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Abstract 
Observational (non-randomized) comparative studies have often been utilized in the pre-
market safety/effectiveness evaluation of therapeutic medical devices due to ethical or 
practical reasons. The comparators may come from data collected in earlier 
investigational device exemption studies or registry. To address the possible imbalance in 
patient characteristics between the investigational device group and the control group, 
propensity score methodology has been widely used to design and analyze these studies. 
In this paper, some practical issues and challenges will be discussed from regulatory 
perspectives. Topics include separation of design and analysis, types of estimands, 
selection of subjects, sample size estimation, and diagnostic checking in covariate 
balance.  
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1. Introduction 
 
The randomized controlled trials (RCT) are viewed as a gold standard for causal 
inference. The data yielded from a well-designed and well-conducted RCT may provide 
the strongest evidence in evaluating the effectiveness and safety of an investigational 
device in the premarket setting. However, due to feasible or ethical reasons, conducting a 
RCT is not always practical. Alternatively, observational (nonrandomized) comparative 
studies may be utilized in device evaluation. The controls served in such studies may be 
the concurrent or non-current (e.g. historical). A commonly seen control is formed based 
on subjects whose data have been collected from a previous investigational device 
exemption (IDE) study. A control could also be formed from data collected in a high-
quality registry database. 
 
Unlike what can be expected in an RCT where distributions of all observed and 
unobserved baseline covariates are balanced between two treatment groups, same cannot 
be expected in an observational study. Usually, treatment selection and study outcomes 
would be influenced by subject baseline characteristics. Treatment effect may be 
estimated with large bias from an observational study. Proper adjustment needs to be 
performed to remove the bias. 
 
A commonly used approach to remove the bias is propensity score methodology, which is 
introduced by Rosenbaum and Rubin (1983). The propensity score (PS) is the probability 

JSM 2014 - Section on Medical Devices and Diagnostics

1038



of treatment assignment conditional on observed baseline characteristics. It is a one-
dimension summary of the observed covariates. Propensity scores are often estimated 
using a logistic regression model where the response is the treatment assignment and 
predictors are baseline covariates. Subjects from both groups can then be matched up 
based on similar estimated PS. Examples of matching include K:1 matching and sub-
classification. The sub-classification method is used in this paper in all of the illustrating 
examples. In such an approach, the subjects are first ranked based on their estimated PS, 
then they are divided into several strata (usually five or more) with balanced size. 
Treatments are compared on outcomes within each stratum, and the overall treatment 
effect is pooled across strata. 
 
For comparative observational studies in the regulatory setting, separation of design and 
analysis is essential to produce valid evidence and to make study results more 
interpretable. Section 2 presents current recommendation on study development based on 
this principle. Section 3 discusses some practical issues, including what subjects should 
be included in the analysis set, selection of treatment effect estimands, sample size 
consideration, and diagnostic checking on covariate balance. The paper is concluded with 
summary in Section 4. 
 
 

2. Current Recommendation on Study Development 
 
One critical feature of RCT is that the study is designed without access to any 
outcome data. We believe that the very same feature should be maintained in an 
observational study in the regulatory setting. This is in line of what is advocated 
by Rubin (2001, 2007, and 2008): study design and outcome analysis should be 
separated. Based on this principle, the design should be carried out in two stages 
in the pre-market regulatory setting (Yue et al. 2014). The design in Stage 1 is 
conducted before the initiation of the investigational study. One main task is to 
plan the sample size of the investigational device group. The design in Stage 2 
should be conducted as soon as subject enrollment is concluded and baseline 
covariates data are collected. An independent statistician should perform the task 
to estimate the propensity scores and to match patients from both groups based on 
the propensity scores. This may involve an iterative process until the balance is 
reached in the covariates distribution. Meanwhile, the statistical analysis plan 
should be finalized. Note that, in the study design phase, only the treatment 
assignment and baseline covariate data are needed. The outcome data are not 
required nor should be accessed. 
 
 

3. Some Practical Issues 
 
3.1 Subjects to be Included in Analysis Set 
In the second stage design when the analysis method needs to be finalized, so is the 
analysis set. That is, the plan should identify what subjects are included in the analysis 
set. In an observational comparative study, oftentimes not all subjects from two treatment 
groups are comparable in the distribution of baseline characteristics. As a result, the 
estimated propensity scores are not well comparable. Therefore, subjects from both 
groups may be thrown away if the propensity scores distribution is quite different 
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between the two treatment groups. While such a practice is common and well accepted 
for general research and/or exploratory purposes, it may be inappropriate from the pre-
market regulatory perspective where the study is confirmatory. The main regulatory 
concern, by leaving out any subjects treated with investigational device based on their 
estimated propensity scores, is the difficulties in defining the intended population. It 
would be difficult to identify the new intended population when subjects are deleted 
based on the unmatched propensity scores. On the other hand, not all the subjects in the 
control group need necessarily to be included in the analysis set. The intended treated 
population may not be affected by leaving out some control subjects. 
 
