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Abstract
George Lindsey was one of the first to present run scoring distributions of teams of Major League

Baseball. One drawback of Lindsey’s approach is that his calculations represented a situation where
the team is average. By use of a multinomial / multilevel modeling approach, we look more care-
fully how run-scoring distributions vary between teams and how run-scoring is affected by different
covariates such as ballpark, pitcher quality, and clutch situations. By use of exchangeable mod-
els over ordinal regression coefficients, one gets a better understanding which covariates represent
meaningful differences between run-scoring of teams.
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1. Introduction and Related Research

One the pioneers in sabermetics was George Lindsey, a defense consultant in Canada who
had a great love for baseball. Lindsey wrote two remarkable papers in the 1960’s that had
a great influence on the quantitative analysis of baseball. In particular, Lindsey (1963)
focused on several questions of baseball strategy such as stealing a base, sacrificing to
sacrifice a runner to second base, and issuing an intentional walk. Lindsey observed that
these questions could be answered by the collection of appropriate data.

“By collecting statistics from a large number of baseball games it should be
possible to examine the probability distributions of the number of runs result-
ing from these various situations. Object of all choices is ... to maximize the
probability ... of winning the game.”

Lindsay noted that the probability of winning at a point during the game depends on the
current score and inning and presented tables of W (I,Hi), the probability a team with a
lead of I runs at the home half of the ith inning Hi will win the game.

In this paper, Lindsey also considered the runs scoring distribution of a team during
an inning. He focused on the run potential, the number of runs a team will score in the
remainder of the inning. He noted that the run potential depends on the current number
of outs and the runners on base. Since there are three possible number of outs and eight
possible runner configurations, there are 3 × 8 = 24 possible out/runner situations, and
Lindsey focused on computing

Prob(R|T,B),

the probability of scoring exactly R runs in the remainder of the inning given T outs and
runners on base B.

To learn about run potential, Lindsey’s father collected run-scoring data for over 6000
half-innings in games during the 1959 and 1960 seasons, and Lindsey was able to find
empirical run-scoring distributions for each of the 24 situations. By computed the mean
runs for each situation, he produced the runs expectancy matrix as displayed in Table 1.

At the beginning of an inning with no outs and bases empty, a team will score, on
average, 0.46 runs in the remainder of the inning. In contrast, when the bases are loaded
with one out, a team will score 1.64 runs in the rest of the inning.
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Table 1: Lindsey’s runs expectancy matrix from Lindsey (1963)
Bases Occupied

Outs 0 1 2 3 1,2 1,3 2,3 1,2,3
0 Outs 0.46 0.81 1.19 1.39 1.47 1.94 1.96 2.22
1 Out 0.24 0.50 0.67 0.98 0.94 1.12 1.56 1.64

2 Outs 0.10 0.22 0.30 0.36 0.40 0.53 0.69 0.82

The runs expectancy table has been illustrated in a number of sabermetrics books such
as Thorn et al (1984), Albert and Bennett (2003), Keri et al (2007), and Tango et al (2007)
for deciding on proper baseball strategy, for learning about the value of plays, and for
evaluating players. For example, Chapter 7 of Albert and Bennett (2003) shows the use
of run expectancies in determining the values of singles, doubles, triples, and home runs
that leads to use of linear weights to measure batting performances. Chapter 9 of Albert
and Bennett (2003) uses the run expectancy table to assess the value of common baseball
strategies such as a sacrifice bunt, intentional walk, and stealing a base.

Lindsay (1963) cautioned that the run expectancy table represented the situation where
all players were “average”.

“It must be reiterated that these calculations pertain to the mythical situation in
which all players are ‘average’. The allowance for the deviation from average
performance of the batter at the plate, and those expected to follow him, or
of runners on the bases, can be made by a shrewd manager who knows his
players.

Also Lindsey (1963) mentioned the possibility of extending this analysis to run-scoring of
teams with non-average players.

“If it were desired to provide a manager with a guide to the advisability of
attempting various strategies in different situations, it would be possible to
complete calculations of the type outlined here for all stages of the game and
scores, pertaining to average players. It would also be possible, although oner-
ous, to compute tables for nonaverage statistics, perhaps based on the past
records of the individual players on the team.”

