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Abstract 
This study focuses on developing methods for causal mediation analysis in multisite trials 

and uses the national Head Start Impact Study as a motivating example. The causal 

effects of interest, defined in terms of potential outcomes, include the indirect effect of 

assignment to Head Start programs on child vocabulary learning mediated by a 

program-induced increase in parent reading to child and the direct effect of Head Start 

programs. The goal is to reveal not only the prevalent causal mechanism but also how the 

mechanism may vary across sites. Extending the ratio-of-mediator-probability weighting 

(RMPW) approach to causal mediation analysis in multi-site trials, we estimate the 

average direct effect, the average indirect effect, and the between-site variance and 

covariance of these causal effects. This strategy allows for treatment-by-mediator 

interaction. It greatly simplifies the outcome model specification and therefore avoids 

possible model misspecifications. The performance of the approach is assessed across a 

range of multi-site designs that differ in the number of sites and the sample size per site. 

We investigate the relative strengths and limitations of the RMPW strategy through 

simulations. 

 

Key Words: Causal inference; multi-site experimental designs; mediation mechanism; 

direct effect; indirect effect; potential outcome; propensity score. 

 

 

1. Introduction 
 

Multisite randomized trials are widely used in educational and medical research. 

People in each site are randomly assigned to a treatment or control group. This process is 

replicated over multiple sites. Analyzing data from multisite randomized trials, 

researchers obtain evidence with regard to not only the overall average treatment effect 

but also the variation in the treatment effect across sites. Further research is then required, 

yet rarely done in the past, for understanding why the treatment effect differs by sites. 

One possible explanation is that the causal mechanism may not be universal and may 

depend on how the treatment is implemented at each site. Moreover, the impact of 

implementation may depend on site-specific contextual characteristics. Adopting the 

potential outcomes causal framework, this study focuses on developing a new method for 

causal mediation analysis in multisite trials with ratio-of-mediator probability weighting 

(RMPW). The purpose is to reveal not only the prevalent causal mechanism but also how 

the mechanism may vary across sites. 

To illustrate the RMPW approach, we describe an application example in the next 

section, which is followed by a review of the existing methods for causal mediation 

analysis. Then we define the causal parameters, explain the theoretical rationale of the 

RMPW approach, clarify the identification assumptions, and demonstrate its extension to 
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multi-site settings. After delineating the estimation procedures, we assess the 

performance of the RMPW approach through simulations. Finally, we discuss the 

strengths and limitations of this new approach and raise issues for the future study. 

 

2. Application Example 
 

We select the Head Start Impact Study (HSIS) (Puma, et al., 2010), a national 

evaluation of Head Start programs with a multisite randomized design, to examine 

heterogeneity in mediation mechanisms. Since 1965, the federal government has 

sponsored Head Start (HS) programs designed to increase school readiness of children 

from low-income families. Besides providing comprehensive services directly for 

children, HS programs also intend to improve parenting practices. However, in the 

absence of strong evidence from rigorous evaluations, the effectiveness of HS programs 

was continuously questioned. From 2002 to 2006, a national multisite randomized trial 

was conducted to determine the impact of Head Start on child development and parental 

practices. 

The HSIS sample included 2,449 3-year-olds from 328 randomly selected HS 

centers representing the national population of newly entering 3-year-old HS applicants 

and the national population of HS programs, respectively. At each site, because the 

number of open slots in the HS center cannot meet the demand, applicants were assigned 

at random to the HS center or to a control group. The treatment assignment probability 

was decided by the ratio of open slots to the number of applicants at a given site, and was 

thus different across the sites. The control children could receive any other non-HS 

services. The sample size within each site ranges from 1 to 46, with a mean of 7.5. 

In this study, we focus on the HS impact on child vocabulary ability and use the IRT 

(Item Response Theory) calibrated PPVT (Peabody Picture Vocabulary Test) score as the 

outcome. HS programs encouraged parents to read to their children at home. At the end 

of the treatment year for the 3-year olds, there was clear evidence that HS programs 

improved child vocabulary score and increased parent reading to child by a greater 

amount than did the control condition. We reason that the improvement in child 

vocabulary may not only be caused by the instruction received in HS programs, but may 

also be attributed to the fact that the HS parents read to their children more frequently. 

