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Abstract
In biomedical, psychological, social, and behavioral sciences, it is very common to encounter latent

variables along with non-normal data. We propose a median latent variable model to deal with this
kind of data in a Bayesian framework. The normal-gamma prior distribution is applied here for
simultaneous estimation and model selection. A Markov chain Monte Carlo (MCMC) algorithm for
obtaining Bayesian estimates is developed. Simulation studies are carried out to examine the finite
sample performance of the proposed estimators. We illustrate the proposed method with a real data
set from a longitudinal study of polydrug use.

Key Words: median regression, confirmatory factor analysis model, normal-gamma prior, asym-
metric Laplace distribution, Markov chain Monte Carlo.

1. Introduction

In practical applications, many theoretical concepts, which are called latent variables or fac-
tors, such as intelligence, personality, desirability, and welfare, cannot be measured directly
or evaluated by a single observed variable, but are inferred from some observable variables
instead. The confirmatory factor analysis (CFA) model assesses relationships between latent
variables and the corresponding manifest variables, and takes the measurement error into
account. It provides a useful statistical tool for explaining and analyzing underlying structure
of multivariate data based on the idea that the observable variables are impacted by the
underlying unobservable factors. This model has been widely used in behavioral, social, and
psychological research (Song and Lee, 2012).

Traditional confirmatory factor analysis models are developed under the assumption
that the observed variables are normally distributed, which is not realistic in many practical
applications (see, e.g., Cai et al., 2010; Li et al., 2012; Cai et al., 2011; Song et al., 2010). If
the non-normality is not tackled properly, the analysis of confirmatory factor analysis model
may lead to incorrect inference for model parameters. Hence, it is important to develop more
robust methods for analyzing confirmatory factor analysis model under the non-normality
assumption. Both parametric and nonparametric methods have been proposed by researchers.
Parametric methods using t-distribution have received a great deal of attention in the last
decades (see, e.g., Bentler, 1983; Shapiro and Browne, 1987; Kano, Berkane, and Bentler,
1993; Lee and Xia, 2006). The drawback of parametric methods is that restricting statistical
inference to a specific parametric form may limit the scope and type of the inference.
Recently, a semiparametric approach using the truncated Dirichlet process with a stick
breaking prior was introduced to relax the normality assumption of residuals in latent
variable models (see, e.g., Song et al., 2010; Yang and Dunson, 2010; Yang et al., 2010).
Although it has been demonstrated useful for handling non-normal data, a simultaneous
estimation and variable selection under this model framework is difficult. In this paper,
we develop a median regression method to deal with the problem of non-normality of the
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observed variables. While the conventional mean regression is suitable for modeling data
whose distribution is normal or nearly normal, it may fail to yield efficient estimates when
data distributions have heavy-tails or are highly skewed. In contrast, the median regression is
robust against outliers, and may be more effective in analyzing non-standard data. Moreover,
the median regression does not assume any specific residual distribution form, thus it is able
to accommodate more general residual distributions. It expands the usual mean regression
model by providing a natural way to deal with data with heteroscedastic, heavy-tailed, or
highly skewed error distribution.

The main difficulty of incorporating median regression into the Bayesian framework
lies in the fact that the median regression model does not specify a likelihood function,
which is indispensable in the Bayesian inference. Some authors employed pseudo-likelihood
to the Bayesian quantile regression framework. Kottas and Geland (2001) and Kottas
and Krnja-jić (2009) developed a modeling approach for the error distribution in quantile
regression based on Dirichlet process mixture models. Reich, Bondell and Wang (2008)
assumed the error distribution to be an infinite mixture of normals equipped with stochastic
constraints. Dunson and Taylor (2005) introduced an approximate approach which relies on
a substitution likelihood for quantiles. Yu and Moyeed (2001) used the asymmetric Laplace
distribution as an way for modeling Bayesian quantile regression. Yang and He (2012)
proposed the Bayesian empirical likelihood for quantile regression in Bayesain inference.
Sriram, Ramamoorthi, and Ghosh (2012) provided theoretical justification for the widely
used approach using asymmetric Laplace distribution in Bayesian quantile regression, even
if the true underlying distribution may be different. Due to the merits of asymmetric Laplace
distribution, in this paper, we proposed a fully Bayesian method for the median latent
variable model based on the asymmetric Laplace distribution.

Variable selection plays an important role in model buildings. In practice, it is usual
to include a large number of candidate predictor variables at the primary stage of model
building for the sake of removing serious modeling bias. However, spurious predictors
in the final model make it difficult to interpret the resultant model and degrade prediction
ability. Classical variable selection methods such as subset selection are time-consuming
and often suffer from numerical instability (Breiman, 1996). On the other hand, the variable
selection procedure by penalized likelihood attracted a lot of attention in last decades, whose
major advantage is to select variables and estimate coefficients simultaneously, for example,
Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), adaptive Lasso (Zou, 2006), and
minimax concave penalty (MCP, Zhang, 2007). There exist corresponding variable selection
approaches in the literature of Bayesian method, including the Bayesian Lasso (Park and
Casella, 2008), the horseshoe prior (Carvalho et al., 2010), the orthant normal prior (Hans,
2010), the Bayesian adaptive Lasso (Sun et al., 2010), and the normal-gamma prior (Griffin
and Brown, 2010), which extended the Bayesian Lasso (Park and Casella, 2008) by placing
an absolutely continuous prior distribution on the regression coefficients of model.