A related line of research is the use of probability models to represent the number of
runs scored in an inning or a game. Fits of basic discrete probability models do not accu-
rately represent actual runs scored in an inning. To demonstrate this claim, the Poisson(λ)
and negative binomial(n, p) models were separately fit to all inning runs scored in the 2013
season. It was found that the Poisson fit underestimates the probability of a scoreless inning.
Generally, the Poisson fit understates the actual variability in runs scored. The negative bi-
nomial fit is better than the Poisson, but this model overestimates the probability of scoring
one run and underestimates the probability of scoring two runs.

Since basic probability models appear inaccurate, more sophisticated models for run
scoring have been proposed in the literature. For example, Rosner et al (1996) represent
the probability of scoring x runs in an inning by the sum

h(x) =
x+6∑
x+3

f(N)g(x|N),

where N represents the number of batters in the inning. In this paper, the probability func-
tion f(N) is represented by a modification of a negative binomial distribution, and the

JSM 2014 - Section on Statistics in Sports

1067



conditional distribution of the number of runs given the number of batters, g(x|N), is mod-
eled by a truncated binomial distribution. Another approach in Wollner (2000) provides an
exponential formula for the probability a team averaging A runs per game scores R runs in
a particular inning.

Another research theme in modeling of sports data is the use of multilevel or hierarchi-
cal models to estimate parameters from several groups. Efron and Morris (1975) illustrate
the use of an exchangeable model to estimate true batting averages of 18 players from the
1970 season. Albert (2004) and Albert (2006) provide further illustrations of the use of an
exchangeable model to estimate a set of true batting rates or pitching rates. These models
can be extended to the regression framework. Morris (1983) uses an multilevel regression
model to assess if Ty Cobb was ever a true .400 hitter. Albert (2009) uses an exchangeable
regression model to simultaneously estimate the true pitching trajectories for a number of
pitchers.

1.1 Plan of the paper

This paper provides an multilevel modeling framework for understanding run scoring of
teams in Major League Baseball, and understanding how team run scoring is affected by
several factors, such as ballpark, pitcher quality, and runners in scoring position. The basic
multilevel model, described in Section 2.1, simultaneously estimates means from several
populations, say the average number of runs scored for 30 MLB teams, when the means
are believed to follow a normal curve model with unknown mean and standard deviation.

As in Lindsay’s work, we focus on the number of runs scored in a half-inning. A
run scoring distribution for a particular team is represented by a multinomial distribution
with underlying probabilities over the classes 0 runs, 1 run, 2 runs, 3 runs, and 4 or more
runs. Section 2.2 describes a multilevel model for simultaneously a set of multinomial
probability vectors. By using this model to estimating the run scoring distributions for the
30 MLB teams, one obtains “improved” estimates at the teams’ abilities to score runs.

After estimating teams’ scoring distributions, we next explore team situational effects.
An ordinal regression model, described in Section 2.3, is a useful method for describ-
ing how run-scoring probabilities change as one changes a predictor such the quality of a
pitcher. This model can be described in terms of the odds of scoring at least a particular
number of runs. It is called a proportional odds model as a change in the predictor will
result in the odds of scoring runs being increased by a constant factor. Section 3.2 intro-
duces the use of odds in comparing run scoring distributions of the National and American
Leagues. Section 3.3 extends this approach to compare run scoring of the 30 teams and
illustrates the value of multilevel modeling.

Section 4 focuses on the effect of the following covariates on team run scoring.

• (Home Effects) Teams generally score more runs at home compared to away games.
What is the general size of the home/away effect for scoring runs and how does this
effect vary among the teams?

• (Pitcher Effects) Clearly, the pitcher has a significant impact on run-scoring. A
strong starting pitcher can neutralize the runs scored by even the best-scoring team
in baseball. Generally, one expects that a team’s run scoring is negatively associated
with the quality of the pitcher. How can one quantify this pitcher effect, and how
does this effect differ among teams?

• (Runner Advancement) Run scoring can be viewed as a two-step process – batters
get on base and then other batters advance them to home. Do teams differ in their
ability to get runners home?
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We address each of these questions by a multilevel ordinal regression model where the ef-
fect of the covariate can vary across teams. Section 5 summarizes the findings and outlines
how this methodology can be generalized to provide reasonable run-scoring distributions
for teams in specific situations.