Because of the regulatory constraint discussed in the previous paragraph, it would be 
problematic if there are no comparable control subjects for some subjects in the treatment 
group. It is then really important that control subjects provide good matches to the device 
group. That is, in terms of propensity score, the range of control group should cover the 
range of the subjects treated with the investigational device. 
 
3.2 Treatment Effect Estimands 
Following the framework set by Rubin (1974), each subject has two potential outcomes, 
𝑌(𝑇 = 0)  and 𝑌(𝑇 = 1) , where 𝑇 = 1  denotes that the subject is treated with 
investigational device and 𝑇 = 0 denotes that the subjects is treated with control. The 
sample size is denoted as N1 for the investigational device group and N0 for the control 
group.  
 
One commonly used estimand in pre-market medical device observational comparative 
clinical studies is average treatment effect (ATE), which can be expressed as  
 

ATE = 𝐸[𝑌(1) − 𝑌(0)].  
 
Another commonly used estimand is the average treatment effect on the treated (ATT), 
which can be expressed as  
 
 ATT = 𝐸[𝑌(1) − 𝑌(0)|𝑇 = 1]. 
 
In an observational study, ATT and ATE do not necessarily coincide, since the 
population for subjects treated with investigational device may not match with the overall 
population in practice. Further discussions of these estimands can be found in the 
literature such as Imbens (2004). 
 
The point that the estimated ATT and ATE may differ is illustrated in the following 
hypothetical example. 
 
Example: A total of 250 subjects treated with investigational device and 500 with control 
treatment are available, and are all included in the analysis set. Using the sub-
classification method based on the estimated propensity scores, the sample size 
distribution and the observed treatment effect in each stratum are presented in Table 1. 
For example, a total of 11 subjects in treatment group and 139 subjects in control group 
have the lowest 20% estimated propensity score, as they are in the first stratum (quintile). 
The difference in the observed treatment effect based on these subjects is 0.3.  
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Table 1: Sample Size Distribution Among Strata With Observed Treatment Effect 
 

Stratum 1 2 3 4 5 Total 
N1 11 19 39 67 114 250 
N0 139 131 111 83 36 500 

Total 150 150 150 150 150 750 
       

ATE weight 150/750 150/750 150/750 150/750 150/750  
ATT weight 11/250 19/250 39/250 67/250 114/250  

Observed Trt effect (𝜹) 0.3 0.25 0.2 0.15 0.1  
       

 
Based on this information, it can be computed that ATE = ∑ 𝑤𝐴𝑇𝐸𝑖𝛿𝑖5

𝑖=1  = 0.2, and ATT 
= ∑ 𝑤𝐴𝑇𝑇𝑖𝛿𝑖5

𝑖=1  = 0.15.  
 
It can be observed that any large difference in the two estimands is likely due to the 
unbalanced distribution of sample size per arm and the heterogeneity in observed 
treatment effects across strata. The unbalanced distribution of sample size per arm across 
strata indicates that the distribution of treated population is distinct from that of overall 
population. This concludes the example.  
 
As ATT may differ from ATE, it is important to indicate which one to be used in the 
second stage design under the regulatory setting prior to unblinding of outcome data. The 
main consideration in selecting between ATT and ATE is based on the objective, or the 
question intended to be answered.  
 
The ATE should be considered if the interest is to get an answer to a question such as 
“What is the treatment effect on outcomes if all patients (eligible to both treatments) are 
only offered investigational device?” One common situation is that the older generation 
of a device is intended to be replaced by the newly developed version where the previous 
study was relatively recently conducted . Another possible situation occurs when the 
control treatment, serving as the current medical practice, will be potentially replaced 
with the investigational device. 
 
A common question that is intended to be addressed is the following: “What is the 
treatment effect on outcomes in patients who select investigational device?” For such a 
situation where the investigational device is viewed as an alternative treatment option, the 
ATT may be more appropriate.  
 
