,  

Pr{Dj ≤ t} = 1−exp(−λt),  j = 1, 2, 3, ···.   (2.2) 

Sums of counts. The sum of statistically independent Poisson counts has a 

Poisson distribution. This fact is used to pool data from n patients as follows. Suppose 

that the i-th Poisson count Yi has recurrence rate λi and observation time τi, i = 1, 2, ···, n. 

Then the sum Y = Y1+Y2+···+Yn has a Poisson distribution with mean 

  µ = λ1 τ1 + λ2 τ2 + ··· + λn τn .      (2.3) 

When λ1 = λ2 = ··· = λn = λ, a common rate, Y has a Poisson distribution with mean µ = 

λτ0, where τ0 = τ1+τ2+···+τn is the total observed time. This fact is used to combine 

recurrence data on patients, which are presumed to have the same λ here. 

Other models. The simple Poisson model is adequate for showing that use of 
only first occurrences loses information. One could also show this with more 

complicated models, for example, regression models with covariates. Also, for example, 

the observed numbers Yi could be Poisson where patients have differing λi, instead of a 

common λ. Cook and Lawless (2007, p. 79) present such a model where the λi are from a 

gamma distribution.  

Λ(t) 
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3. RESULTS 

Overview. The goal of an analysis with the Poisson model is to obtain an 

accurate estimate of λ. When only each patient's first occurrence time is used, there is a 

loss of information and accuracy of the maximum likelihood (ML) estimator for λ. This 

section evaluates this loss. Two typical types of censoring are considered: 

1)  Equal. All n patients are studied for the same time τ, a common censoring time. Then 

the total time under study of all n patients is nτ. Figure 1.3 depicts this situation if the 

cumulative history functions there are now regarded as sample data. Cook and Lawless 

(2007, Sec. 1.2) present such data on cancer in mice. 

2)  Staggered. The n patients enter the study at a constant rate, and there is a uniform 

distribution of length of time under study. This is called (linearly) staggered entry, Figure 

1.1 depicts patients' censoring times τi that are near uniformly distributed from time 0 to 

2τ = 64 months; there the average censoring age is �̅ = τ = 32 months. Here, too, the total 

time under study of all n patients is nτ for comparison purposes. 

The following results are derived in Section 4. 

 All recurrences. When patient i has Yi Poisson recurrences in observed 

(censoring) time τi, i = 1, 2, ···, n, then the ML estimate of λ using All recurrences is 

  λ�A = Y / τ0,        (3.1) 

where Y = Y1+Y2+···+Yn is the total number of recurrences and τ0 = τ1+τ2+···+τn is the 

total observed time. The Fisher information for λ�A is  

  I(λ�A) = τ0 / λ .       (3.2) 

In a sense, the information is proportional to the sample size, since the asymptotic (large 

Y) variance of λ�A is 

  V(λ�A) = 1 / I(λ�A)  =  λ / τ0 .     (3.3) 

These Poisson formulas apply to any censoring times τ1, τ2, ···, τn , in particular, to equal 

and staggered censoring times. 

Equal censoring times. When all τi = τ and only each patients' first occurrence 

time is used, the data consist of the random number r of observed first times t1, t2, ···, tr  

and (n−r) censoring times all equal to τ. Such data are a singly censored random sample 

from an exponential distribution with hazard rate λ. Nelson (2004, Sec. 8.1) gives the 

following results. The ML estimate of λ is 

  λ�E = r / [t1+t2+···+tr + (n−r)τ] .     (3.4) 

The Fisher information for λ�E is 

  I(λ�E) = (n/ λ
2
) [1−exp(−λτ)] .     (3.5) 

The asymptotic (large r) variance of λ�1E is 

  V(λ�E) = 1/I(λ�E) = (λ
2
/n) / [1−exp(−λτ)] .    (3.6) 

The fractional gain in information using all recurrences instead of just the first is 

  GainE = [I(λ�A) − I(λ�E) ] / I(λ�E) = [V(λ�E)/V(λ�A) ] – 1 = {λτ / [1−exp(−λτ)] } – 1. (3.7) 
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GainE is also the effective gain in sample size when all recurrences are used. GainE (as a 

percentage) is plotted versus µ = λτ in Figure 3.1. 

 

Figure 3.1    % Gain in information (effective sample size) using all recurrences. 
 

 
Staggered censoring times. Such censoring time are uniformly distributed from 

0 to 2τ , and the average censoring time is τ. When only each patient's first occurrence 

time is used, the data consist of the random number r of observed first times t1, t2, ···, tr  

and (n−r) censoring times τ1, τ2, ···, τn−r of patients with no recurrence. Such data are a 

multiply censored random sample from an exponential distribution with hazard rate λ. 