2. Methods

2.1 Estimating a group of means

Consider the problem of estimating a collection of means from several populations. One
observes sample means y1, ..., yN , where the sample mean from the jth population, yj is
distributed normal with mean θj and known standard error σj . We describe this situation
in a baseball setting, where N = 30, y1, ..., y30 correspond to the sample mean numbers
of runs scored in a half-inning for the thirty teams for a season, and θ1, ..., θN are the
corresponding population means of runs scored.

One can obtain obtained improved estimates at the population means by means of the
following multilevel model. We assume that the means θ1, ..., θ30 represent a sample from
a normal curve with mean µ and standard deviation τ . The locations of the normal curve
parameters µ and τ are unknown, and so (under a Bayesian framework) vague or imprecise
prior distributions are assigned to these parameters.

One can fit this multilevel model from the observed sample means of runs scored for
the 30 teams. In particular, we estimate the population mean and standard deviation µ and
τ by µ̂ and τ̂ , respectively. The estimate µ̂ represents the overall or combined estimate of
a population mean of the runs scored from the 30 teams and the estimate τ̂ represents the
spread of these population means.

There are three types of estimates of the population means. If we estimate each popu-
lation mean only by using data from the corresponding sample, we obtain individual esti-
mates

θ̂Ij = yj , j = 1, ..., N.

On the other extreme, if we assume that the population means are equal, that is, θ1 = ... =
θN , then we’d estimate θj by the combined estimate

θ̂C =

∑N
j=1 yj/σ

2
j∑N

j=1 1/σ2j
,

where the sample mean yj is weighted by the inverse of the sampling variance 1/σ2j .
By use of the multilevel model, we obtain improved estimates of the population means

that compromise between the individual and combined estimates. The multilevel (ML)
estimate of the population mean for team j, θ̂ML

j , is given by

θ̂ML
j =

1/σ2j
1/σ2j + 1/τ̂2

yj +
1/τ̂2

1/σ2j + 1/τ̂2
µ̂.

The estimate of the mean runs scored for the jth team, θ̂ML
j shrinks the individual team

estimate yj towards the combined µ̂, where the size of the shrinkage depends on the ratio
of the estimated population standard deviation τ̂ to the standard error σj . If τ̂ is small
relative to the standard error σj , then the multilevel estimate θ̂ML

j will be close in value to
the combined estimate. In contrast, if the estimate τ̂ is large (relative to the standard error),
the multilevel estimate will be close to the individual estimate.

JSM 2014 - Section on Statistics in Sports

1069



2.2 Estimating collections of multinomial data

A related problem is estimating a multinomial population. Suppose we classify data into k
bins and observe the vector of frequencies W = (w1, ..., wk). The vector W is assumed to
have a multinomial distribution with sample size N = w1 + ...+wk and probability vector
p = (p1, ..., pk), where pj represents the probability that an observation falls in the jth bin.
In our setting, we classify the number of runs scored in an inning in the five bins 0, 1, 2, 3,
and 4 or more runs, and the frequencies w1, ..., w5 represent the number of innings where
a particular team scores the different number of runs.

This type of multinomial data on runs scored is collected for each of the 30 baseball
teams. Let W 1, ...,W 30 denote the vectors of frequencies of runs scored for the 30 teams.
We assume the vector for the jth team W j is multinomial with probability vector pj . We
are interested in estimating the probability vectors p1, ..., p30. As in the population means
case, we can consider individual, combined, and multilevel estimates for the probability
vectors.

Suppose we use the data from only the jth team to learn about its run scoring ten-
dencies. Then the probabilities of falling in the different run groups are estimated by the
individual estimates:

p̂Ij = (p̂j1, ..., p̂
j
k) =

(
wj1
N j

, ...,
wjk
N j

)
,

where wj1, ..., w
j
k are the bin counts for the jth team and N j is the number of innings for

the jth team.
Instead, suppose we assume that the probabilities of falling in the different runs group

are the same for all teams; that is, p1 = ... = p30. Then we can estimate each team’s
probability vector by the combined estimate

p̂C = (p̂C1 , ..., p̂
C
k ) =

(∑
wj1∑
N j

, ...,

∑
wjk∑
N j

)
.

Here we are pooling the bin counts for all teams to get the probability estimate for a partic-
ular bin.

