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Abstract
Complex parameters, such as poverty indicators, are usually difficult to predict in small area

estimation (SAE). Elbers et al. (2003) have proposed an empirical semi-parametric method for
dealing with poverty indices in SAE. This method, commonly called the ELL method, consists
of drawing from the empirical residuals to reconstitute the entire census. After simulating the
census, any complex parameter is easily obtained. ELL method has poor MSE performance in many
situations even though bias is usually small. Later, Molina and Rao (2010), proposed an empirical
best predictor assuming the nested error linear regression model with normally distributed errors.
As expected, this estimator can perform poorly when the model errors are not normally distributed.
We relax the normality assumption by allowing the errors to follow a skew-normal distribution.
Skew-normal (SN) is particularly interesting because it contains the normal distribution as a special
case and at the same time it allows departure from symmetry. In this paper, empirical best (EB)
estimators are derived assuming skew-normal errors and their performance in terms of MSE is
studied relative to the normality-based and ELL predictors.

Key Words: complex parameters, skew-normal, empirical best (EB) estimator

1. Introduction

Increasingly policy makers are interested in local and subpopulation statistics. Limited
budgets and area-specific sample sizes often result in direct estimators not being sufficiently
reliable for many small areas of interest. Estimation techniques, called small area estimation
(SAE), have been developed to improve the estimates where direct estimators are unstable.
Rao (2003) gave a comprehensive review of the SAE techniques for estimating mainly linear
functions such as means. Most of these SAE methods do not apply to complex statistics
such as poverty areas measures.

Elbers et al. (2003) developed an estimation method for complex parameters which
assumes the nested error regression model but does not assume any parametric distribution
for the area random effects and the unit level errors (semi-parametric approach). This
approach, called ELL method, is very attractive because it is free of parametric distribution
assumption and very simple to implement. However, the method is not optimal for a given
distribution in the sense that it does not yield the empirical best (EB) estimator. Molina
and Rao (2010) addressed this issue under the nested error regression model with normally
distributed errors. They provided a Monte Carlo approximation of the EB estimator. Their
method can be extended to nested error models with the random errors following other
distributions than the normal.

In this paper, we provide the EB estimator under the nested error model with the random
errors following skew-normal (SN) distributions. SN distributions are very interesting
because they relax the normality assumption by allowing asymmetrical shape and at the
same time they include normal distribution as a special case. In section 2, we define the
nested error model with the errors following SN distributions. In Section 3, we derive the EB
estimator for complex parameters. Given the complexity of the EB estimator, we proposed
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a simpler approach based on conditioning on the area effects. We also propose some
improvements to the ELL method by correctly assigning the random area effects and using
different methods to estimate the area effects without assuming any parametric distribution.
In Section 4, we conducted a simulation study to compare the different estimators discussed
in this paper and the direct estimator.

2. SAE Model under Skew-Normal Errors

The SN distribution allows relaxing the symmetry assumption of the randoms errors induced
by the use of normal distribution. Consider a random variable Z ∼ SN(0,1,λ ), referred in
this paper as SN(λ ), with probability density function given by

f (z;λ ) = 2φ(z)Φ(λ z) z ∈ R (1)

where φ(z) and Φ(z) denote the N(0,1) pdf and the cumulative distribution function (cdf),
respectively. The parameter λ controls the asymmetry of the distribution and varies in
(−∞,∞). One attractive feature of the SN class of distributions is the fact that it includes
the normal distribution as a special case. To see this, note that if λ = 0 then f (z;0) = φ(z)
i.e. Z ∼ N(0,1). The moment generating function (mgf) of Z is M(t) = 2exp(t2/2)Φ(δ t)
where δ = λ/

√
1+λ 2. Hence, the first and second central moments are E(Z) = δ

√
2/π

and Var(Z) = 1−2δ 2/π respectively. It can be shown that if X0 and X1 are independent
standard normal, N(0,1), variables and δ ∈ (−1,1) then

Z = δ |X0|+(1−δ
2)1/2X1 (2)

is SN(λ (δ )). Using representation (2), we can generate easily values from SN(λ ) by
generating two values x0 and x1 from independent N(0,1) and applying the weighted
average in (2). The distribution SN(λ ) can be generalized further by adding location and
scale (dispersion) parameters µ and σ2, respectively. The pdf of the random variable
Y = µ +σZ is

f (y; µ,σ ,λ ) =
2
σ

φ

(
y−µ

σ

)
Φ

(
λ

y−µ

σ

)
y ∈ R (3)

We denote the distribution defined by the pdf (3) by SN(µ,σ2,λ ) i.e Y ∼ SN(µ,σ2,λ ).
Note that if Y follows the distribution defined by (3) then E(Y ) = µ +δσ