There are two possible pathways through which HS affects child PPVT score. We 

examine parent reading to child as the focal mediator and dichotomize the measure into a 

high reading frequency level denoted by 1 and a low level denoted by 0. We consider 16 

pretreatment covariates that are associated with child vocabulary or with parent reading 

frequency. These include child age, gender, race, home language, pre-academic skills, 

and biological mother’s education status. 

 

3. Literature Review 
 

In mediation analyses of multilevel data with individual-level outcomes, some 

researchers merely focused on a cluster-level treatment or mediator (Krull & Mackinnon, 

1999; Pituch, Murphy, & Tate, 2009). More recently, there has been increasing attention 

toward individual-level treatments and mediators. Kenny, Korchmaros, & Bolger (2003) 

were the first to assess the between-site variation in the direct effect through multilevel 

path analysis. For individual i at site j, the path models are:  

𝑌𝑖𝑗 = 𝑑0𝑗 + 𝑐𝑗𝐴𝑖𝑗 + 𝑟𝑖𝑗 

𝑍𝑖𝑗 = 𝑑1𝑗 + 𝑎𝑗𝐴𝑖𝑗 + 𝑒𝑖𝑗 

𝑌𝑖𝑗 = 𝑑2𝑗 + 𝑐𝑗
′𝐴𝑖𝑗 + 𝑏𝑗𝑍𝑖𝑗 + 𝑓𝑖𝑗 
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The site-specific treatment effect on the mediator (𝑎𝑗), mediator effect on the outcome 

(𝑏𝑗), treatment effect on the outcome (𝑐𝑗), and the direct effect of the treatment on the 

outcome (𝑐𝑗
′) are each assumed to have a normal distribution. However, when the 

multilevel path models are analyzed separately, it is difficult to estimate cov(𝑎𝑗 , 𝑏𝑗), an 

essential component of the average indirect effect E(𝑎𝑗𝑏𝑗) = E(𝑎𝑗)E(𝑏𝑗) + cov(𝑎𝑗, 𝑏𝑗). 

Even more challenging is the estimation of the between-site variation of the indirect 

effect. Bauer, Preacher, & Gil (2006) combined the mediator model and the outcome 

model and estimated them simultaneously as multivariate multilevel models through the 

use of indicator variables 𝑆𝑍 for the mediator and 𝑆𝑌 for the outcome, shown as follows, 

such that cov(𝑎𝑗, 𝑏𝑗) can be directly estimated: 

𝑅𝑖𝑗 = 𝑆𝑍𝑖𝑗(𝑑𝑍𝑗 + 𝑎𝑗𝐴𝑖𝑗) + 𝑆𝑌𝑖𝑗(𝑑𝑌𝑗 + 𝑐𝑗
′𝐴𝑖𝑗 + 𝑏𝑗𝑍𝑖𝑗) + 𝑒𝑖𝑗, 

Still, this approach does not specify a single parameter corresponding to the average 

indirect effect. Thus the variance of the site-specific indirect effect and the covariance 

between the direct and indirect effects cannot be easily obtained. Moreover, when the 

mediator and sometimes the treatment are not randomized, a large number of covariates 

will need to be incorporated into the above model. The results may be biased due to 

possible misspecifications of the above model if one omits confounders of the 

mediator-outcome relationships, if one misspecifies nonlinear covariate-outcome 

relationships, or if one fails to consider treatment-by-mediator interaction, 

mediator-by-covariate interactions, or treatment-by-mediator-by-covariate interactions. 

Relying on maximum likelihood estimation, the above strategy additionally assumes that 

the mediator and the outcome are both normally distributed. More crucially, this line of 

research has not always explicated the assumptions under which the causal effects of 

interest can be identified from observable data. The key identifying assumptions, as we 

will emphasize later, are that the treatment assignment and the mediator value assignment 

under each treatment are both ignorable given the observed covariates and that there is no 

treatment-by-mediator interaction.  