The ML estimate of λ is 

  λ�S = r / [t1+t2+···+tr + τ1+τ2+···+τn−r] .    (3.8) 

The Fisher information for λ�S is  

  I(λ�S) = (n /λ
2
) {1− (2λτ)

−1
[1–exp(−2λτ)] }.   (3.9) 

The asymptotic (large r) variance of λ�S is 

  V(λ�S)  =  1/ I(λ�S)  =  (λ
2
/n) / {1− (2λτ)

−1
[1–exp(−2λτ)] }.  (3.10) 

The fractional gain in information using all recurrences instead of just the first is 

GainS = [I(λ�A)−I(λ�S) ] / (λ�S) = [V(λ�S)/V(λ�A)] – 1  

           = λτ{1− (2λt)
−1

[1–exp(−2λτ)]}
−1

 – 1.    (3.11) 

GainS is also the effective gain in sample size when all recurrences are used. GainS as a 

percentage is plotted versus µ = λτ in Figure 3.1. 
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Interpretation. Examination of Figure 3.1 shows:  

• When the mean number of recurrences per patient is  µ = λτ = 0.5, the added 

information (sample size) is 27% for staggered censoring times and 36% for equal 

censoring times.  

•  When µ = λτ = 1.0, the added information (sample size) is 58% for staggered censoring 

times and 76% for equal censoring times.  

For such large percentages and the high cost of a study, it is clear that all recurrences 

should be used, not just the first ones.  Of course, if µ = λτ is small, the additional 

information is small. For example, if µ = 0.1, the added information is 5% for equal 

censoring and 7% for staggered censoring – both negligibly small. 

Xarelto study. Xarelto studies are reported on Drugs.com (2013). Pooled data 

from the Einstein DVT and PE studies are  

•  n = 4130 patients , 

•  �̅  = 208 days mean duration of treatment, 

•  Y' = 40 patients had major bleeding, 

•  Y" = 1169 patients had minor bleeding. 

Here τ0 = 4130x208 days. For major bleeding, the recurrence rate estimate is λ' = Y'/τ0 = 

40/(4130x208) = 0.00009685 recurrences per patient per day (0.035 or 3.5% per year). 

Then λ' �̅  = [40/(4130x208)] 208 = 40/4130 = 0.00969, and the  information gain (or 

sample size) using all recurrences is GainE = 0.49% for equal censoring and GainS = 

0.65% for staggered censoring. These gains are negligible, because there are so few 

recurrences. For minor bleeding the recurrence rate estimate is λ" = Y"/τ0 = 

1169/(4130x208) = 0.00136. Then λ"�̅ = 1169/4130 = 0.283. The information gain (or 

sample size) using all recurrences is GainE = 14.8% for equal censoring and GainS = 

19.7% for staggered censoring.  These gains are not negligible. In the acyclovir study 

(Figure 2.3), censoring times were essentially equal, and all recurrences were used. If 

only the first occurrence were used for the suppressive therapy where λτ ≈ 0.6, the gain 

using all recurrences would have been GainE = 33%. 

 

4. DERIVATIONS 

 Overview. This advanced section provides derivations of Section 3 results.  For 

each model and type of censoring, this includes (1) the sample (log) likelihood, (2) ML 

estimate of λ, (3) Fisher information, and (4) asymptotic variance. General ML theory 

and applications are presented, for example, by Nelson (1982, Ch. 8) and Lawless (2002).  

 All recurrences. For this case, patient i has Yi recurrences in observed time τi, i = 

1, 2, ···, n, where the Yi are statistically independent Poisson random variables with a 

common recurrence rate λ. The sample likelihood is the product of the n Poisson 

probabilities of the Yi ; namely, 

LA(λ) = (1/Y1!)(λτ1)
Y1 

exp(−λτ1)  (1/Y2!)(λτ2)
Y2 

exp(−λτ2) ··· (1/Yn!)(λτn)
Yn 

exp(−λτn). (4.1) 

The sample log likelihood is 

£A(λ)  =  ln[L(λ)]  =  Σi ln(Yi!) + Σi Yi ln(λτi) − λ Σi τi .  (4.2) 
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Sums Σi run from i = 1 to n. The ML estimate λ�A maximizes (4.1) or equivalently (4.2); 

namely,   

 λ�A = Y / τ0        (4.3) 

where Y = Y1+Y2+···+Yn and τ0 = τ1+τ2+···+τn. A ML estimate is usually obtained by 

setting the derivative of the log likelihood with respect to the parameter equal to zero and 

solving for the parameter estimate; that is, solve ∂ £A(λ)/∂λ  = 0. The Fisher information 

I(λ�A) is the expectation of the negative second partial derivative of £A(λ) with respect to 

λ; that is, 

  I(λ�A) = E[−∂
2
£A/∂λ

2
] = E[ Σi (Yi / λ

2
)] =  τ0 / λ .   (4.4) 

since EYi = λτi. The  asymptotic variance of λ�A is 

  V(λ�A) = 1 / I(λ�A)  =  λ / τ0 .     (4.5) 

These Poisson formulas apply to any censoring times τ1, τ2, ···, τn, in particular, to equal 

and staggered censoring times. (4.3), (4.4), and (4.5) are (3.4), (3.5), and (3.6). 