We wish to get improved estimates at the team probability vectors p1, ..., p30 that com-
promise between the individual estimates and the combined estimates. This is accom-
plished by means of the following multilevel model. We assume that the unknown proba-
bility vectors p1, ..., p30 are a random sample from a Dirichlet distribution with mean vector
η and precision K with density proportional to

g(p) ∝
30∏
j=1

p
Kηj−1
j ,

where η = (η1, ..., η30). The parameters η and K are assigned vague prior distributions.
One fits this multilevel model to the observed count data and one obtains estimates at

K and η – call them K̂ and η̂. The estimate η̂ is approximately the combined estimate p̂C .
Then the multilevel estimate at the probability vector of team j is given by

p̂jML =
Nj

Nj + K̂
p̂j +

K̂

Nj + K̂
η̂.

As anticipated, the multilevel model estimate for the probability vector of team j is ap-
proximately a weighted average of the individual estimate p̂j and the combined estimate
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p̂C . The weights depend on the ratio of the precision parameter estimate K̂ and the multi-
nomial sample size Nj . We will illustrate the application of this model in simultaneously
estimating the run-scoring distributions of the 30 teams in Section 3.3. (An early use of this
Dirchlet distribution in modeling is given in Good (1967) and a good survey of smoothing
estimates for multinomial data is provided in Simonoff (1995).)

2.3 Groups of ordinal multinomial data with regression

Suppose one observes the vector of run frequencies w = (w1, ..., wk) which is multinomial
with probability vector p = (p1, ..., pk). The categories 1, ..., k are ordinal – in our setting,
these categories will be “0 runs”, “1 run”, “2 runs”, etc. Define the probability

θc = pc + ...+ pk

which represents the probability of scoring at least c runs. The odds of scoring at least c
runs is given by

odds =
θc

1− θc
.

Suppose one observes a variable x that influences the run-scoring probabilities p. The
ordinal logistic model (see McCullah (1980) and Johnson and Albert (1999)) says that the
log of the odds of scoring at least c runs is a linear function of x. This model is written as

log

(
θc

1− θc

)
= γc + xβ,

where γc and β are unknown parameters. A unit increase in the covariate x results in the
log odds of scoring c or more runs to be increased by β. By taking the exponential of both
sides, this model can be written in the “proportional odds” form:

θc
1− θc

= exp (γc + xβ) .

For each unit increase in the variable x, the odds of scoring at least c runs will increase by
a factor of exp(β). This proportional odds model has the special property that the odds of
scoring c or more runs will increase (with a unit increase of x) by a factor of exp(β) for all
values of c. We illustrate this basic ordinal regression model in comparing the run-scoring
distributions of the NL and AL in Section 3.2.

As a more general set-up, suppose we observe run-scoring frequencies for N = 30
teams, where the frequencies for the jth team wj is multinomial with probability vector
pj = (pj1, ..., p

j
k). With the same covariate x, we fit the ordinal logistic model to wj of the

form

log

(
θjc

1− θjc

)
= γjc + xβj ,

where θjc = pjc + ..., pjk. In our setting, the regression coefficient βj represents the additive
increase in the logit of scoring at least c runs for the j team for each unit increase in x,
and exp(βj) represents the multiplicative increase in the odds of scoring c or more runs.
After performing separate fits of the ordinal model to the run-scoring data for each of the
N teams, we obtain the estimates β̂1, ..., β̂N with associated standard errors σ1, ..., σN .

One can now use the estimation of separate means methodology of Section 2.1 to
get improved (multilevel) estimates at the regression effects. The true regression effects
β1, ..., βN are given a normal distribution with mean µ and standard deviation τ , we place
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vague priors on µ and τ . Improved estimates are provided by fitting this multilevel model
– the estimates have the general form

β̂ML
j =

1/σ2j
1/σ2j + 1/τ̂2

β̂j +
1/τ̂2

1/σ2j + 1/τ̂2
µ̂.

These multilevel estimates {β̂ML
j } adjust the individual estimates {β̂j} towards a combined

estimate µ̂. As will be seen in a later section, the degree of adjustment depends on the sizes
of the estimate of the standard deviation of the true effects τ̂ relative to the size of the
standard error estimates {σj}.

3. League and Team Differences in Scoring

3.1 Run scoring of all teams in 2013 season

We begin by collecting in Table 2 the runs scored for all complete innings (three outs) in
the 2013 season. Since scoring five or more runs in an inning is relatively rare, we collapse

Table 2: Frequency table of runs scored for all complete innings in 2013 season.
Runs Count Runs Count

0 32315 6 81
1 6400 7 38
2 2899 8 14
3 1254 9 4
4 584 10 1
5 207 11 1

the data from Table 2 by combining the counts of runs four or greater into the class “4+”.