√
2/π . Hence,

the distribution SN(−δσ
√

2/π,σ2,λ ) has zero mean. Figure 1 shows the departure of the
SN distribution from the normal as the parameter λ moves away from zero. The half-normal
distribution is the limiting distribution as λ tends to ∞.
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Figure 1: Probability densities of SN.
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The nested error regression model was first used in the context of SAE by Battese et al.
(1988) to estimate crop areas under corn and soybeans for 12 counties in north-central Iowa
using farm-interview data and satellite information. They assumed that the random errors
follow normal distributions. To relax the normality assumption, we consider the nested error
model

Yd j = xT
d jβ +ud + ed j, j = 1, . . . ,Nd , d = 1, . . . ,m, (4)

where ud and ed j are independent for any area d and element j in area d and satisfy

ud
iid∼ SN(−δuσu

√
2/π,σ2

u ,λu), and ed j
iid∼ SN(−δeσe

√
2/π,σ2

e ,λe). (5)

Note that the random errors ud and ed j in (5) have zero mean. The nested error model with
errors following SN distributions defined by (4)-(5) is referred in this paper as the SN model.
When λu = λe = 0, the SN model reduces to the usual nested error model where the errors
are normally distributed which we refer to as the normal model.

Since the model parameters are unknown, we need to estimate them in order to compute
the “optimal” estimators developed in Section 3. The vector of model parameters to estimate
is θ =

(
β ,σ2

u ,σ
2
e ,λu,λe

)T . Let us consider the partition Yd =
(
YT

dr,Y
T
ds

)T , where Ydr is
the out-of-sample characteristic vector of interest while Yds is the observed vector of interest
from the sample. Parameter estimation is performed using the sample data and assuming a
non-informative sampling design. The first step is to determine the joint distribution of the
sample vector Ys. Given that the random effects ud are independent for any different values
of d, the joint pdf f (ys) = ∏

m
d=1 f (yds). The problem reduces to finding the distribution of

Yds. We now introduce a multivariate extension of the SN distribution called the closed
skew-normal (CSN) (see Chapter 2 of Genton (2004) for more details on CSN).

Definition 2.1. Consider p≥ 1, q≥ 1, µ ∈Rp, ν ∈Rq, D an arbitrary q× p matrix, Σ and
Γ positive definite matrices of dimensions p× p and q×q, respectively. Then the probability
density function of the CSN distribution is given by:

fp,q(y) =Cφp (y; µ,Σ)Φq (D(y−µ) ;ν ,Γ) , y ∈ Rp, (6)

with C−1 = Φq
(
0;ν ,Γ+DΣDT

)
where φp and Φp are respectively the pdf and the cdf of the

p-dimensional normal distribution. We denote this distribution by y∼CSNp,q (µ,Σ,D,ν ,Γ)
and if p = q we will denote it by CSNp (µ,Σ,D,ν ,Γ).

Letting p = q = 1, µ = µ , Σ = σ2, ν = 0, and Γ = 1 leads to the pdf of the CSN
defined by (6) to equal the SN pdf given by (3). That is SN(µ,σ2,λ )≡CSN(µ,σ2,λ ,0,1).
The attractive aspect of the CSN distribution is the set of closure properties similar to the
multivariate normal. That is the vector resulting from linear combination, marginal and
conditional operations, joint and sum of independent CSN vectors has a CSN distribution.
Consider Y∼CSNp,q (µ,Σ,D,ν ,Γ), it follows from these closure properties that

Yds ∼CSNnd ,nd+1
(
µYds

,ΣYds ,DYds ,νYds ,ΓYds

)
, d = 1, ...,m. (7)

where µYds
= Xdsβ +µu1nd +µe, ΣYds = σ2

e Ind +σ2
u 1nd 1T

nd
, νYds = 0nd+1,

DYds =

[
λe
σe

[
Ind − γnd 1nd 1T

nd

]
λu
σu

γnd 1T
nd

]
, and ΓYds =

 Ind +λ 2
e γnd 1nd 1T

nd
−λeλu

(
σe
σu

)
γnd 1nd

−λeλu

(
σe
σu

)
γnd 1T

nd
1+λ 2

u (1−ndγnd )

.
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Up to a constant, the likelihood function associated with the model (7) is equal to:

l(θ |y) =− 1
2

m

∑
d=1

ln|ΣYds |−
1
2

m

∑
d=1

(
yds−µYds

)T
Σ
−1
Yds

(
yds−µYds

)
+

m

∑
d=1

ln
(
Φnd+1

(
DYds

(
yds−µYds

)
;νYds ,ΓYds

))
(8)

Optimization routines such as optim from the Statistical software R can be used to maximize
the likelihood function (8) to get the maximum likelihood (ML) estimators of the model
parameters.

3. Prediction of Complex Small Area Parameters

A complex small area parameter is defined as ηd = h(yd) where h is a nonlinear function of
yd . We study below three methods for estimating ηd under the SN model in (4)-(5). The
first method, called the marginal approach, provides a Monte Carlo approximation of the
best predictor. The second method, called the conditional approach, gives the best predictor
of ηd conditionally on the area effect ud . And last, we propose some improvements to the
ELL method.