 First occurrence only. When patient i is observed to time τi and only the first 

occurrence time Ti is used, the Ti come from an exponential distribution with probability 

density f(T) = λ exp(−λT) and survival (censoring) probability R(T) = exp(−λT). Then the 

data are a multiply censored sample from the exponential distribution. Nelson (2004, Sec. 

8.1) derives the following results. For patient i, define the indicator variable 

di = 1 if Ti ≤ τi, a recurrence is observed, 

    = 0 if Ti > τi, no recurrence is observed. 

The sample likelihood is the probability of the observed sample data, namely, 

L1(λ) =  Πi  [λ exp(−λTi)]
di 

 [exp(−λTi)]
1− di

   (4.6) 

 where the product Πi runs over i = 1 to n. The log likelihood is 

£1(λ) = ln[L1(λ)] = Σi di [ln(λ) − λTi] + Σi (1−di) (−λTi) .  (4.7) 

where the sum Σi runs over i = 1 to n. The ML estimate λ�1 maximizes (4.7) and is 

 λ�1 = [Σi di ] / [Σi di Yi  +  Σi (1−di) τi ]  =  r / T0 ;   (4.8) 

here r is the number of patients with a recurrence and T0 is the sum of the r observed first 

occurrence times plus the sum of the (n−r) censoring times of patients without a 

recurrence. The Fisher information is   

I(λ�1) = E[−∂
2
£1/∂λ

2
] = E[Σi (di / λ

2
) ] =  Σi [1−exp(−λτi)] / λ

2
 .  (4.9) 

where Edi = 1−exp(−λτi) is the probability of a first occurrence before time τi . The 

asymptotic (large r) variance of λ�1 is  

  V(λ�1) = 1 / I(λ�1)  =  λ
2
 / Σi [1−exp(−λτi)] .   (4.10) 

Results (4.6) through (4.10) apply to any censoring times τ1, τ2, ···, τn , in particular, to 

equal and staggered censoring times as follows.  
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 Equal censoring times τ. When all τi = τ, the previous ML results yield the 

following. Denote the r observed first occurrence times by T1, T2, ···, Tr . There are the 

(n−r) censoring times τ of patients without recurrences. The ML estimate is 

λ�E =  r / T0       (4.11) 

where T0 = [T1+T2+···+Tr + (n−r)τ]. The Fisher information is  

  I(λ�E) =  n [1−exp(−λτ)] / λ
2
 .     (4.12) 

The asymptotic (large r) variance of  λ�E is 

V(λ�E) = 1 / I(λ�E)  =  (λ
2
/n) / [1−exp(−λτ)] .   (4.13) 

These equations are (3.4), (3.5), and (3.6). 

 Staggered censoring times. From (4.8), the ML estimate for λ is 

λ�S =  r / T0       (4.14) 

where T0 = [Y1+Y2+···+Yr + (n−r) τ].  For linearly staggered censoring times, the τi are 

uniformly distributed from time 0 to time 2τ. Then the sum (4.9) can be approximated 

with uniform distribution of the τi with density g(u) = 1/(2τ) , 0 ≤ u ≤ 2τ. Then the Fisher 

information of λ�S is obtained by replacing the sum in (4.9) with the integral 

I(λ�S)  =  n ʃ0
2τ 

 (2τ)
−1

{[1−exp(−λu)] / λ
2
} du  =  (n/λ

2
) {1+ (2λτ)

−1
 [exp(−2λτ) −1]} . (4.15) 

The asymptotic variance of λ�S is 

V(λ�S) = 1 / I(λ�S)  =  (λ
2
/n) / {1+ (2λτ)

−1
 [exp(−2λτ) −1] }.  (4.16) 

These equations are (3.8), (3.9), are (3.10). 

 Concluding remarks. This work has used a simple model, adequate for present 

purposes, to show how much information is lost when an analysis of recurrent events data 

uses only the first occurrence times. This work is intended to convince analysts to use the 

more informative methods for recurrence data in the references. 
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