3.2 Logits and comparing scoring of the NL and AL

To motivate our general approach, a useful reexpression of a proportion p is the logit L =

log
(

p
1−p

)
. For example, using data from Table 2, the logit of the proportion of innings

where at least one run is scored is

L = log

(
1− 0.738

0.738

)
= −1.036.

This particular logit is computed by dividing the data by the breakpoint “0 / 1 runs” and
comparing the proportions of the categories “1 or more runs” and “0 runs”. In a similar
way, one can divide the data by each of the breakpoints “1 / 2 runs”, “2 / 3 runs”, and 3 / 4+
runs” and compute the logits of the resulting proportions. If we do this for all breakpoints,
Table 3 is obtained.

Table 3: Logits of runs scored for all breakpoints
Breakpoint 0/1 runs 1/2 runs 2/3 runs 3/4+ runs

Proportion scoring “large” runs 0.262 0.116 0.050 0.021
Proportion scoring “small” runs 0.738 0.884 0.950 0.979

Logit = log Proportion large
Proportion small -1.036 -2.031 -2.944 -3.842

Logits are useful in comparing groups of ordinal data such as runs scored. To illustrate,
suppose we want to compare the runs scored per inning of National and American League
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teams in the 2013 season. First we obtain the counts of runs scored by the two leagues
as displayed in Table 4. Each row of counts of the table is converted to proportions, and
then logits are computed using each of the four breakpoints. The logits for each league are
displayed in Table 4 and the “Difference” row gives the difference in the logits for the two
leagues.

Table 4: Runs scored per inning by the American and National Leagues in the 2013 season
Runs 0 1 2 3 4+
American League 15963 3246 1497 654 500
National League 16352 3154 1402 600 430

Table 5: Logits of runs scored for all breakpoints for the two leagues
Breakpoint 0/1 runs 1/2 runs 2/3 runs 3/4+ runs Median

American League -0.996 -1.980 -2.887 -3.755
National League -1.074 -2.082 -3.011 -3.912

Difference 0.078 0.102 0.124 0.157 0.113

An ordinal regression model is a useful way to summarize the relationship seen in Table
4. If θc is the probability of scoring at least c runs, then the model is

log

(
θc

1− θc

)
= γc + xβ,

where the {γc} are parameters defining the cutpoints of the probabilities of scoring on the
logit scale, x indicates the league (x = 1 if AL and x = 0 if NL), and β is the increase in
the log odds of scoring c runs or more for the AL league. If we fit this model to the 2013
run scoring data, we obtain the estimates

γ̂1 = −0.994, γ̂2 = −1.990, γ̂3 = −2.907, γ̂4 = 3.790, β̂ = 0.0822.

Note that the estimates of γc are approximately equal to the logit values given in Table
3. Due to the designated hitter, more runs are scored by American League teams and the
size of this effect is measured by the coefficient estimate β̂. On the logit scale, the the
probability an American League team scores a large number of runs is 0.0822 greater than
the probability a National League team scores a large number of runs. There is a nice
approximation for differences in logits – for small values of x, an increase of x on the
logit scale is approximately a 100× x percentage increase on the probability scale. Here a
logit increase of 0.0822 is equivalent to a 8.22% increase in the probability, so in the 2013
season, the probability an American League team scores a large number of runs is 8.22%
greater than the probability a National League team scores a large number of runs.

To gain some historical perspective on the run-scoring advantage of the American
League, this ordinal regression model was fit for each of the 16 seasons 1998 through
2013. It is interesting to note that there is substantial variability in the AL advantage – for
example the advantage was 0.121 in 1998 and decreased sharply to 0.019 in 2007. But
there is no clear pattern in the changes in AL advantage over this time period. Generally,
on the logit scale, the probability an AL team scores a large number of runs is about 0.06
larger than the probability a NL team scores a large number of runs.

3.3 Comparing scoring of teams

How does run scoring vary across teams? If we break down this runs table by the batting
team, we see some interesting variation in runs scored. For example, if one looks at the
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Figure 1: Logit run scoring estimates for all teams. A team’s residual logits were obtained
by subtracting the overall logits.

percentage of big innings (four runs or more), Boston’s percentage of big innings is 3.2,
contrasted with Miami’s percentage of 1.4. Boston’s percentage of scoreless innings is
68.9, while the New York Mets were scoreless in 75.8 percent of their innings.