3.1 Marginal Approach

In SAE, the practice is to use the predictor that minimizes the MSE to estimate the small
area parameter ηd . This best estimator, in terms of minimizing the MSE, is the conditional
expectation

η̂
B
d = E(ηd |yds) =

∫
h(yd) fdr|s(y)dy (9)

where fdr|s ≡ fYdr|yds is the pdf of the distribution of Ydr given yds. This conditional
distribution is derived under the assumption that there is no sample selection bias i.e the
population model holds for the sample. The difficulty with the estimator (9) is the lack of a
closed-form expression in most situations due to the complexity of the function h. Molina
and Rao (2010) proposed a Monte Carlo approximation of (9) which consists of the following
steps: 1) draw out-of-sample vectors y(`)dr , `= 1, ...,L from the conditional distribution fdr|s,

2) reconstruct the censuses y(`)d =
(

y(`)Tdr ,yT
ds

)T
, and 3) from each simulated census estimate

the small area parameter ηd by η̂
(`)
d = h(y(`)d ). A Monte Carlo approximation of the best

predictor η̂B
d , we call the quasi-best (QB) estimator, is then given by

η̂
QB
d =

1
L

L

∑
`=1

η̂
(`)
d . (10)

Under the SN model (4)-(5), the conditional distribution of Ydr given yds is obtained from
the closure properties of the CSN as a member of the CSN family. We have

Ydr|s ∼CSNNdr,Nd+1

(
µdr|s,Σdr|s,Ddr|s,νdr|s,Γdr|s = ΓYd

)
(11)

where µdr|s =Xdrβ +µu1Ndr +µedr+γnd

[
1T

nd
(yds−µds)

]
1Ndr , Σdr|s =σ2

e
[
INdr + γnd 1Ndr 1T

Ndr

]
,

Ddr|s =

 λe
σe

[[
INdr

0(nd×Ndr)

]
− γNd 1Nd 1T

Ndr

]
λu
σu

γNd 1T
Ndr

, νdr|s =−

 0(Ndr×nd)
λe
σe

[
Ind − γnd 1nd 1T

nd

]
λu
σu

γnd 1T
nd

(yds−µds),
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and ΓYd =

 INd +λ 2
e γNd 1Nd 1T

Nd
−λeλu

(
σe
σu

)
γNd 1Nd

−λeλu

(
σe
σu

)
γNd 1T

Nd
1+λ 2

u (1−NdγNd )

.

The random vector in (11) has a dimension of Ndr =Nd−nd which can be very large in many
applications. Hence, it is important to find a way to draw from the conditional distribution
(11) in a univariate manner. First consider

V0 ∼ LT Nq(ν ,0,Ψ0) and V1 ∼ Np(0,Ψ1) (12)

where Ψ0 and Ψ1 are covariance matrices and the notation LT Nq(c,µ,Σ) denotes a multi-
variate normal truncated below c. Then consider the transformed random vector

V = µ +B0V0 +B1V1 (13)

where B0 = (DΣ)T Ψ
−1
0 and B1 is a p× p matrix such that B1Ψ1BT

1 = Σ− (DΣ)T Ψ
−1
0 (DΣ).

Arellano-Valle and Azzalini (2006) showed that the random vector V has the density
function:

fp,q(v) = φp (v; µ,Σ)
Φq
(
D(v−µ) ;ν ,Ψ0−DΣ

−1DT
)

Φq (0;ν ,Ψ0)
. (14)

Note that if p = Ndr, q = Nd + 1, µ = µdr|s, Σ = Σdr|s, D = Ddr|s, ν = νdr|s, and Ψ0 =

Γdr|s +Ddr|sΣdr|sDT
dr|s then equation (14) defines the pdf of the conditional distribution (11).

In other words, if V0
dr|s and V1

dr|s are independent random vectors such that:

V0
dr|s ∼ LT NNd+1

(
νdr|s;0,Ψ0

dr|s = Γdr|s +Ddr|sΣdr|sDT
dr|s

)
(15)

V1
dr|s ∼ NNdr

(
0,Ψ1

dr|s = Σdr|s−
(
Ddr|sΣdr|s

)T
(

Ψ
0
dr|s

)−1
Ddr|sΣdr|s

)
, (16)

then the random vector Ydr|s defined in (11) can be obtained using the transformation:

Ydr|s = µdr|s +B0
dr|sV

0
dr|s +V1

dr|s, (17)

where the matrix B0
dr|s is defined as follows

B0
dr|s = (Ddr|sΣdr|s)

T
Ψ
−1
0 =

[
λeσe

1+λ 2
e

INdr b011Ndr 1
T
nd

b021Ndr

]
, (18)

with

b01 =
−γnd λeσeσ2

u

(1+ndγnd λ 2
e )σ

2
u + γnd λ 2

u σ2
e

and b02 =
γnd λuσuσ2

e

(1+ndγnd λ 2
e )σ

2
u + γnd λ 2

u σ2
e

(19)