Burgette and Reite (2012) proposed a Bayesian quantile regression model, which also
used a confirmatory factor structure and the asymmetric Laplace distribution for Bayesian
analysis. However, they mainly focus on studying which of the latent variables has a
significant effect on a lower quantile of the response variable, which is quite different from
our approach for dealing with non-normality. Moreover, to the best of our knowledge, little
work on variable selection has been done for the median latent variable model under the
Bayesian framework. In this article, we apply the normal-gamma prior to the median latent
variable model to achieve simultaneous coefficients estimation and variable selection, which
works effectively and avoids the computational difficulty of other methods.

We illustrate the developed methodology through a data set from a longitudinal study
of poly-drug use conducted in five California countries in 2004. Since the both drug use
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history and drug-related crime history are respectively related to several variables, they
are treated as latent variables. Therefore, a confirmatory factor analysis model is used to
measure the latent variables via several indicators. Through some preliminary analysis, we
found that most of the variables in polydrug use data were extremely non-normal. Hence, it
is necessary to develop some robust statistical methods to handle heterogeneity. In addition,
some fixed covariates including treatment motivation, services received, the number of drug
tests, and the number of drug tests by criminal justice, etc. are collected to take into account
their possible effects on the response variable retention. Therefore, it is useful to consider
the choice of which subset of variables should be included into the model. In this paper, we
apply the normal-gamma shrinkage prior to deal with the variable selection problem.

The remainder of this article is organized as follows. In Section 2, we introduce median
latent variable model with normal-gamma prior distribution. We outline the Bayesian
MCMC sampler in the Section 3. To evaluate the performance of the proposed method,
we conduct the simulation study in Section 4. In Section 5, We illustrate the method by
applying it to a data set related to a longitudinal study of polydrug use. Some concluding
remarks are provided in Section 6.

2. Model specification

2.1 Bayesian quantile regression

The linear quantile regression is given by:

Qyi (τ |Xi ) = XT
i β(τ),

where yi and Xi denote the response variable and covariates respectively, Qyi (τ |Xi ) is
the inverse cumulative distribution of yi conditional on Xi evaluated at τ, and β(τ) is the
unknown regression coefficient. Koenker and Bassett (1978) demonstrated that the regression
coefficients can be estimated consistently as the solution to the following minimization
problem:

min
β

n∑
i=1

ρτ (yi − XT
i β), (1)

where ρτ (x) = x(τ − I (x < 0)) is the so-called check function. Koenker and Machado
(1999), and Yu and Moyeed (2001) established that there exits a connection between the
minimization problem in (1) and the maximum likelihood estimation theory by assuming
the residual distribution is the asymmetric Laplace distribution. A random variable y is
distributed as asymmetric Laplace distribution with parameters µ, σ, τ, if the corresponding
probability density function takes the following form:

f (y |µ,σ,τ) =
τ(1 − τ)

σ
exp

{
ρτ

(
y − µ

σ

)}
,

in which µ is the location parameter, σ is the scale parameter, τ is the skewness parameter.
Specifically, setting y = (y1, . . . , yn ) and µi = XT

i β, and assuming that yi ∼ ALD(µi ,σ, τ),
then the maximum likelihood for n independent subjects is

L(β,σ; y, τ) ∝
1
σn

exp


−

n∑
i=1

ρτ *
,

yi − XT
i β

σ
+
-



. (2)

If we consider σ as nuisance parameter, the minimization of (1) is asymptotically equivalent
to the maximum likelihood estimation of the asymmetric Laplace distribution. Thus, the
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asymmetric Laplace distribution can be exploited to specify a parametric likelihood, which
is needed in the Bayesian framework.

An attractive feature of the asymmetric Laplace distribution is that it can be represented
as a scale mixture of a standard normal distribution with an exponential distribution (Kozumi
and Kobayashi, 2009):

y = κ1e +
√
κ2σeζ + µ,

where κ1 = 1−2τ
τ (1−τ) , κ2 = 2

τ (1−τ) , the random variable ζ and e is independent, and ζ follows a
standard normal distribution, and e follows an exponential distribution with scale parameter
1/σ. The mixture representation can be used to develop a Gibbs sampling algorithm which
avoids the inconvenience to choose the proposal distribution in the Metropolis-Hastings
algorithm as well as improving the efficiency of the MCMC sampler.

In this paper, we focus on only the median regression, i.e., τ = 50% th quantile
regression for the consideration that the median regression can provide enough robustness
for non-normal data.