The instrumental variable (IV) method has provided another alternative for 

analyzing data from multi-site randomized trials when treatment-by-site interactions are 

used as instruments (Kling, Liebman, & Katz, 2007; Raudenbush, Reardon, & Nomi, 

2012; Reardon & Raudenbush, 2013; Reardon, Unlu, Zhu, & Bloom, 2014). Instead of 

assuming ignorability, the IV method requires (1) the exclusion restriction, that is, the 

direct effect of the treatment on the outcome must be zero (i.e., 𝑐𝑗
′ = 0 ∀ 𝑗). Clearly, the 

IV method does not apply when the direct effect is of research interest. Additional 

assumptions required for multi-site cases include (2) the independence between the 

site-level treatment effect on the mediator and the site-level mediator effect on the 

outcome (i.e., cov(𝑎𝑗, 𝑏𝑗) = 0), and (3) the treatment effect on the mediator is nonzero not 

only on average but also within each site (i.e., 𝑎𝑗 ≠ 0 ∀ 𝑗). 

To overcome some of the constraints of the existing methods, we extend the 

ratio-of-mediator-probability weighting (RMPW) approach from single-level settings to 

multilevel settings. For single-level data, Hong and colleagues (Hong, 2010; Hong, 

Deutsch, & Hill, 2011; Hong & Nomi, 2012; Hong, in press) proposed the RMPW 

approach that estimates the average direct and indirect effects. This approach allows for 

treatment-by-mediator interaction without a need to specify the functional form of the 

outcome model. We will show that, when applied to data from multisite trials, the 

RMPW approach generates estimates of not only the average direct and indirect effects 

but also the between-site variation in each of these causal effects and the covariance of 

the site-specific effects, each with a single parameter.  
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4. Causal parameters 
 

Definition. We define the direct effect and the indirect effect of the HS programs on 

child vocabulary under the potential outcomes causal framework (Robins & Greenland, 

1992; Pearl, 2001). For an eligible child at a given site, if the HS program would improve 

child vocabulary directly without increasing parent reading to child, the direct effect of 

the program would be positive. If the impact of the HS program was transmitted partly 

through program-induced increase in parent reading to child, the indirect effect would be 

positive as well. We hypothesize that the direct effect may differ by site because the 

quality of instruction in HS programs may not be consistent and because the availability 

and quality of alternative childcare for the control children may be vastly different across 

the sites. The indirect effect of the program may also differ by site possibly due to 

differential amount of program emphasis on parenting support. If a program that 

displayed a higher instructional quality was also generally more successful in enhancing 

literacy activities at home, then the direct effect and the indirect effect may be positively 

correlated.  

Notation.  Let 𝐴𝑖𝑗 = 1 if child i at site j is assigned to an HS program and 0 

otherwise; 𝑍𝑖𝑗(1) is the potential frequency of parent reading to child if child i at site j is 

assigned to HS; 𝑍𝑖𝑗(0) is the potential frequency of parent reading to child if the same 

child is assigned to the control condition. For simplicity, we dichotomize the mediator 

such that, under treatment a for a = 0, 1, 𝑍𝑖𝑗(𝑎) = 1 if the parent read with a relatively 

high frequency and 0 otherwise. We consider three potential outcomes denoted by 

𝑌𝑖𝑗(1, 𝑍𝑖𝑗(1)), the vocabulary score of child i at site j if the child is assigned to HS, 

𝑌𝑖𝑗(0, 𝑍𝑖𝑗(0)), the vocabulary score of the same child if assigned to the control condition, 

and 𝑌𝑖𝑗(1, 𝑍𝑖𝑗(0)), the vocabulary score of this child if assigned to HS yet the parent 

would read to the child counterfactually with the same frequency as that under the control 

condition. Let 𝑿𝒊𝒋 denote the individual-level observed pretreatment covariates such as 

parents’ education status. 