Selection of subjects (subjects to be included in the analysis set) may be closely related to 
the issue of selection. Under the regulatory requirement that all subjects treated with 
investigational device are needed to be included in the analysis set, ATT should always 
be able to be estimated. Certainly, this is under the assumption that the sample from the 
investigational study represents the treated population reasonably well.   
 
On the other hand, it is possible that ATE may not always be reasonably estimated, 
depending on how the control subjects are selected into the analysis set. If control 
subjects are selected such that they cannot well represent the population of the control 
treatment, the combined subjects from both treatment groups in the analysis set may not 
well represent the overall population. Consequently, the validity of ATE estimate may be 
doubtful. 
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3.3 Sample Size Considerations 
In first design stage, the sample size for the investigational device group needs to be 
proposed for the regulatory purpose. The sample size planning could be fairly 
challenging, and careful consideration may be demanded due to some uncertainties. 
 
The major challenge is due to the uncertainty regarding the degree of comparability in 
subjects’ characteristics between both groups. Poorer comparability may result in the 
requirement of a larger sample size to achieve a certain power. Generally speaking, 
reasonable good comparability may not be expected if there is significant time lag 
between the investigational study and the study where the control is obtained likely due 
to the evolve of medical practice and technology. In addition, it is not uncommon that the 
distributions of baseline characteristics from subjects treated with device differ greatly 
from those from subjects treated with medical management, even the two groups are 
conducted in the same time frame.  
 
Another uncertainty is the unsureness of the matching method and statistical plan. The 
sample size determination generally depends upon the design and analysis methods. 
However, such plan may not be finalized in this stage; it usually is modified in the second 
stage design. Therefore, various potential designs and analysis methods may need to be 
considered in planning the sample size in this stage.  
 
The sample size of control group is usually known for the historical control. However, 
when the control subjects are selected from a concurrent study, the sample size in the 
control group is unknown at this design stage. This may also add some complexity in the 
sample size planning. 
 
To deal with these uncertainties, a more conservative approach is recommended. Many 
scenarios, in terms of different study designs and analysis methods, may need to be 
considered. The control sample size (from a concurrent study) may be somewhat 
underestimated. A larger sample size may be desirable in order to safeguard against the 
(unexpected) poor comparability and allow for greater flexibility in the second stage 
design. 
 
A hypothesized example is provided to illustrate the point regarding the comparability 
between two groups.  
 
Example: Suppose that a sponsor intends to demonstrate the non-inferiority of an 
investigational device to the medical management. As a registry of the medical 
management is available and can be served as a control, a comparative observational 
study is planned.  It is expected that at least 350 control subjects will be available. 
 
The outcome measure is assumed to be normally distributed. The non-inferiority 
hypothesis is listed in the following: 
 
 H0: μ1 ≤ μ0 – 0.2   
 H1: μ1 > μ0 – 0.2. 
 
This will be tested at the significance level at 0.05. The stratification method based on the 
propensity scores approach will be used. The estimand ATT will be used. The power is 
calculated based on the assumption that means of both treatment groups are equal.  
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In planning the sample size, a good starting point is to calculate the sample size based on 
a RCT design. With 350 subjects in each group, 84% power can be obtained. That is, a 
total of 700 subjects need to be enrolled in a 1:1 RCT. 
 
Note that it is unknown, at this stage, regarding the distribution of subjects across strata, 
which is an indication of the comparability of subjects’ baseline characteristics. A less 
balanced distribution generally yields a less power of the test. As powers vary with 
subject distributions, they should be evaluated accordingly with any proposed sample size 
in the device arm.  
 
With the expected 350 control subjects in the intended observational comparative study, 
the highest power that can be achieved based on 350 subjects treated with the 
investigational device is 84%. Any distribution deviated from the even distribution yields 
a power less than 84%. Therefore, the sample size may need to be increased from 350 
unless it is strongly believed that the subjects from two groups are highly comparable. 
 
For illustration purpose, 350 subjects in device arm are doubled up to 700 subjects so that 
the number matches with the total sample size needed in the abovementioned RCT 
design. The powers are calculated based on three different distributions of subjects 
among quintiles. Table 2 presents the calculated powers based on an evenly distributed 
case in panel A, a mildly unevenly distributed case in panel B, and a greatly unevenly 
distributed case in panel C.   
 