2.2 Median latent variable model with normal-gamma prior

For the ith (i = 1, . . . ,n) subject, let yi represent response variable. The covariates consist
of two parts: fixed covariates and latent factors. Let ωi be a q × 1 vector of latent factors
which are unobservable, Zi be an r × 1 vector of fixed covariates, and Xi be a (p − 1) × 1
vector of manifest variables which are correlated with latent factors ωi . We assume that, for
the ith subject:

Median(Xi |ωi ) = Λωi

Median(yi |ωi ,Zi ) = βωωi + βzZi , i = 1, . . . ,n,

in which Λ is a (p − 1) × q unknown parameter matrix, β = (βT
ω,β

T
z )T is the unknown

vector of regression coefficient for ωi and Zi , ωi is distributed as N(0,Φ) where Φ is q × q
unknown covariance matrix. The median latent variable model takes the form as:

Xi = Λωi + εi (3)

yi = βωωi + βzZi + δi , (4)

εi = (ε i1, . . . , ε i p−1) is (p−1)×1 random vector of residuals and ε i1, . . . , ε i p−1 are mutually
independent, δi is a scalar residual. The distributions of the residual term εi and δi are
assumed as unknown, and are restricted to have the median to zero.

Park and Casella (2008) introduced a Bayesian version of the Lasso approach by Tib-
shirani (1996). They presented a fully Bayesian analysis using a conditional Laplace prior.
The Laplace prior distribution can also be considered as a member of the scale mixture of
normals family, which we write as

p(β j ) =

∫
N(β j |0, ϕ j )dG(ϕ j ),

where N(x |µ,ϕ) denotes normal density function evaluated at x with mean µ and variance
ϕ, and G is a mixing distribution. The prior distribution family can be expressed in a
hierarchical form as

β j |ϕ j ∼ N(0, ϕ j ), ϕ j ∼ G.

The hierarchical form shows that each regression coefficient has a normal prior distribution
conditional on coefficient-specific variance, ϕ j , allowing differences in their scales. The
Laplace prior can be expressed in this way if G is an exponential distribution. However,
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the drawback of Bayesian Lasso is that it inherits the problem of over-shrinkage large
coefficients due to the relatively light tails of the Laplace prior distribution. Griffin and
Brown (2010) considered so-called normal-gamma prior which generalizes the Laplace prior
of the Bayesian Lasso. They assume that the mixing distribution G has the gamma density
Ga(x |λβ ,1/2γ2), where

Ga(x |c,d) =
dc

Γ(c)
xc−1e−dx .

The normal-gamma prior distribution can be expressed as

p(β j |λβ ,1/2γ2) =
1

√
π2λβ−

1
2 γλβ+ 1

2 Γ(λβ )
| β j |

λβ−
1
2 Kλβ−

1
2
(| β j |/λβ ),

in which K (·) is the modified Bessel function of the third kind. The marginal distribution
above has an spike at zero and very heavy tails, and places increasing mass near zero
when the shape parameter λβ decreases. Compared with Laplace prior distribution, the
normal-gamma prior has substantially improved performance due to the property of strongly
shrinking small coefficients to zero while minimally shrinking large coefficients due to the
heavy tails, especially when the sample size is small and the number of covariates is large.
In this article, we choose normal-gamma distribution as prior distribution due to its merits
compared with Laplace prior distribution.

How to choose the value of λβ and γ plays an important role in the sparsity estimation.
Park and Casella (2008) proposed an empirical Bayes procedure for the hyperparameters
of Laplace prior distribution. However, the empirical Bayes approach is very difficult to
implement due to the complexity of posterior distribution induced by the normal-gamma
prior. Therefore, we takes a fully Bayesian method and suggests data-driven priors.

3. Bayesian analysis

In this section, we develop a Bayesian approach for obtaining the estimation of unknown
parameters. We consider the application of Markov chain Monte Carlo (MCMC) methods
to obtain the Bayesian estimate by drawing samples from the joint posterior distribution.
The full conditional distributions in the implementation of the MCMC algorithm involve the
prior distributions of unknown parameters.

For the reason we have mentioned in section 2.1, we assume the residuals δi and
ε i1, . . . , ε i p−1 are from the asymmetric Laplace distribution in Bayesian analysis. Note
that this assumption is by no means based on the belief that the true data follow this
specific distribution, but rather the equivalence of maximizing the likelihood function (2)
and minimizing (1). From the mixture representation of asymmetric Laplace distribution,
the model can be equivalently rewritten as

xi j = Λ jωi +

√
8σ jei j ζi j , (5)

y j = βωωi + βzZi +

√
8σyeyiζyi , j = 1, . . . ,p − 1, (6)

where the random variables ζi j and ei j are independent, ζyi and eyi are independent, and
ζi j , ζyi follow standard normal distribution, and ei j ,eyi follow exponential distribution with
scale parameter 1/σ j ,1/σy respectively.