The direct effect of HS on the vocabulary of child i at site j, defined as the HS effect 

on vocabulary without changing the frequency of parent reading to child, is 𝛿𝑖𝑗
(𝐷)
=

𝑌𝑖𝑗(1, 𝑍𝑖𝑗(0)) − 𝑌𝑖𝑗(0, 𝑍𝑖𝑗(0)). This is called “the natural direct effect” by Pearl (2001) 

and “the pure direct effect” by Robins and Greenland (1992). The indirect effect, defined 

as the HS effect on vocabulary mediated by the program-induced change in parent 

reading to child, is 𝛿𝑖𝑗
(𝐼)
= 𝑌𝑖𝑗(1, 𝑍𝑖𝑗(1)) − 𝑌𝑖𝑗(1, 𝑍𝑖𝑗(0)). This is called “the natural 

indirect effect” by Pearl and “the total indirect effect” by Robins and Greenland. 

Accordingly, we define the site-specific direct effect 𝛿𝑗
(𝐷)
= 𝐸 [𝛿𝑖𝑗

(𝐷)
|𝑗] and indirect 

effect 𝛿𝑗
(𝐼)
= 𝐸 [𝛿𝑖𝑗

(𝐼)
|𝑗] for site j, as well as the population average direct effect 𝛿(𝐷) =

𝐸 [𝛿𝑗
(𝐷)
] and the population average indirect effect 𝛿(𝐼) = 𝐸 [𝛿𝑗

(𝐼)
]. In addition, we are 

interested in estimating the between-site variation in site-specific direct effect and 

indirect effect, denoted by var( 𝛿𝑗
(𝐷)

) and var( 𝛿𝑗
(𝐼)

), respectively. We have also 

hypothesized a nonzero covariance between the site-specific direct effect and indirect 

effect denoted by cov(𝛿𝑗
(𝐷)
, 𝛿𝑗
(𝐼)

). 

 

5. RMPW Rationale 
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The definition of the population average direct effect and indirect effect involves 

three population average potential outcomes. Among them, 𝐸 [𝐸 (𝑌𝑖𝑗 (0, 𝑍𝑖𝑗(0)) |𝑗)] 

and 𝐸[𝐸(𝑌𝑖𝑗(1, 𝑍𝑖𝑗(1))|𝑗)] can be identified with the observed mean outcome of the 

control group and that of the HS group, respectively, when the treatment is randomized. 

However, 𝐸[𝐸(𝑌𝑖𝑗(1, 𝑍𝑖𝑗(0))|𝑗)] is the average of the potential outcome of high reading 

frequency under HS and that of low reading frequency under HS proportionally weighted 

by the high reading frequency rate and the low reading frequency rate, respectively, 

under the control condition. Suppose that not only was the treatment randomized but also 

children were randomized to receive either a high frequency of reading from parents with 

probability 𝑝𝑟(𝑍(𝑎) = 1) or a low frequency of reading with probability 𝑝𝑟(𝑍(𝑎) = 0) 

under treatment a for a = 0, 1. To identify 𝐸[𝐸(𝑌𝑖𝑗(1, 𝑍𝑖𝑗(0))|𝑗)], we may transform the 

reading frequency rates under HS to resemble those under the control condition: 

𝐸[𝐸(𝑌𝑖𝑗(1, 𝑍𝑖𝑗(0))|𝑗)] 

= 𝐸[𝐸(𝑌𝑖𝑗(1,  1)|𝑗)] × 𝑝𝑟(𝑍𝑖𝑗(0) = 1) + 𝐸[𝐸(𝑌𝑖𝑗(1,  0)|𝑗)] × 𝑝𝑟(𝑍𝑖𝑗(0) = 0) 

= 𝑝𝑟(𝑍𝑖𝑗(1) = 1) × 𝐸 [𝐸 (𝑌𝑖𝑗(1,  1) ×
𝑝𝑟(𝑍𝑖𝑗(0)=1)

𝑝𝑟(𝑍𝑖𝑗(1)=1)
|𝑗)]  

+ 𝑝𝑟(𝑍𝑖𝑗(1) = 0) × 𝐸 [𝐸 (𝑌𝑖𝑗(1,  0) ×
𝑝𝑟(𝑍𝑖𝑗(0)=0)

𝑝𝑟(𝑍𝑖𝑗(1)=0)
|𝑗)]                         (1) 

in which the potential outcome of high reading frequency under HS, 𝑌𝑖𝑗(1,  1), is 

weighted by the ratio of the probability of high reading frequency under the control 

condition to that under HS, 𝑝𝑟(𝑍𝑖𝑗(0) = 1)/𝑝𝑟(𝑍𝑖𝑗(1) = 1); the potential outcome of 

low reading frequency under HS, 𝑌𝑖𝑗(1,  0), is weighted by the ratio of the probability of 

low reading frequency under the control condition to that under HS, 𝑝𝑟(𝑍𝑖𝑗(0) = 0)/

𝑝𝑟(𝑍𝑖𝑗(1) = 0) . The weights are therefore named Ratio-of-Mediator-Probability 

Weights (RMPW). 