Using expression (17), univariate draws from Ydr|s reduce to univariate generations from
V0

dr|s and V1
dr|s. The nested error model assumption leads to special forms of the matrices

involved in the best predictor (17). Under this model we have

Ψ
0
dr|s =


(1+λ 2

e )INdr 0 0
0 Ind +λ 2

e γnd 1nd 1T
nd
−λeλu

(
σe
σu

)
γnd 1nd

0 −λeλu

(
σe
σu

)
γnd 1T

nd
1+λ 2

u

(
σe
σu

)2
γnd

 , (20)

and
Ψ

1
dr|s = αINdr +β1Ndr 1

T
Ndr

(21)
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with α and β defined as follows

α = σ
2
e

(
1− λ 2

e

1+λ 2
e

)
= σ

2
e
(
1−δ

2
e
)
, and β =

γnd σ2
u σ2

e

(1+ndγnd λ 2
e )σ2

u + γnd λ 2
u σ2

e
(22)

The random vector V1
dr|s is easily generated in a univariate manner by(
V1

dr|s

)
j
= v11

d j + v10
d , j = 1, ...,nd ,d = 1, ...,m,

where v11
d j

iid∼ N(0,α) is independent of v10
d

ind∼ N(0,β ) and α and β are defined as in (22).
Note that, for each small area d, we only generate one value v10

d and nd values v11
d j, j =

1, ...,nd . The random vector V0
dr|s can be decomposed into two components V0r

dr|s and V0s
dr|s

where

V0
dr|s =

(
V0r

dr|s
V0s

dr|s

)
∼ LT NNd+1

((
0

ν0s
dr|s

)
;
(

0
0

)
,

[
Ψ

0r
dr|s 0
0 Ψ

0s
dr|s

])
(23)

and the components of (23) are defined as follows:

ν
0s
dr|s =−

[
λe
σe

[
Ind − γnd 1nd 1nd

T
]

λu
σu

γnd 1nd
T

](
yds−µds

)
(24)

Ψ
0r
dr|s = (1+λ

2
e )INdr (25)

Ψ
0s
dr|s =

 INdr +λ 2
e γnd 1nd 1T

nd
−λeλu

(
σe
σu

)
γnd 1nd

−λeλu

(
σe
σu

)
γnd 1T

nd
1+λ 2

u

(
σe
σu

)2
γnd

 (26)

V0r
dr|s is simply a vector of uncorrelated half-normal variables since Ψ

0r
dr|s = (1+λ 2

e )INdr

is a diagonal covariance matrix. Therefore, to obtain a realization of V0r
dr|s, it is sufficient

to generate univariate normally distributed values and take their absolute values. In other
words, (

V0r
dr|s

)
j
= |v0r

d j|, j = 1, ...,Ndr,d = 1, ...,m, (27)

where v0r
d j

iid∼ N
(
0,1+λ 2

e
)
. The only vector left to be generated is V0s

dr|s. Unfortunately there
is no reasonable known approach for generating the vector V0s

dr|s in a univariate manner

because ν0s
dr|s is not equal to the zero vector and the covariance matrix Ψ

0s
dr|s is not diagonal.

However the length of this vector is nd +1 which is easily manageable in a multivariate way
especially given the small sample sizes, nd , involved in SAE. The vector V0s

dr|s will therefore
be generated using the multivariate truncated normal. Most of the major statistical software
packages offer procedures for generating univariate truncated normals and some of them
have routines for generating from multivariate truncated distributions. For the simulation
study presented in Section 4, the R-package tmvtnorm (Truncated Multivariate Normal
and Student t Distribution) was used to generate data from multivariate truncated normal
distributions. In summary the quasi-univariate procedure below shows how to generate the
predicted values of the elements of ydr|s for the non-sampled units in small area d:

1. Estimate the unknown vector of model parameters θ =
(
β ,σ2

u ,σ
2
e ,λu,λe

)
using the

ML method and the sample data ys.
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2. Generate values v11
d j from N(0,α) and v10

d from N(0,β ) independently, where α and
β are defined in (22) with θ replaced by its estimator θ̂ . Note that only one v10

d is
generated for each small area d but a different v11

d j is draw for each unit j in small area
d.

3. Generate value v0r
d j from N(0,1+ λ̂ 2

e ).

4. Generate vector v0s
dr|s from LT Nnd+1

(
ν0s

dr|s;0,Ψ0s
dr|s

)
, where ν0s

dr|s and Ψ
0s
dr|s are respec-

tively defined in (24) and (26) with θ replaced by θ̂ .

5. Create the vector w0s
dr|s =

(
b011Ndr 1T

nd
b021Ndr

)
v0s

dr|s, where b01 and b02 are defined
in (19), with the parameters replaced by their estimators.