The logit approach described in Section 3.1 is used to facilitate comparisons in team
scoring. Logits were computed for each team using the four breakpoints. For example, for
Philadelphia, we computed the four logits

log

(
P (1 + runs)

P (0 runs)

)
, log

(
P (2 + runs)

P (0, 1 runs)

)
, log

(
P (3 + runs)

P (0, 1, 2 runs)

)
, log

(
P (4 + runs)

P (0, 1, 2, 3 runs)

)
To help in interpretation, the collection of logits for each team was converted to a residual

by subtracting the MLB logits found in Table 3, and the team logit residuals are displayed
in Figure 1. Teams with lines above the horizontal line at zero represent above-average
scoring teams. The run scoring for most of the teams fall within 0.1 (on the logit scale) of
the average. Note that some of the team lines are not monotone which indicate the presence
of some chance variability in these run scoring estimates.

3.4 Multilevel modeling of team run distributions

Since there appears to be chance variability in the estimates of run scoring for the individual
teams, there may be some advantage to estimating the run scoring distributions simultane-
ously using a multilevel model. The exchangeable model of Section 2.1 is fit to the run
distributions for the 30 teams. The estimate of the smoothing parameter K is 1973. Most
teams play close to the median number of innings 1457. So the size of the shrinkage of the
individual estimates towards the combined estimate is

1973

1973 + 1457
= 0.57.

The multilevel estimates shrink the observed percentages approximately 57% towards the
combined estimate. Figure 2 displays the logit reexpression of these multilevel estimates.
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Figure 2: Logit run scoring estimates for all teams using a multilevel model. The residual
logits were obtained by subtracting the overall logits.

We see these multilevel estimates adjust the individual estimates towards the combined
estimate represented by the horizontal line at zero. One attractive feature of these estimates
is that they remove some of the nonmonotone behavior of the individual estimates that we
saw in Figure 1.

4. Covariate Effects

4.1 General method

Section 3 introduced the use of logits in the comparison of run-scoring distributions. To
explore the effect of specific covariates like home/away, pitcher quality, and clutch hitting
on scoring, we fit the general ordinal logistic model of the form

log

(
θc

1− θc

)
= γc + xβ,

where θc is the probability of scoring at least c runs, and x is the covariate of interest (either
of the categorical or measurement type). To understand how the covariate influences run
scoring for all MLB teams, we use the following two-step modeling approach.

1. The ordinal logistic model is first fit separately to run-scoring data for each of the
30 teams. One obtains the regression effects β̂1, ...β̂30 with associated estimated
standard errors σ̂1, ...σ̂30.

2. The multilevel exchangeable model in Section 2.1 is used to simultaneously estimate
the regression effects. We assume the estimated covariate effect β̂j is normal with
mean βj and standard error σ̂j . Once the estimates β̂1, ...β̂30 are computed, we are
interested in simultaneously estimating the set of true effects β1, ..., β30. The im-
proved estimate of the covariate effect for the jth team is a compromise between the
individual estimate β̂j and a combined estimate β̂C . The size of the shrinkage of
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the individual estimates towards the combined estimate depends on the size of τ̂ , the
spread of the true effect {βj}.

4.2 Home versus away effects

To consider a team’s scoring advantage of playing at home, write the logit of the probability
of scoring at least c runs by

log

(
θc

1− θc

)
= γc +HOME × β,

where the variable HOME is equal to 1 if the team is playing at home, and HOME = 0
otherwise. If one computes the difference in the logits of the probability of scoring at least
c runs at home θHc , and away θAc , one obtains

log

(
θHc

1− θHc

)
− log

(
θAc

1− θAc

)
= β,

or (
θHc

1− θHc

)
/

(
θAc

1− θAc

)
= exp(β).

This ordinal regression model is initially fit to run-scoring data for all teams in the 2013
season and one obtains the covariate estimate β̂ = 0.032. The interpretation is that the ratio
of the odds of scoring at least c runs at home and away is equal to exp(0.032) = 1.032.
Specifically, the probability that a team scores at least one run in an inning is increased by
3% at home, the probability a team scores at least two runs in an inning is increased by 3%,
and so on.