To implement this strategy in the current study in which individuals were not 

assigned at random to different mediator values, we estimate for each HS child at each 

site the conditional probability of being read to by the parent with the actual observed 

reading frequency under HS: 𝜃𝑍1 = 𝜃𝑍1(𝐱) = 𝑝𝑟(𝑍𝑖𝑗 = 1|𝐴𝑖𝑗 = 1,𝐗𝒊𝒋 = 𝐱) if HS child 

i at site j was read to with a high frequency and 1 − 𝜃𝑍1 = 𝑝𝑟(𝑍𝑖𝑗 = 0|𝐴𝑖𝑗 = 1,𝑿𝒊𝒋 = 𝐱) 

if the child was read to with a low frequency. We also predict, for the same child, the 

conditional probability of being read to by the parent with the same reading frequency 

under the counterfactual control condition: 𝜃𝑍0 = 𝜃𝑍0(𝐱) = 𝑝𝑟(𝑍𝑖𝑗 = 1|𝐴𝑖𝑗 = 0,𝑿𝒊𝒋 =

𝐱) and 1 − 𝜃𝑍0 = 𝑝𝑟(𝑍𝑖𝑗 = 0|𝐴𝑖𝑗 = 0,𝑿𝒊𝒋 = 𝐱).  

To estimate the direct and indirect effects, we duplicate each HS child indicated by 

𝐷 = 1 and then merge the duplicated HS sample with the original sample including HS 

and control children indicated by 𝐷 = 0. The weight is 1 for the control children and the 

duplicate HS children, is 𝜃𝑍0/𝜃𝑍1  for the HS children with high parent reading 

frequency, and is (1 − 𝜃𝑍0)/(1 − 𝜃𝑍1) for the HS children with low parent reading 

frequency. The weighting scheme is summarized in Table 1. 
 

Table 1: Weights Applied to Estimate Potential Outcomes 

 
 𝐸[𝐸(𝑌𝑖𝑗(0, 𝑍𝑖𝑗(0))|𝑗)] 𝐸[𝐸(𝑌𝑖𝑗(1, 𝑍𝑖𝑗(1))|𝑗)] 𝐸[𝐸(𝑌𝑖𝑗(1, 𝑍𝑖𝑗(0))|𝑗)] 

𝐴𝑖𝑗 0 1 1 

𝐷𝑖𝑗 0 1 0 
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𝑍𝑖𝑗  0, 1 0, 1 0 1 

𝑊𝑖𝑗  1 1 
𝑝𝑟 (𝑍𝑖𝑗 = 0|𝐴𝑖𝑗 = 0, 𝐗𝑖𝑗 = 𝐱)

𝑝𝑟 (𝑍𝑖𝑗 = 0|𝐴𝑖𝑗 = 1, 𝐗𝑖𝑗 = 𝐱)
 
𝑝𝑟 (𝑍𝑖𝑗 = 1|𝐴𝑖𝑗 = 0, 𝐗𝑖𝑗 = 𝐱)

𝑝𝑟(𝑍𝑖𝑗 = 1|𝐴𝑖𝑗 = 1, 𝐗𝑖𝑗 = 𝐱)
 

 

The RMPW strategy can be applied to multivalued mediators as well. When the 

mediator is continuous, one may obtain the ratio of the estimated density of a given 

mediator value under the control condition to that under HS where each density is 

estimated as a function of the pretreatment covariates. 