3.1 Prior specifications

Inspired by the work of the statistician who taken the Bayesian method in researching CFA
model or other latent variable model (Lee, 2007), the following conjugate prior distributions
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will be used. Let Λ j be jth row of Λ. The prior distributions of the unknown parameters in
model (3) are given by

p(Λ j )
D
= N (Λ0 j ,H0 j ), j = 1, . . . ,p − 1,

p(Φ) D
= IWq (ρ0,R0),

p(σ j )
D
= Inverse Gamma(α0σ j , β0σ j ), j = 1, . . . ,p − 1,

where ‘p(·) D
=’ is defined as the distribution of p(·) is equal to, IWq (ρ0,R0) denotes a

q-dimensional Inverse-Wishart distribution with degrees of freedom ρ0 and scale matrix
R0, and Λ0 j , H0 j , α0 j , β0 j ( j = 1, . . . ,p − 1), ρ0, R0 are hyperparameters whose values is
prespecified.

For β j ( j = 1, . . . ,q + r), we assign a normal-gamma prior as follows:

p(β j |ϕ j )
D
= N (0, ϕ j ),

p(ϕ j |λβ , γ
2) D

= Gamma(λβ ,1/2γ2),

p(γ2 |c,d) D
= Gamma

(
c,

2
d

)
.

The sparsity parameters λβ and c are given exponential prior distribution with mean 1. We
impose a vague prior of the form p(d) ∝ (1 + d)−2 on d. Furthermore, the prior distribution
of σ is given as follows

p(σy ) D
= Inverse Gamma(α0yσ , β0yσ ).

3.2 Posterior computation

The posterior distribution of the parameters can be simulated using a Gibbs sampler which
is implemented by iteratively sampling observations from the full conditional distributions
of the parameters with additional Metropolis-Hastings algorithms for the non-standard con-
ditional distributions. The convergence of MCMC algorithm is monitored by the estimated
potential scale reduction (EPSR) values (Gelman, 1996). As suggested by Gelman (1996),
the convergence of the MCMC procedure is achieved if all the EPSR values of the unknown
parameters are less than 1.2.

4. Simulation study

In this section, we examine the empirical performance of the proposed Bayesian method
through simulation. We compare the proposed method (NG-Median) with the usual mean
regression method which assumes that the non-normal residual terms follow normal distri-
bution (NG-Normal), i.e., εi ∼ N (0,Ψε), δi ∼ N (0,ψδ ), where Ψε = diag(ψε1, . . . ,ψεp−1).
The data sets are generated from the latent variable model defined by Model (3) and (4) with
p = 7, q = 2, r = 6. Specifically, the latent variables ω = (ω1,ω2) are drawn from N (0,Φ),
where φ11 = φ22 = 1.0, and φ12 = φ21 = 0.3. The fixed covariates Z follows a multivariate
normal distribution N (0,Σ) with (Σ)i j = 0.5 |i− j |. The structure of the loading matrix is
defined as follows:

Λ
T =

(
1.0 λ21 λ31 0.0 0.0 0.0
0.0 0.0 0.0 1.0 λ52 λ62

)
,

where the zeros and ones are fixed to achieve an identified model, and λ21, λ31, λ52, λ62
are unknown parameters whose true values are taken as: λ21 = λ31 = λ52 = λ62 = 0.8. We
simulate the residual terms δi and εi from four possible residual distributions:
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Design 1: ε i1, ε i3, ε i5, δi ∼ t(3); ε i2, ε i4, ε i6 ∼ Laplace(0,1).

Design 2: δi and εi ∼ t(3).

Design 3: εi ∼ Laplace(0,1), δi ∼ lognormal(0,1).

Design 4: εi ∼ Laplace(0,1), δi (i = 1, . . . ,n − 10) ∼ lognormal(0,1), δi (i = n −
9, . . . ,n) ∼ N (30,1).

We use t distribution to reflect the heavy-tailed characteristics of data, and lognormal
distribution to reflect the highly skewed characteristics of data. Design 4 is used to investigate
the sensitivity of the median latent variable model to outliers.

The true values of the β’s are set as follows:

Dense case: β = (0.8,0.0,0.5,0.5,0.5,0.5,0.5,0.0).

Sparse case: β = (0.8,0.0,0.5,0.5,0.0,0.0,0.0,0.0).

Based on the above settings, the sample size of n = 800 is considered, the simulation
study is repeated 100 times. To decide the number of burn-in iterations required for
achieving convergence, we run a few chains and found that all the EPSR values of the
unknown parameters are less than 1.2 after 5000 iterations. We generate additional 10,000
observations to obtain Bayesian estimates after discarding a burn-in of 6,000 iterations.

In each simulation study, the prior inputs with following hyperparameters are employed
for the proposed Bayesian approach. To investigate the sensitivity of the Bayesian results to
the choice of prior distributions, we consider the following two different prior choices:

Prior I: All the elements in Λ0 j ( j = 1, . . . ,p − 1) are taken to be 0.0, H0 j ( j = 1, . . . ,p −
1) are diagonal matrices with diagonal elements 1.0; ρ0 = 10, R0 = 6Φ−1; The
parameters α0yσ , α0σ j ( j = 1, . . . ,p − 1) and β0yσ , β0σ j ( j = 1, . . . ,p − 1) of the
Inverse Gamma distribution are set to be 0.01.