6. The element j of the vector ydr|s is:

(ydr|s) j = (µ̂dr|s) j + v11
d j + v10

d +
λ̂eσ̂e

1+ λ̂ 2
e

|v0r
d j|+(w0s

dr|s)d j,

where (µ̂dr|s) j = Xdr jβ̂ + µ̂u + µ̂e + γ̂nd

[
1T

nd
(yds− µ̂ds)

]
3.2 Conditional Approach

In SAE, the goal is to estimate the conditional parameter or area specific
ηd(ud) = E(h(Yd)|yds,ud ,θ) because only one population is “realized” and prediction is
conducted conditionally on the given fixed population. The conditional distribution of Yd
given ud is:

Yd |ud ∼CSNNd ,Nd

(
Xdβ +ud1Nd +µed ,σ

2
e INd ,

λe

σe
INd ,0Nd ,INd

)
(28)

Note that the element of the vector Yd |ud are independent and we may write

(Yd |ud) j ∼ SN
(

Xd jβ +ud +µe,σ
2
e ,

λe

σe

)
, j ∈ sc

d (29)

where sc
d indicates the out-of-sample units. The distribution in (29) is the distribution

of the unit level error ed j with a different location parameter. Therefore, generating the
out-of-sample values (ydr|s) j = (yd |ud) j, where j ∈ sc

d , for the simulated census reduces to
drawing from a univariate SN distribution. Unfortunately ud is not observed. Hence ud is
predicted by the best estimator ûB

d and used to obtain prediction of η(ud) as η(ûB
d ) or the

BLUP estimator ûBLUP
d may be used to get η(ûBLUP

d ).
Only the mean and the covariance matrix of the joint distribution of ud and yds is needed

to define the BLUP of ud as

ûBLUP
d = E(ud)+CdΣ

−1
d (Yds−E(Yds)) (30)

where Cd = Cov(ud ,Yds) and Σ
−1
d = [Cov(Yds)]

−1. Noting that E(ud) = 0, Cd = σ2
u (1−

2
π

δ 2
u )1T

Nd , Σ
−1
d = 1

σ2
e (1− 2

π
δ 2

e )
(Ind −

σ2
u (1− 2

π
δ 2

u )

σ2
e (1− 2

π
δ 2

e )+ndσ2
u (1− 2

π
δ 2

u )
1nd 1T

nd
), and µYd

= Xdβ leads to

ûBLUP
d =

σ2
u (1− 2

π
δ 2

u )

σ2
e (1− 2

π
δ 2

e )+ndσ2
u (1− 2

π
δ 2

u )
∑
j∈sd

(yd j−xT
d jβ̃ ) (31)

Note that the errors are adjusted so that their means are equal to zero. On the other hand,
the best estimator ûB

d requires the joint distribution of ud and Yds. The best predictor of the
small area random effect, ud , is now obtained, using Theorem 3.1.
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Theorem 3.1. For the SN nested error model (4) with adjusted errors so that E(ud) = 0 and
E(ed) = 0, the best predictor of ud is:

ûB
d = µu + γnd ∑

j∈sd

{yd j− (xT
d jβ +µu +µe)}+

Φ
(1)
nd+1(0;νA,Γ)

Φnd+1(0;νA,Γ)
(32)

where

Γ =

 Ind +λ 2
e γnd 1nd 1T

nd
−λeλu

(
σe
σu

)
γnd 1nd

−λeλu

(
σe
σu

)
γnd 1T

nd
1+λ 2

u (1−ndγnd )

 , and

Φ
(1)
nd+1(0;νA,Γ) =

∂

∂ t Φnd+1(DAσAt;νA,Γ)t=0, with

µA = µu + γnd 1T
nd
(ynd − (Xdβ +µu1nd +µeds)), σA = σ2

e γnd , DA =

(
− λe

σe
1nd

λu
σu

)
,

νA =−

[
λe
σe
[Ind − γnd 1nd 1T

nd
]

λu
σu

γnd 1T
nd

]
(ynd − (Xdβ +µu1nd +µeds)), and ΓA = Ind+1.

Proof. Let T =

(
Yds
ud

)
∼CSNnd+1,nd+1 (µT ,ΣT ,DT ,νT ,ΓT ) where

µT =

(
µYd

= Xdβ +µu1nd +µeds
µu

)
, ΣT =

[
σ2

e Ind +σ2
u 1nd 1T

nd
σ2

u 1nd

σ2
u 1T

nd
σ2

u

]
,

DT =

[
− λe

σe
1nd

λe
σe

Ind
λu
σu

0

]
, νT = 0, and ΓT = Ind+1

then, applying the closure properties of the CSN, we have
ud ∼ SN(µu,σ

2
u ,λu)≡CSN1(µu,σ

2
u ,λu,0,1) and Yds as in (7). Also, the closure properties

give the distribution of ud |yds as a CSN, precisely, we have

ud |yds ∼CSN1,nd+1 (µA,σA,DA,νA,ΓA)

where µA, σA, DA, νA defined as in Theorem 3.1. Hence, the mgf is

Mud |yds(t) =
Φnd+1(DAσAt;νA,ΓA+σADADT

A)
Φnd+1(0;νA,ΓA+σADADT

A)
etµA+

1
2 σAtT t and the best predictor is obtained as the

expectation using E(X) = ∂

∂ t M(t)t=0.