After stacking the data from all the sites, we analyze a 2-level weighted outcome 

model as follows: 

𝑌𝑖𝑗 = (𝛿
(0) + 𝑢𝑗

(0)) + (𝛿(𝐷) + 𝑢𝑗
(𝐷))𝐴𝑖𝑗 + (𝛿

(𝐼) + 𝑢𝑗
(𝐼))𝐷𝑖𝑗 + 𝑒𝑖𝑗       (2) 

in which 

(

 
 
𝑢𝑗
(0)

𝑢𝑗
(𝐷)

𝑢𝑗
(𝐼)

)

 
 
~𝑁

(

  
 
(
0
0
0
) ,

(

 
 

var(𝛿𝑗
(0)
)

cov(𝛿𝑗
(0), 𝛿𝑗

(𝐷)) var(𝛿𝑗
(𝐷))

cov(𝛿𝑗
(0), 𝛿𝑗

(𝐼)) cov(𝛿𝑗
(𝐷), 𝛿𝑗

(𝐼)) var(𝛿𝑗
(𝐼))
)

 
 

)

  
 

 

When the following identification assumptions hold, from analyzing the above 

outcome model, we can obtain unbiased estimates of the population average direct effect 

𝛿(𝐷) and indirect effect 𝛿(𝐼), along with their standard errors. In addition, we can obtain 

estimates of the between-site variation in the site-specific direct effect var(𝛿𝑗
(𝐷)

) and in 

the indirect effect var(𝛿𝑗
(𝐼)

) as well as the covariance cov(𝛿𝑗
(𝐷), 𝛿𝑗

(𝐼)
). 

 

6. Identification Assumptions 
 

For the potential outcomes to be well defined and identified under the counterfactual 

causal framework, the following assumption is necessary: 

Assumption 1: Stable unit treatment value assumption (SUTVA). The potential 

mediator and outcome of an individual are not affected by the treatment and the mediator 

value assigned to other individuals within the same site or at the other sites. In the HS 

case, it requires that a child’s parent reading frequency and vocabulary score do not 

depend on which treatment other children were assigned to either at the same site or at 

another site, and a child’s vocabulary score also does not depend on whether other 

parents at the same site or at another site read frequently to their children. 

RMPW identifies the direct and indirect effects under the following ignorability 

assumptions: 

Assumption 2: No confounding of treatment-outcome relationship (Ignorability 

assumption 1). Treatment assignment is independent of the potential outcomes given a set 

of pretreatment covariates. This assumption requires that, within levels of the observed 

covariates, a randomly selected child in the HS group and a randomly selected child in 

the control group from the same site are expected to have the same potential vocabulary 

score associated with HS, denoted by Y(1, Z(1)), and the same potential vocabulary score 

associated with the control condition, denoted by Y(0, Z(0). That is, for 𝑎 = 0, 1, 

𝑌(𝑎, 𝑍(𝑎))∐𝐴 |𝐗, 𝑗 

Assumption 3: No confounding of treatment-mediator relationship (Ignorability 

assumption 2). Treatment assignment is independent of the potential mediators given a 

set of pretreatment covariates. In the HS case, among those with the same pretreatment 
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characteristics, parents of HS children and those of control children from the same site 

are expected to read with the same level of frequency. Namely, for 𝑎 = 0, 1, 

 Z(𝑎)∐A|𝐗, 𝑗 

In the Head Start study, Assumptions 2 and 3 are satisfied because of the randomized 

treatment assignment. 

Assumption 4: No confounding of mediator-outcome relationship within a treatment 

(Ignorability assumption 3). Under each treatment and within levels of the observed 

pretreatment characteristics, the mediator value assignment is independent of the 

potential outcomes. In other words, there are no other pretreatment confounders of the 

relationship between parent reading frequency and vocabulary score, given the treatment 

and the observed pretreatment covariates. Namely, for 𝑎 = 0, 1 

Y(𝑎, Z(𝑎))∐Z(𝑎) |A, 𝐗, 𝑗 

Assumption 5: No confounding of mediator-outcome relationship across treatments 

(Ignorability assumption 4). Within levels of the observed pretreatment characteristics, 

the mediator value assignment under one treatment is independent of the potential 

outcomes associated with an alternative treatment. In other words, there are no 

posttreatment confounders of the relationship between parent reading frequency and child 

vocabulary score given the observed pretreatment covariates. Namely, for 𝑎 = 0, 1 

Y(𝑎, Z(𝑎))∐Z(𝑎′) |A, 𝐗, 𝑗 

To satisfy Assumptions 4 and 5, the mediator value assignment should also be 

randomized under each treatment within levels of the pretreatment covariates.  