Since ballparks are known to have a significant impact on scoring, it is natural to fit this
home/away model for each of the 30 teams. Figure 3 displays the individual estimates of
the parameters β1, ..., β30 as black dots where the endpoints of the bars correspond to the
estimates plus and minus the standard errors. As expected, the individual home/away esti-
mates show substantial variability from the New York Mets (β̂j = −0.31) to the Colorado
Rockies (β̂j = 0.52).

Next we apply the multilevel model of Section 2.1 to simultaneously estimate the 30
home effects β1, ..., β30. One obtains the multilevel estimates µ̂ = 0.071 and τ̂ = 0.114.
The estimate µ̂ represents an average ballpark effect and τ̂ is an estimate at the spread of
the true ballpark effects. Here the multilevel model estimates of {βj} shrink the individual
estimates 52% of the way towards the combined estimate µ̂. The red bars in Figure 3 show
the posterior means plus and minus the posterior standard deviations. Since the size of the
shrinkage is relatively small, this indicates that there is sizeable variation between the true
home park effects.

4.3 Pitcher effects

The same ordinal regression approach can to be used to learn about the pitcher effect on
team run-scoring. The logit of the probability of scoring at least c runs in a half-inning is
given by

log

(
θc

1− θc

)
= γc + PITCHER× β,

where the variable PITCHER is a measure of the quality of the pitcher who starts to
pitch the half-inning.
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Figure 3: Individual and multilevel home field run effects for all teams. The black line rep-
resents the individual estimate plus and minus the standard error and the red line represents
the multilevel estimate plus and minus the standard error.

The challenge in this approach is to find a good measure of pitcher quality. Many pitch-
ers are of the relief type with a small number of plate appearances, and the measurements
of pitcher quality typically show high variability. We use a multilevel model approach
to obtain improved estimates of pitcher quality and these improved estimates are used as
covariates in the ordinal model for run scoring.

To begin, we use a run value approach illustrated in Albert and Bennett (2003), Keri et
al (2007), and Tango et al (2007) to measure the quality of all pitchers who played in the
2013 season. For each plate appearance, we measure the run value as

RUNS = Run Potential after PA− Run Potential before PA + Runs Scored,

where the run potential values come from the runs expectancy matrix (see Table 1) using
2013 season data. For the jth pitcher in the 2013 season, we compute the mean run value
ȳj and the number of PA’s nj . We assume that ȳj is approximately normally distributed
with mean µj and standard error σ/√nj , where σ is estimated using all of the run values
for the season. If we have N pitchers, then we estimate the population means µ1, ..., µN by
use of an exchangeable multilevel model (see Section 2) and the corresponding multilevel
estimates µ̂1, ..., µ̂N are used as surrogates for the qualities of the N pitchers in the ordinal
regression model.

If the ordinal regression model with pitcher quality covariate is fit to data for all teams,
one obtains the estimate β̂ = 19.51. The standard deviation of all pitcher abilities is 0.012.
So if the pitcher’s ability measure is increased by one standard deviation, one predicts a
team’s log odds of scoring runs to increase by 19.51× 0.012 = 0.23.

By fitting the multilevel ordinal regression model, we learn about the pitcher effects
for all 30 teams. Figure 4 displays individual (team) effects by black bars and the multi-
level model estimates are displayed by red bars. The individual estimates show substantial
variation. For example, Seattle’s regression coefficient is β̂j = 9.84 and Philadelphia’s co-
efficient is β̂j = 28.24, indicating that the Phillies were much more able to take advantage

JSM 2014 - Section on Statistics in Sports

1077



ANA
ARI
ATL
BAL
BOS
CHA
CHN
CIN
CLE
COL
DET
HOU
KCA
LAN
MIA
MIL
MIN
NYA
NYN
OAK
PHI
PIT

SDN
SEA
SFN
SLN
TBA
TEX
TOR
WAS

10 20 30

Estimate

T
e
a
m

Pitcher Effects

Figure 4: Individual and multilevel pitcher effects for all teams. The black line represents
the individual estimate plus and minus the standard error and the red line represents the
multilevel estimate plus and minus the standard error.

of poor pitching than Seattle in the 2013 season. The multilevel estimates in this case shrink
the individual estimates about 76% towards the average value. Seattle and Philadelphia’s
pitcher effects, under the multilevel model, are corrected to 16.85 and 21.05, respectively.