Table 2: Power Based on Different Sample Size Distribution Among Strata 
(calculated based on μ1 ≤ μ0) 

 
Strata 1 2 3 4 5 Total Power 

A: Evenly distributed 
N0 70 70 70 70 70 350 0.92 
N1 140 140 140 140 140 700  

 
B: Mildly unevenly distributed 

N0 140 90 60 40 20 350 0.74 
N1 70 120 150 170 190 700  

        
C: Greater unevenly distributed 

N0 160 110 50 20 10 350 0.51 
N1 50 100 160 190 200 700  
        

 
It can be observed that, although the power reaches 92% when distributions of subjects 
are even between arms, the power suffers greatly otherwise. It is to a point that, if 
subjects of two groups are greatly incomparable, a larger sample size may be required in 
the comparative observational study than that in a RCT. 
 
This example illustrates that, when the sample size in the control group is somewhat 
limited, it is important that the control subjects need to provide relatively good matches. 
Otherwise, the study may be underpowered. On the other hand, if there are abundant 
control subjects, the lack of comparability may be less critical. 
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3.4 Covariate Balance Diagnosis 
In second design stage, a propensity score estimation model needs to be developed. For a 
selected estimation model, the subjects can be matched up with the study design. It is 
important to assess whether the observed baseline covariates are balanced based on the 
selection. If the balance is not reached, alternative propensity score estimation model is 
needed. An iterative process between PS estimation/design and covariate balance 
assessment may need to be conducted until an appropriate PS model is identified. In 
submitting the selected propensity score estimation models and the grouping method to 
the FDA, it is important to illustrate the covariates balance is reached. 
 
The covariate balance should be assessed in the same way as the design/planned analysis, 
as pointed out by, for example, Stuart (2010). When a 1:1 matching method is used, the 
comparison should be made between distributions from two groups provided that the 
matched pair feature is not accounted for. When the data analysis is based on matched 
pairs, the distribution of the differences in covariates may need to be checked. If the PS 
design is based on the sub-classification, the balance in covariates is established if the 
distributions within each stratum are similar between two groups. 
 
Ideally, in assessing the covariate balance, the joint distributions of covariates should be 
examined between groups. However, it is burdensome and oftentimes impracticable. 
Therefore, from the regulatory perspective, the minimal requirement should include the 
assessment of the marginal distribution of every observed covariate that is identified in 
the first stage design. 
 
Several diagnostic methods have been proposed in the literature and have been used by 
applicants. Here we present some of such methods. 
 
Graphical presentation, such as Q-Q plot, box-plots, histograms, and Love plots based on 
the estimated propensity scores for each covariate are useful tools and can facilitate in the 
assessment of balance. However, it may require some judgmental call in a borderline 
case. 
 
Some applicants present the c-statistic of the PS model in justifying the proposed PS 
estimation. The c-statistic is the area under the ROC curve, and it is to measure how well 
the PS model discriminates between two treatment groups. However, it is not a measure 
on whether the covariate is balanced. Therefore, it is not a valid measure and thus not 
recommended. 
 
A popular approach is to use the hypothesis testing, such as testing for equivalence of 
means, to demonstrate the covariate balance. However, such an approach is debatable. 
Some researchers, such as Stuart (2010), Imai et. al. (2008), and Austin (2009), point out 
that that the balance is inherently an in-sample property, without reference to any broader 
population or super-population. The property that a test statistic and hence p-value is 
explicitly affected by the sample size also makes it less desirable to some researchers. An 
alternative approach is to use the statistic standardized (absolute) mean difference, which 
is expressed as the following: 
 

|𝑑| =
|�̅�1 − �̅�0|

�(𝑁1𝑠12 + 𝑁0𝑠02) (𝑁1 + 𝑁0)⁄
, 
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where �̅�0 and �̅�1 denote sample mean of the baseline covariate for the control and device 
group, respectively; and 𝑠0 and 𝑠1 denote sample standard deviation for the control and 
device group, respectively. An advantage of using such statistics is that, with fixed 
sample means and standard deviations, it is not affected by the sample size.  
 
If the covariate is balanced, the standardized absolute mean difference should be close to 
0. In practice, a threshold value is set such that the balance is demonstrated if |𝑑| is less 
than the threshold value. In the literature, the popular choice of threshold values range 
from 0.1 to 0.25 (Rosenbaum and Rubin, 1985; Austin, 2009). Such threshold values 
appear to be reasonable when the sample size is relatively large. However, as the sample 
size for a typical medical device pre-marketing clinical study is relatively small, such 
threshold values may be too strict.  
  