Prior II: All the elements in Λ0 j ( j = 1, . . . ,p−1) are taken to be 1.0, H0 j ( j = 1, . . . ,p−
1) are diagonal matrices with diagonal elements 10.0; ρ0 = 15, R0 = 11Φ−1; The
parameters α0yσ , α0σ j ( j = 1, . . . ,p − 1) and β0yσ , β0σ j ( j = 1, . . . ,p − 1) of the
Inverse Gamma distribution are set to be 0.001.

For the mean regression model, we specify the conjugate priors as follows:

p(ψ−1
ε j ) D

= Gamma(α0ε j , β0ε j ), j = 1, . . . ,p − 1,

p(ψ−1
δ ) D

= Gamma(α0δ , β0δ ),

p(Λ j |ψε j )
D
= N (Λ0 j ,ψε jH0 j ), j = 1, . . . ,p − 1,

p(Φ) D
= IWq (ρ0,R0).

The following two different prior inputs are used:

Prior I: All the elements in Λ0 j ( j = 1, . . . ,p − 1) are taken to be 0.0, H0 j ( j = 1, . . . ,p −
1) are diagonal matrices with diagonal elements 1.0; ρ0 = 10, R0 = 6Φ−1; The
parameters α0ε j ( j = 1, . . . ,p − 1) are set to be 7, β0ε j ( j = 1, . . . ,p − 1) are set to
be 6, α0δ = β0δ=0.001.
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Prior II: All the elements in Λ0 j ( j = 1, . . . ,p−1) are taken to be 1.0, H0 j ( j = 1, . . . ,p−
1) are diagonal matrices with diagonal elements 10.0; ρ0 = 15, R0 = 11Φ−1; The
parameters α0ε j ( j = 1, . . . ,p − 1) are set to be 13, β0ε j ( j = 1, . . . ,p − 1) are set to
be 12, α0δ = β0δ=0.01.

Let β be one of elements of the unknown parameters, β0 and β̂ are true value and
Bayesian estimate of β, respectively. The performance of the Bayesian method is investi-
gated through the bias (Bias) and root mean squares (RMS) of the estimates and their true
values on the basis of 100 replications as follows:

Bias of β̂ =
1

100

100∑
k=1

| β̂(k ) − β0 |, RMS of β̂ =



100∑
k=1

( β̂(k ) − β0)2



1
2

.

In order to evaluate the shrinkage estimation of two methods, we calculate the average
numbers of those true coefficients correctly estimated to be 0 (Corr.), and the average
numbers of those nonzero coefficients erroneously estimated to be 0 (Inco.).

The simulation results are listed in Tables 1-5. From Tables 1-4, we observe that all of
the Bayesian results obtained from our procedure are close to true values of parameters and
root mean square (RMS) values of the estimates are reasonably small across the four error
distributions for dense and sparse cases while some Bayesian estimates obtained from the
mean regression method are biased. As expected, the Bayesian estimation is not sensitive
to the prior choice with a fairly large sample size, so only the results of prior I are listed
for each group. The results of Bayesian variable selection for each method are presented in
Table 5. It can be seen from Table 5 that, in terms of the average correct zero coefficients,
our method behaves better than the mean regression approach.

5. A real data example

We applied the proposed methodology to a data set from a longitudinal study of polydrug
use conducted in five California countries in 2004. The study is designed to access how
treatment retention is affected by various variables such as severity of drug use, criminal
history, and so on. In this study, the data from self-reported and administrative questionnaires
on the retention of drug treatment, drug use history, drug-related crime history, motivation
of drug treatment and received service and test were recorded for 1170 subjects at intake,
3-month, and 12-month follow-up interviews. Due to the possible heterogeneity among the
participants, the data set is of specific interest to us. There exist six manifest variables which
are grouped into two latent variables: ‘drug severity’ and ‘crime’. Therefore, the median
confirmatory factor analysis model is utilized to analyze the effects of various factors on
response variables ‘treatment retention’. The response variable is ‘retention (Retent), y’,
which was measured at 12-month follow-up interview and which indicated the days of stay
in the treatment. The manifest variables which are correlated with two latent factors include:
‘Drug use in past 30 days at intake (drugday30), x1’, ‘Drug problems in past 30 days at
intake (Drgplm30), x2’, ‘The number of drugs used in past 30 days at intake (DrgN30),
x3’, ‘The age of first arrest (Agefirstarrest), x4’, ‘The number of incarceration in lifetime
at intake (Incar), x5’, and ‘The number of arrests in lifetime at intake (ArrN), x6’. These
variables are considered as continuous. Since x1, x2, and x3 are related with severity of drug
use, they are grouped into the latent factor, ‘drug severity, ω1’, and since x4, x5, and x6 are
related with drug-related crime history, they are grouped into the latent factor, ‘crime, ω2’.
The fixed covariates include ‘Mtsum01, z1’, ‘Mtsum02, z2’, and ‘Mtsum03, z3’ which are
about treatment motivation, ‘services received in past 3 months at TSI 3 month interview
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(Servicem), z4’, ‘The number of drug tests by Tx in past 3 months at TSI 3 month interview
(DrugtestTX), z5’, ‘The number of drug tests by criminal in past 3 months at TSI 3 month
interview (DrugtestCJ), z6’, ‘Treatment mode (Modality), z7’, and ‘The number of prior
treatments the subject has taken at intake (TXcode), z8’. We found through some data
analyses that most of the observed variables in longitudinal study of polydrug use were
extremely non-normal such as highly skewed or U-shaped, etc. We applied the logarithm
transformations to those extremely non-normal data to alleviate the non-normality problem.
In addition, the continuous variables are standardized in order to unify the scale. The path
diagram to depict the inter-relationships between retention and its important predictors is
presented in Figure 1.