4.4 Advancing baserunners home (clutch effects)

Run scoring generally is viewed as a two-step process. A team places runners on bases and
then these runners are advanced to home. There is a special focus in the media on advancing
runners who are in scoring position (on second and third base). One commonly hears about
the number of runners left on base and the proportion of runners in scoring position who
score. Do teams really differ in their abilities to advance runners from scoring position?

To address this clutch hitting question, an ordinal regression model is constructed. For
each half-inning, one records the total number of (unique) runners SP who are in scoring
position (either on second or third base) and the number of these runners R who eventually
score. (Note that R can be smaller than the number of runs that score in the half-inning
since runners who score don’t need to be in scoring position.) As before, we classifyR into
the categories 0, 1, 2, 3, and “4 or more”, and consider the ordinal regression model

log

(
θc

1− θc

)
= γc + SP × β,

where θc is the probability that R is at least c. This model is first fit to data for all teams.
One obtains the estimate β̂ = 2.395 which indicates that for each additional runner in
scoring position, the log odds of scoring runs is increased by 2.395.

To see how this clutch hitting statistic varies between teams, this ordinal regression
model was fit separately for all teams. Anaheim and the New York Mets had the smallest
and largest regression estimates of β̂j = 2.19 and β̂j = 2.60, respectively. This indicates
that the Mets were the best team in baseball in 2013 from a clutch-hitting perspective and
Anaheim was the worst. However, when we use the multilevel model to simultaneously
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Figure 5: Individual and multilevel clutch effects for all teams. The black line represents
the individual estimate plus and minus the standard error and the red line represents the
multilevel estimate plus and minus the standard error.

estimate the true clutch regression coefficients for all teams, we learn that this observed
variability in clutch measures is primarily due to chance. Figure 5 displays the individual
and multilevel clutch estimates for all teams. Here the shrinkage is about 93% and we see
that the individual clutch estimates are shrunk almost entirely towards the common value in
the multilevel model fit. The interpretation is that although teams obviously have different
abilities to score runs, teams appear to have similar abilities to advance runners in scoring
position.

5. Summary and Concluding Comments

The primary objective of this work is to provide a better understanding of the run-scoring
patterns in Major League Baseball. Instead of focusing on the mean number of runs scored
in a half-inning, we focus on the probability distribution of runs scored. We are interested
in how this run-scoring distribution varies among teams and the effect of various covariates
such as the ballpark, pitcher/defense, and clutch situations.

The primary method is ordinal regression of the multinomial run-scoring outcome and
the use of multilevel modeling to estimate run-scoring over different groups. One finding
is that there are some covariates such as ballpark where there are clear team-specific run-
scoring advantages. This is not surprising since it is well-known that Coors Field (home
of Colorado Rockies) is very advantagous for run-scoring and other parks such as Citi
Field (home of the New York Mets) are more restrictive for scoring runs. But there are
other covariates such as clutch-hitting where there are little differences between teams in
scoring runs. It should be clarified that we do observe differences in teams’ advancing
runners in scoring position, but there is little evidence to suggest that teams have different
clutch-hitting abilities. If the media understands this conclusion, then there would be less
discussion about teams’ batting performances when runners are in scoring position.

One possible generalization of this approach is to model run-scoring of all teams by a
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large ordinal regression model where one includes all covariates that one believes have an
impact on run scoring. Using our general notation, one can write the ordinal logistic model
as

log

(
θjc

1− θjc

)
= γjc + x1βj1 + ...+ xkβjk,

where θjc represents the probability of scoring at least c runs for the jth team, x1, .., xk rep-
resent k possible covariates (such as league, ballpark, and pitcher quality), and βj1, ..., βjk
represent the regression effects for the jth team. In the multilevel modeling framework,
one could assign γ1c , ..., γ

N
c a common multivariate normal distribution, and likewise as-

sume each of the sets of team covariate effects {βjk, j = 1, ..., N} come from a common
normal distribution. This model is more complicated to fit due to the large number of un-
known parameters, but it would accomplish the same smoothing effect as demonstrated in
this paper. Team scoring distributions would be shrunk towards an overall scoring distri-
bution – this is accomplished by the common multivariate normal distribution played on
the bin cutpoint parameters γjc . In a similar fashion, team effects for a particular covariate
such as pitcher quality would be shrunk or moved towards a common covariate effect. This
particular approach is promising and can help us better understand relevant covariates that
affect run scoring.
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