To see this, Table 3 lists some percentiles for the large sample distribution of |𝑑|, 
assuming samples from both groups are independent and are drawn from the same 
distribution. These can be obtained based on the fact that 𝑑  converges to 
𝑁(0, (𝑁0 + 𝑁1) 𝑁0𝑁1⁄ ), as pointed out in Hedges and Olkin (1985). It can be 
observed that, when the sample size is 1000 per group, it is highly unlikely to observe a 
value such as 0.2 for |𝑑|. However, when the sample size is 50 or 100 per group, it is not 
uncommon to observe a value as high as 0.25. 
 

Table 3: Percentiles for Large Sample Distribution of Standardized 
Absolute Difference With Different Sample Sizes 

 
N0 N1 90th percentile 95th percentile 99th percentile 
50 50 0.33 0.39 0.52 

100 100 0.23 0.28 0.36 
1000 1000 0.07 0.09 0.12 

      
 
A percentile of the distribution of |𝑑|, such as 95th percentile, can be proposed to serve as 
threshold value as illustrated in the following example. 
 
Example 
A clinical study was proposed to demonstrate safety and effectiveness of a cardiovascular 
device through comparison to a control group to be selected from an existing registry. 
More details of this straw-man example can be found in Yue et.al (2014).  
 
A total of 250 subjects per group are included in the analysis. Sub-classification with 
five quintiles was used to match the subjects from both groups. Within each 
stratum, the standardized absolute difference |𝑑| for each baseline covariate are 
calculated. Meanwhile, the distribution of |𝑑| based on the assumption that all 
subjects from same normal distribution can be derived for each stratum. The 90th, 
95th, and 99th percentile of |𝑑| for each stratum are presented in Table 4. 
 
Figure 1 plots the standardized absolute difference of each baseline covariate for five 
strata side by side. Within each stratum, the 95th percentile of |𝑑| , serving as the 
threshold, is vertically plotted. Since all |𝑑|’s are below the respective threshold, the 
balance of covariates appears to be improved after the propensity score adjustment. 
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 Table 4: Percentiles for Distribution of |𝑑| for Five Strata 
 

Stratum N0 N1 90th percentile 95th percentile 99th percentile 
1 61 39 0.34 0.40 0.53 
2 70 30 0.36 0.43 0.56 
3 57 43 0.33 0.40 0.52 
4 41 59 0.33 0.40 0.52 
5 21 79 0.40 0.48 0.63 
      

 
 

 
 

Figure 1: Standardized absolute mean difference of all baseline covariates for each 
stratum. Vertical line in each stratum is placed at the 95th percentile of distribution of |d|.  
 
 
As the objective is to assess the similarity of the distribution of the covariate between two 
groups, only investigating equality of means for the continuous variable may not be 
adequate. Comparisons in higher order moments may be needed. The variance ratio is 
often used to compare the variance between groups. Refer to Austin (2009) and Imai et 
al. (2008) for further details. 
 
 

4. Summary 
 
Observational comparative studies have been utilized to support the premarket medical 
device approval. The propensity score methodology has often been used to address the 
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issue of covariate imbalance in such studies. Efforts should be put forth such that such 
studies should be designed to mimic RCTs.  They should be prospectively designed 
following the principal, set by Rubin, that the analysis and design should be separated. 
That is, no outcome can be accessed during the design stage.  
  
Several issues that may be encountered in the practice are discussed in this paper.  
Average treatment effect (ATT) and average treatment effect on the treated (ATE) are 
two commonly used estimands for treatment effect. The selection regarding which to use 
should mainly depend on the objective and should be specified in the second stage 
design. 
 
All subjects in device group need to be included in the analysis set, and control subjects 
to be included in the analysis set may not. However, when ATE is chosen to be the 
estimand, the control subjects should be selected such that the combined subjects should 
reasonably well represent the treated population  
 
Sample size estimation in first stage design may be challenging due to various 
uncertainties such as level of comparability between control and investigational device 
groups, final analysis/group matching method, and control sample size. If the control 
subjects do not provide good matches and/or control sample size is limited, the sample 
size needed in the single-arm investigational study may even be more than what is needed 
in an RCT.  
 
The true propensity scores are never known, so the selected propensity score estimation 
model need to be justified. Diagnostic checking in covariate balance is essential in 
demonstrating the appropriateness of the propensity score estimation model.  
 
A RCT should remain the top choice in design selection. Although observational 
comparative studies using propensity score methodology may address some issues and 
provide a means to mimic RCT, there are certain limitations that cannot be overcome.  
It is possible that no appropriate control group can be found. Compared to RCT, much 
more design effort would be needed. The evidence based on such studies is generally not 
as strong as that based on RCTs.  
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