A median confirmatory model with two latent variables and six manifest variables is
proposed with the following specifications

Λ
T =

(
1.0 λ21 λ31 0.0 0.0 0.0
0.0 0.0 0.0 1.0 λ52 λ62

)
,

where the ones and zeros were treated as fixed parameters for model identification.
To examine the sensitivity of the Bayesian results to the inputs of prior distributions, we

considered the following two different prior inputs:

For the proposed method

Prior I: All the elements in Λ0 j ( j = 1, . . . ,6) are taken to be 0.0, H0 j = 6I ( j = 1, . . . ,6);
ρ0 = 10, R0 = 6I; the parameters α0yσ , α0σ j ( j = 1, . . . ,6) and β0yσ , β0σ j

( j = 1, . . . ,6) are set to be 0.01.

Prior II: All the elements in Λ0 j ( j = 1, . . . ,6) are taken to be 1.0, H0 j = 10I ( j =

1, . . . ,6); ρ0 = 15, R0 = 11I; the parameters α0yσ , α0σ j ( j = 1, . . . ,6) and β0yσ ,
β0σ j ( j = 1, . . . ,6) are set to be 0.001.

For the mean regression method

Prior I: All the elements in Λ0 j ( j = 1, . . . ,p − 1) are taken to be 0.0, H0 j ( j = 1, . . . ,p −
1) are diagonal matrices with diagonal elements 1.0; ρ0 = 10, R0 = 6Φ−1; The
parameters α0ε j ( j = 1, . . . ,p − 1) and α0δ are set to be 3, β0ε j ( j = 1, . . . ,p − 1)
and β0δ are set to be 2.

Prior II: All the elements in Λ0 j ( j = 1, . . . ,p−1) are taken to be 1.0, H0 j ( j = 1, . . . ,p−
1) are diagonal matrices with diagonal elements 10.0; ρ0 = 15, R0 = 11Φ−1; The
parameters α0ε j ( j = 1, . . . ,p − 1) and α0δ are set to be 7, β0ε j ( j = 1, . . . ,p − 1)
and β0δ are set to be 6.

After checking the convergence, we found that MCMC chains converged within 6,000
iterations. To be conservative, 10,000 observations generated by the MCMC algorithm were
used to obtain Bayesian estimates after discarding 7,000 burn-in iterations.

Table 10 summarizes the Bayesian estimates of all the unknown parameters and their
corresponding standard error estimates (SE) for the two methods. We can see from Table
10 that (i) The Bayesian estimation is not sensitive to the prior inputs. (ii) The proposed
procedure indicates two latent factor ‘drug severity’ and ‘crime’ have strong effect on the
response variable ‘treatment retention’, while the fixed covariates including ‘Mtsum01’,
‘Mtsum02’, ‘Mtsum03’, and ‘TXcode’ have insignificant effect on the response variable
‘treatment retention’. (iii) The mean regression method fails to select any significant
variables, which is unrealistic in the real application.
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To investigate the influence of the latent variables on response variable, we treat the
variables related to the two latent variables as the fixed covariates. Table 11 gives Bayesian
estimates of all parameters and their corresponding standard error estimates (SE). Table 11
shows that although the latent variables are significant, the effect of the individual variables
which are associated with the latent variables are insignificant. This indicates that the latent
variable can pool the information from these multiple individual variables to more accurately
reflect the influence of explained variables on the response variable.

6. Concluding Remarks

In this article, we develop a Bayesian method for estimation and variable selection under
median latent variable model. We consider a normal-gamma prior distribution which extend
the double exponential prior of the Bayesian Lasso. On the basis of a theoretic derivation of
the asymmetric Laplace distribution and normal-gamma prior distribution as a scale mixture
of normal distributions, a Gibbs sampler augmented by a Metropolis-Hastings step is
introduced to fit the model. We validated the proposed method through extensive simulation
study, and a real example demonstrates that the proposed method yielded satisfactory results
in both parameter estimation and variable selection. There exist several directions for future
research. First, we assume linear relations among the response variable and the explained
variables in this paper which is very limited in practical application. The nonlinear median
latent variable model which allows nonlinear relations among the response variable and the
explained variables such as the interactions and quadratic terms can be considered. Second,
the proposed method assumes normality for the distribution of latent variables. It is very
useful to develop more robust methodology to relax the assumption in the future study.
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Table 1: Bayesian estimates of two methods for median latent variable model, Design 1.