In practice, the parameters of the model are estimated using a suitable method to obtain
EB estimator ûEB

d and EBLUP estimator ûEBLUP
d . This leads to the empirical predictors

η̂(ûEB
d ) and η̂(ûEBLUP

d ). We refer to these latter estimators as respectively η̂
C−EQB
d and

η̂
C−EQBLUP
d , where C refers to conditional. The superscript C−EQBLUP is a little confusing

because η̂
C−EBLUP
d is not linear nor unbiased; the subscript just refers to the way the area

effect was estimated to distinguish between the two estimators. In practice, η̂
C−EQB
d should

be preferred between the two because it approximates the conditional best predictor. The
univariate generation of the predicted values (ydr|s) j for the non-sampled units j in small
area d can be summarized as follows:

1. Estimate the unknown vector of model parameters θ =
(
β ,σ2

u ,σ
2
e ,λu,λe

)
using a

suitable method and the sample data ys.

2. Predict the random effect ud , say ûd , using the sample data ys with θ replaced by its
estimator θ̂ .
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3. Generate independently values v1
d j and v0r

d j from N(0,1).

4. The element j of the predictor ydr|s is:

(ydr|s)d j = Xdr jβ̂ + ûd + µ̂e + σ̂e(1− δ̂
2
e )

1/2v1
d j + σ̂eδ̂e|v0r

d j| (33)

To get η̂
C−EQB
d (respectively η̂

C−EQBLUP
d ), predict ud using ûEB

d (respectively ûEBLUP
d ). Ex-

pression of ûEB
d is provided by Theorem 3.1 and ûEBLUP

d is given by (31).

3.3 ELL Method

The approach consists of drawing from the empirical area and unit level residuals to create a
simulated census. The steps of the ELL method can be summarized as follows:

1. From the nested error model (4)-(5), calculate the total residuals r̂d j = yd j−xT
d jβ̂ OLS

where β̂ OLS is the ordinary least square (OLS) estimate of β .
2. The effect of small area d, ud , is estimated as the empirical mean value of the total

residuals r̂d j over all the observations from the small area d:

ûd =
1
nd

nd

∑
j=1

r̂d j (34)

3. The unit level residuals ed j are estimated as:

êd j = r̂d j− ûd . (35)

These residuals are then mean-corrected to sum to zero across the small area d.
4. Draw β̂

(`)
, û(`)d , and ê(`)d j , ` = 1, ...,L from respectively N

(
β̂ OLS,Cov(β̂ OLS)

)
, the

empirical distributions of ûd , and êd j.

5. Construct L predictors y(`)d j as follows:

y(`)d j = xT
d jβ̂

(`)
+ û(`)d + ê(`)d j (36)

6. Get an estimate of the complex parameter as follows:

η̂
ELL−T RAD
d =

1
L

L

∑
`=1

η̂
(`)
d =

1
L

L

∑
`=1

h(y(`)d ) (37)

We refer to the estimator (37) as the traditional ELL (ELL-TRAD) predictor. Unfortunately,
this traditional ELL method does not provide a correct prediction of the area effects ud

across the L censuses since each draw l selects a different value û(`)d from the empirical
area level residuals ûd with a mean approximately equals to 0. Across the L prediction
cycles, the traditional ELL method does not attach a specific estimated random effect (area
level residual) to the small area d. Instead, the traditional ELL method uses a combination
of estimated random effects from other areas to predict the complex parameter for small
area d. Empirical studies of the traditional ELL method by Molina and Rao (2010) have
revealed very high MSEs compared to the best estimator and even higher than the MSE of
the direct estimator under the normal model. In the simulation study in section 4, similar
results as in Molina and Rao (2010) are observed. In order to reduce the MSE, we propose
two nonparametric adjustments to the original ELL method. The traditional ELL approach
has two main problems:
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1. The area effects are wrongly assigned to the small areas across the L censuses. In fact,
the random effects predictions are approximately equal to zero for linear parameters
since the empirical average converges to zero (E(ud) = 0).

2. The variability of the empirical ELL is increased by drawing L different values from
the empirical distributions of N

(
β̂ OLS,Cov(β̂ OLS)

)
and the area effects residuals û(`)d ,

`= 1, ...,L, for the same area, given a fixed sample.

Therefore, to address those two issues, we estimate the fixed effects and the random area
effects using the sample data. Then, for the given sample, the intra-area distribution
(conditional on the area effects) is estimated by drawing from the unit level residuals. The
fixed effects are estimated using OLS as previously and two different nonparametric methods
are used to obtain the area effect estimates.