Assumptions 2-5 constitute the “sequential ignorability” assumptions used by Imai 

and colleagues (Imai, Keele, and Yamamoto, 2010; Imai, Keele, & Tingley, 2010) and 

similarly required by the RMPW method. Yet unlike multilevel path analysis, RMPW 

does not require the assumption of no treatment-by-mediator interaction. 

 

7. Estimation 
 

Standard multilevel software programs are not suitable for the current problem 

because the variance-covariance matrix is not invertible. We thus develop an alternative 

weighted least squares procedure. 

The 2-level RMPW model (2) can be rewritten as  

Level 1:                          𝒀𝑗 = 𝑳𝑗𝜷𝑗 + 𝒆𝑗  

Level 2:                     𝜷𝑗 = 𝜸+ 𝒖𝑗 , 𝒖𝑗~𝑁(0, 𝐓) 

in which 𝑳𝑗 = (𝟏 𝑨𝑗 𝑫𝑗) , 𝜷𝑗 = (𝛿𝑗
(0) 𝛿𝑗

(𝐷) 𝛿𝑗
(𝐼))

𝑇
, 𝜸 = (𝛿(0) 𝛿(𝐷) 𝛿(𝐼))

𝑇 , 

and 

𝐓 = 𝑉𝑎𝑟(𝜷𝑗) =

(

 
 

var(𝛿𝑗
(0)
)

cov(𝛿𝑗
(0), 𝛿𝑗

(𝐷)) var(𝛿𝑗
(𝐷))

cov(𝛿𝑗
(0), 𝛿𝑗

(𝐼)) cov(𝛿𝑗
(𝐷), 𝛿𝑗

(𝐼)) var(𝛿𝑗
(𝐼))
)

 
 

.   (3) 

Here 𝐓 denotes the between-site variance-covariance matrix for the site-specific causal 

effects.  

 

7.1 Estimation of the Between-Site Variance and Covariance and the 

Average Causal Effects 
We start with estimating the site-specific causal effects 𝜷𝑗. 
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𝜷̂𝑗 = (𝑳𝑗
𝑻𝑾𝑗𝑳𝑗)

−1
𝑳𝑗
𝑻𝑾𝑗𝒀𝑗. 

The estimate has the following variability: 

𝐆 = Var(𝜷̂𝑗) = Var(𝜷̂𝑗 − 𝜷𝑗 + 𝜷𝑗) = Var(𝜷𝑗) + Var(𝜷̂𝑗 − 𝜷𝑗) = 𝐓 + 𝐕 

where 𝐕 = Var(𝜷̂𝑗 − 𝜷𝑗) denotes the sampling variability of the site-specific causal 

effect estimates. We obtain an estimate of 𝐓 as follows: 

𝐓̂ = 𝐆 − 𝐕̂ 

𝐆 =
1

𝐽
∑
𝑛𝑗

𝑛̅
(𝜷̂𝑗 − 𝜸̂)(𝜷̂𝑗 − 𝜸̂)

𝑇

𝐽

𝑗=1

 

𝐕̂ =
1

𝐽
∑

𝑛𝑗

𝑛̅
𝐕̂𝑗

𝐽
𝑗=1 =

1

𝐽
∑

𝑛𝑗

𝑛̅
(𝑳𝑗
𝑻𝑾𝑗𝑳𝑗)

−1
𝑳𝑗
𝑻𝑾𝑗Var(𝒀𝑗|𝑳𝑗)𝑾𝑗𝑳𝑗(𝑳𝑗

𝑻𝑾𝑗𝑳𝑗)
−1𝐽

𝑗=1 .    (4) 

We use 𝑛𝑗
(𝐸)

 and 𝑛𝑗
(𝐶)

 to respectively represent the sampled number of 

experimental units and that of control units at site j. Including the duplicates, there are 

totally 2𝑛𝑗
(𝐸)