Par NG-Median NG-Normal

Dense Sparse Dense Sparse

Bias RMS Bias RMS Bias RMS Bias RMS

λ21 0.027 0.075 0.023 0.074 0.051 0.136 0.050 0.136
λ31 0.013 0.069 0.009 0.067 0.039 0.119 0.038 0.118
λ52 0.011 0.089 0.012 0.088 0.078 0.173 0.077 0.172
λ62 0.018 0.085 0.019 0.085 0.072 0.157 0.071 0.156
β1 0.018 0.081 0.009 0.077 0.038 0.144 0.032 0.141
β2 0.005 0.066 0.002 0.058 0.009 0.103 0.006 0.097
β3 0.002 0.060 0.000 0.060 0.007 0.079 0.006 0.079
β4 0.004 0.066 0.010 0.064 0.010 0.083 0.013 0.082
β5 0.005 0.068 0.010 0.051 0.007 0.088 0.010 0.076
β6 0.004 0.070 0.001 0.048 0.005 0.092 0.003 0.077
β7 0.016 0.071 0.007 0.050 0.007 0.082 0.003 0.068
β8 0.003 0.047 0.001 0.040 0.005 0.069 0.007 0.065
φ11 0.055 0.118 0.047 0.115 0.058 0.192 0.054 0.193
φ12 0.006 0.059 0.006 0.059 0.019 0.077 0.019 0.076
φ22 0.041 0.131 0.042 0.132 0.083 0.197 0.084 0.197

Table 2: Bayesian estimates of two methods for median latent variable model, Design 2.

Par NG-Median NG-Normal

Dense Sparse Dense Sparse

Bias RMS Bias RMS Bias RMS Bias RMS

λ21 0.025 0.093 0.015 0.076 0.049 0.152 0.044 0.149
λ31 0.030 0.094 0.010 0.085 0.053 0.139 0.049 0.137
λ52 0.034 0.085 0.008 0.079 0.104 0.217 0.104 0.215
λ62 0.037 0.103 0.018 0.080 0.095 0.223 0.097 0.225
β1 0.020 0.089 0.034 0.103 0.054 0.150 0.043 0.144
β2 0.001 0.066 0.012 0.063 0.016 0.104 0.012 0.098
β3 0.001 0.052 0.016 0.083 0.002 0.066 0.001 0.067
β4 0.008 0.069 0.012 0.075 0.003 0.084 0.007 0.082
β5 0.000 0.067 0.009 0.052 0.001 0.082 0.005 0.069
β6 0.007 0.071 0.001 0.052 0.013 0.079 0.010 0.066
β7 0.005 0.061 0.004 0.063 0.001 0.073 0.002 0.060
β8 0.004 0.049 0.002 0.050 0.011 0.069 0.008 0.064
φ11 0.054 0.144 0.028 0.123 0.057 0.192 0.048 0.189
φ12 0.012 0.063 0.004 0.058 0.024 0.089 0.023 0.089
φ22 0.075 0.163 0.021 0.119 0.087 0.227 0.088 0.225
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Table 3: Bayesian estimates of two methods for median latent variable model, Design 3.

Par NG-Median NG-Normal

Dense Sparse Dense Sparse

Bias RMS Bias RMS Bias RMS Bias RMS

λ21 0.018 0.077 0.015 0.076 0.062 0.140 0.062 0.139
λ31 0.012 0.086 0.010 0.085 0.062 0.132 0.062 0.132
λ52 0.009 0.078 0.008 0.079 0.040 0.123 0.039 0.124
λ62 0.020 0.079 0.018 0.080 0.057 0.144 0.056 0.144
β1 0.024 0.101 0.034 0.103 0.078 0.171 0.073 0.169
β2 0.011 0.070 0.012 0.063 0.026 0.143 0.024 0.140
β3 0.012 0.082 0.016 0.083 0.008 0.124 0.009 0.124
β4 0.001 0.074 0.012 0.075 0.007 0.120 0.004 0.119
β5 0.002 0.080 0.009 0.052 0.006 0.123 0.002 0.110
β6 0.006 0.085 0.001 0.052 0.002 0.126 0.001 0.110
β7 0.016 0.092 0.004 0.063 0.000 0.121 0.004 0.107
β8 0.004 0.059 0.002 0.050 0.005 0.108 0.002 0.105
φ11 0.034 0.124 0.028 0.123 0.100 0.176 0.100 0.175
φ12 0.005 0.057 0.004 0.058 0.023 0.067 0.023 0.067
φ22 0.024 0.117 0.021 0.119 0.052 0.161 0.049 0.163

Table 4: Bayesian estimates of two methods for median latent variable model, Design 4.