The first method for estimating the area effects is the same as in the traditional ELL
approach. For a given sample, we do not bootstrap the area level residuals. The steps of the
algorithm are as follows:

1. From the nested error model (4)-(5), estimate the fixed effects β using OLS.
2. Estimate ûd and êd j as in the traditional ELL method.

3. Draw ê(`)d j , `= 1, ...,L from the empirical distribution of the êd j.

4. Construct L predictors y(`)d j as follows:

y(`)d j = xT
d jβ̂ OLS + ûd + ê(`)d j . (38)

Note that the same area level residual ûd is used for a given area d.
5. Obtain an estimate of the complex parameter as follows:

η̂
ELL−RES
d =

1
L

L

∑
`=1

η̂
(`)
d =

1
L

L

∑
`=1

h(y(`)d ) (39)

The second method for estimating the area effects consists of using a combination of
OLS and the method of moments to get estimators of σ2

u and σ2
e (Fuller and Battese (1973)).

Then use the estimated variance components to get predictors of the area effects. Note that,
as for the first method, no distributional assumption is needed. The steps of the algorithm
are as follows:

1. Obtain an estimate of β using OLS.
2. Estimate σ2

e and σ2
u as follows:

σ̂
2
e =

SSE(1)
n−m− p1

, p1 = number of non-zero X-derivation (40)

where SSE(1) is the residual sum of squares obtain by regressing (yd j− ȳd.) on the
non-zero X-derivations (xd j− x̄d.) for areas with nd > 1 with ȳd. = ∑

nd
j=1 yd j/nd and

x̄d. = ∑
nd
j=1 xd j/nd . Also, we have

σ̂
2
um =

SSE(2)− (n− p)σ̂2
e

∑
nd
j=1 nd{1−nd x̄d.

(
∑

m
d=1 ∑

nd
j=1 xd jxT

d j

)−1
x̄T

d.}
, (41)

where SSE(2) is the residual sum of squares obtain by regressing yd j on the non-zero
x-derivations xd j. Because the estimates can be negative, we truncate to get:

σ̂
2
u = max(σ̂2

um,0). (42)
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3. Compute the estimated small area effect ûd as follows:

ûd = σ̂
2
u 1T

nd
V̂−1

d

(
yd−Xd β̂ OLS

)
(43)

where V̂d =
(
σ̂2

e Ind + σ̂2
u 1nd 1T

nd

)
.

4. Obtain unit level residuals as follows:

ẽd j = yd j−xT
d jβ̂ OLS− ûd (44)

Adjust these residuals to sum to zero and obtain êd j. Draw ê(`)d j from the empirical
distribution of the êd j.

5. Construct L predictors ŷ(`)d j as follows:

ŷ(`)d j = xT
β̂ OLS + ûd + ê(`)d j , b = 1, ...,B. (45)

Note that the same area level residual ûd is used for a given area d.
6. Obtain an estimate of the complex parameter as follows:

η̂
ELL−MOM
d =

1
L

L

∑
`=1

η̂
(`)
d =

1
L

L

∑
`=1

h(y(`)d ) (46)

4. Simulation Results

The parameters of interest considered in this simulation study are the FGT poverty measures
introduced by Foster et al. (1984). The FGT class is defined, for domain d, as:

Fαd =
1

Nd
∑
j=1

Nd

(
z−Ed j

z

)α

I (E j < z) , j = 1, ...,Nd ,α ≥ 0, (47)

where z is the poverty line, Ed j is a quantitative measure of welfare such as income or
expenditure associated with individual j from domain d, and I is an indicator function.
I (E j < z) = 1 if E j < z meaning that the person j from area d is considered to be in poverty
(welfare measure under poverty line) and similarly I (E j < z) is equal to 0 if E j ≥ z (person
j is not in poverty). The choice α = 0 yields the proportion of people in poverty for domain
d and F0d is called the poverty incidence. The choice α = 1, called the poverty gap, uses
the normalized gap z−Ed j

z to differentiate among the poor. The choice α = 2, called poverty
severity, squares the normalized gap.

A setup similar to Molina and Rao (2010) is used for these simulations: m = 80 small
areas, Nd = 250, nd = 50, β = (3,0.03,−0.04)T . Further, we set λu = 1, and λe = 3. The
skewness parameter λu = 1 results in a minimal asymmetry and departure from the normal
distribution with the same mean and variance. The skewness of the unit level distribution
ed j is moderate with λe = 3. The scale parameters σ2

u and σ2
e were chosen to ensure that

Var(ud) = 0.152 and Var(ed j) = 0.502. There are two auxiliary variables X1 ∈ {0,1} and
X2 ∈ {0,1} plus an intercept X0. The values of the two dummies X1 and X2 are generated
from Bernoulli distributions with

P(X1 = 1) = 0.3+
0.5d

m
, P(X2 = 1) = 0.2, d = 1, . . . ,m = 80. (48)

In each small area d, a sample sd of 50 units is selected using simple random sampling.
The total sample size is n = 4,000 selected from a total population size of N = 20,000.
The Monte Carlo simulation consists of generating I = 5,000 populations, then for each
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generated population the SAE methods described in the previous sections (empirical best,
conditional empirical best, Molina-Rao (MR) normality-based, and ELL) are applied to
obtain estimates of the complex parameter for the small areas. A simple direct estimator
F̂srs

αd = 1
nd

∑
nd
j=1 Fαd j, j = 1, ...,nd ,α ≥ 0 of Fαd is also included.

We fitted the nested error model with yd j = log(Ed j) assuming normal distribution
and used the estimate of β , Var(ud), and Var(ed j) as the initial values of β , σ2

u , and σ2
e

respectively. The initial values of λu and λe were both chosen to be equal to 0.5. Empirical
MSE(η̂d) of an estimator ˆetad is calculated as

MSE(η̂d) =
1

5000

5000

∑
i=1

(η̂
(i)
d −η

(i)
d )2 (49)

where η̂
(i)
d is the estimate of the parameter η

(i)
d for the ith simulated population.

Figure 2 shows the bias of the MR normality-based estimator of the poverty gap under the
three SN models: both ud and ed j follow SN distributions, only ed j follows SN distribution,
and only ud follows SN distribution. When only ud follows SN distribution, the MR
normality-based estimator is essentially unbiased. Hence, misspecification of the distribution
of ud has no significant effect on the bias. On the other hand, bias of MR normality-based
estimator is substantial for the other two cases. Similar result was found on the MSE.
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Figure 2: Bias of the MR normality-based estimator (MR-N) when at least one random
error follows SN distribution (poverty gap, α=1).

Figure 3 shows a comparison of the empirical quasi-best (EQB) and the conditional
empirical predictors (C-EQB and C-EBLUP). The two estimators EQB and C-EQB are
equivalent in terms of MSE. As expected C-EQBLUP shows higher MSE than the quasi-best
predictors EQB and C-EQB. It was also found that the estimator EQB is nearly unbiased
while C-EQB and C-EQBLUP show a small bias.
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Figure 3: Comparison of the empirical quasi-best predictor (EQB) to the conditional
predictors C-EQB and C-EQBLUP in terms of MSE (poverty gap, α=1).

Turning to ELL, the MSEs, as shown in Figure 4, are very high for the original ELL,
η̂

ELL−T RAD
d , compared to the two proposed alternative methods. The results show a very

high gain for both alternative methods with η̂
ELL−MOM
d achieving nearly 80% improvement

over the original ELL.
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Figure 4: MSE of the three different ELL methods when both random errors follow SN
distribution (poverty gap, α=1).
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For each of the four estimators, EQB, C-EQB, ELL-MOM, and MR-N, the ratio of its
MSE over the MSE of the simple direct estimator is computed. Values of the ratio under 1
show gain over the direct estimator while values over 1 indicate that the direct estimator is
better in term of MSE. Results on poverty incidence (α = 0), from Figure 5, show that all
four estimators do better than the direct estimator. Among the four estimators, the marginal
and conditional quasi-best estimators are equivalently the best and the modified ELL and
the MR normality-based estimators are equivalent.
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Figure 5: Ratio of the MSEs of EQB, C-EQB, ELL-MOM, and MR-N to the MSE of the
simple direct estimator (poverty incidence, α=0).

Results on the poverty gap (α = 1), from Figure 6, show that only the two quasi-best
estimators (marginal and conditional) do better than the direct estimator with improvement
about 25% for the lowest area indicators to about 33% for highest area indicators. The
improved ELL method using method of moments has a performance similar to the direct
estimator. The MR normality-based estimator is much worse than the other three predictors
and the director estimator. The performance of the MR normality-based estimator is worse
for the poverty gap (α = 1) than for the previous less complex poverty incidence (α = 0).
Relative to the direct estimator, the other three predictors are less affected by the extra
complexity of the parameter of interest than the MR normality-based estimator. Results on
poverty severity (α = 2) were similar to those for poverty gap. A value of λe smaller than
3 would produce better result for the MR normality-based. The choice of λe = 3 may be
extreme under the log transformation of the welfare variable.

The traditional ELL predictor had much larger MSEs then any of the four estimators in
the last two figures. It was not included in Figures 5 and 6 to avoid squeezing the graphs
and make them unreadable. For poverty incidence, small area MSEs of the traditional ELL
estimator were on average about 5.2 times larger than the MSEs of the MR normal-based
estimator. That ratio reduces to about 3 for poverty gap and 1.4 for poverty severity. For all
three poverty measures, the traditional ELL method performs worse than the direct estimator.
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Figure 6: Ratio of the MSEs of EQB, C-EQB, ELL-MOM, and MR-N to the MSE of the
simple direct estimator (poverty gap, α=1).
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