Par NG-Median NG-Normal

Dense Sparse Dense Sparse

Bias RMS Bias RMS Bias RMS Bias RMS

λ21 0.020 0.072 0.019 0.072 0.068 0.142 0.070 0.144
λ31 0.012 0.082 0.011 0.083 0.069 0.147 0.071 0.149
λ52 0.009 0.079 0.008 0.078 0.039 0.123 0.040 0.124
λ62 0.019 0.081 0.017 0.081 0.057 0.141 0.058 0.142
β1 0.039 0.108 0.031 0.103 0.041 0.234 0.040 0.233
β2 0.027 0.105 0.022 0.093 0.017 0.232 0.016 0.230
β3 0.012 0.095 0.016 0.098 0.012 0.169 0.012 0.170
β4 0.016 0.106 0.028 0.106 0.002 0.185 0.002 0.183
β5 0.007 0.109 0.018 0.078 0.015 0.159 0.019 0.147
β6 0.006 0.111 0.001 0.078 0.005 0.182 0.007 0.168
β7 0.023 0.107 0.003 0.076 0.011 0.154 0.005 0.141
β8 0.021 0.085 0.010 0.071 0.023 0.167 0.019 0.163
φ11 0.047 0.123 0.044 0.122 0.105 0.191 0.108 0.193
φ12 0.006 0.057 0.006 0.057 0.024 0.068 0.025 0.068
φ22 0.023 0.120 0.021 0.119 0.052 0.161 0.053 0.162
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Table 5: Bayesian variable selection results of two methods for median latent variable model

Par Error NG-Median NG-Normal

prior I prior II prior I prior II

Corr. Inco. Corr. Inco. Corr. Inco. Corr. Inco.

dense design 1 1.860 0.000 1.850 0.000 1.600 0.000 1.610 0.000
dense design 2 1.810 0.000 1.800 0.000 1.540 0.000 1.590 0.000
dense design 3 1.760 0.000 1.790 0.000 1.180 0.000 1.200 0.000
dense design 4 1.510 0.000 1.500 0.000 0.870 0.080 0.860 0.080
sparse design 1 4.810 0.000 4.820 0.000 4.160 0.000 4.170 0.000
sparse design 2 4.740 0.000 4.750 0.000 4.270 0.000 4.270 0.000
sparse design 3 4.620 0.000 4.620 0.000 3.260 0.000 3.240 0.000
sparse design 4 4.160 0.000 4.110 0.000 2.440 0.030 2.430 0.040

Table 6: Bayesian estimates and standard error of parameters for a longitudinal study
of polydrug.

NG-QR NG-Normal

prior I prior II prior I prior II

Par EST SE EST SE EST SE EST SE

λ21 0.936 0.004 0.937 0.004 0.879 0.022 0.884 0.022
λ31 0.954 0.011 0.954 0.011 1.062 0.015 1.065 0.016
λ52 0.118 0.012 0.118 0.013 0.969 0.042 0.978 0.044
λ62 0.197 0.010 0.198 0.011 2.428 0.121 2.510 0.129
β1 -0.145∗ 0.040 -0.149∗ 0.041 -0.018 0.022 -0.020 0.023
β2 0.193∗ 0.021 0.195∗ 0.022 -0.011 0.028 -0.009 0.029
β3 -0.017 0.027 -0.016 0.028 0.004 0.006 0.004 0.006
β4 -0.028 0.034 -0.027 0.033 -0.007 0.006 -0.008 0.006
β5 0.010 0.032 0.009 0.030 0.008 0.006 0.008 0.006
β6 0.109∗ 0.033 0.109∗ 0.033 0.054 0.009 0.054 0.009
β7 0.140∗ 0.032 0.139∗ 0.033 0.037 0.006 0.038 0.006
β8 0.183∗ 0.030 0.183∗ 0.031 0.051 0.007 0.051 0.007
β9 -0.211∗ 0.037 -0.213∗ 0.036 -0.089 0.062 -0.088 0.062
β10 -0.049 0.041 -0.049 0.041 -0.025 0.010 -0.025 0.010
φ11 2.014 0.084 2.006 0.083 1.823 0.083 1.805 0.085
φ12 2.630 0.138 2.614 0.135 0.993 0.056 0.978 0.057
φ22 5.998 0.350 5.939 0.352 0.822 0.064 0.786 0.066
∗ marks relatively large values indicating the significance of the corresponding term.
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Table 7: Bayesian estimates and standard
error of parameters for a longitudinal study
of polydrug without latent variables.

NG-QR

Par EST SE

β1 -0.061 0.058
β2 0.023 0.032
β3 -0.089 0.062
β4 0.069 0.035
β5 -0.042 0.037
β6 -0.060 0.056
β7 -0.004 0.024
β8 0.022 0.037
β9 0.037 0.042
β10 0.147∗ 0.032
β11 0.132∗ 0.033
β12 0.209∗ 0.033
β13 -0.162∗ 0.039
β14 -0.029 0.040
∗ marks relatively large values indicating the

significance of the corresponding term.
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Figure 1: The path diagram of the median confirmatory factor analysis model in the
illustrative example.
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