+ 𝑛𝑗
(𝐶)

 units at site j. Therefore, 𝑳𝑗 is a [2𝑛𝑗
(𝐸)
+ 𝑛𝑗

(𝐶)
] × 3 matrix with 

two sub-matrices: the one for the experimental group is 2𝑛𝑗
(𝐸)
× 3 in dimensions, in 

which every two rows represent an original unit and its duplicate; the other for the control 

group is 𝑛𝑗
(𝐶)
× 3  in dimensions. 𝑾𝑗  denotes a [2𝑛𝑗

(𝐸)
+ 𝑛𝑗

(𝐶)
] × [2𝑛𝑗

(𝐸)
+ 𝑛𝑗

(𝐶)
] 

diagonal matrix for the weights applied to the observations at site j; 𝑾𝑗Var(𝒀𝑗|𝑳𝑗)𝑾𝑗 is 

a [2𝑛𝑗
(𝐸)
+ 𝑛𝑗

(𝐶)
] × [2𝑛𝑗

(𝐸)
+ 𝑛𝑗

(𝐶)
]  matrix with two primary sub-matrices along the 

diagonal. One is for the experimental units and their duplicates, which is 2𝑛𝑗
(𝐸)
× 2𝑛𝑗

(𝐸)
 

in dimensions with 𝑛𝑗
(𝐸)

 22 sub-sub-matrices along the diagonal each taking the form 

(
𝑊𝑖𝑗
2σ𝑗,𝐸
2 𝑊𝑖𝑗𝜎𝑗,𝐸,𝐷

𝑊𝑖𝑗𝜎𝑗,𝐸,𝐷 σ𝑗,𝐷
2 )                         (5) 

for the 𝑖th experimental unit at site 𝑗. Here 𝑊𝑖𝑗 is the RMPW for the unit; σ𝑗,𝐸
2  is the 

error variance of the RMPW adjusted outcome for the original experimental units at site j; 

σ𝑗,𝐷
2  is the error variance for the duplicate experimental units at site j; 𝜎𝑗,𝐸,𝐷 denotes the 

covariance between the two errors for an experimental unit at site j. We estimate the 

covariance as 𝜌𝑗,𝐸,𝐷 × 𝜎̂𝑗,𝐸 × 𝜎̂𝑗,𝐷, in which 𝜌𝑗,𝐸,𝐷 is the corresponding correlation. The 

other sub-matrix of 𝑾𝑗Var(𝒀𝑗|𝑳𝑗)𝑾𝑗 is for the observations in the control group, which is 

an 𝑛𝑗
(𝐶)
× 𝑛𝑗

(𝐶)
 diagonal matrix with σ𝑗,𝐶

2  on the diagonal, which is the error variance for 

the control units at site j.  

When the site size is too small as is often the case in the HSIS data, the information at 

each site is too limited for estimating the error variance in either the treatment or the 

control group at a site. Instead of estimating the heterogeneous model-based variance site 

by site, we estimate the homogeneous model-based variance by pooling the units from all 

the sites and obtaining the average σ𝐸
2 , σ𝐷

2 , 𝜎𝐸,𝐷 and σ𝐶
2 . 

The potential difficulty in estimating the above model-based variance is that 𝜌𝐸,𝐷 is 

unknown. Our preliminary simulation shows that the estimation results are sensitive to 

the values of 𝜌𝐸,𝐷 . Hence, we further develop a robust estimator by replacing 

𝜎̂𝑗,𝐸
2 , 𝜎̂𝑗,𝐷

2 , 𝜎̂𝑗,𝐸,𝐷 and 𝜎̂𝑗,𝐶
2  with 𝑟̂𝑖𝑗,𝐸

2 , 𝑟̂𝑖𝑗,𝐷
2 , 𝑟̂𝑖𝑗,𝐸 × 𝑟̂𝑖𝑗,𝐷  and 𝑟̂𝑘𝑗,𝐶

2 , respectively. Here 

𝑟̂𝑖𝑗,𝐸 = √𝑊𝑖𝑗(𝑌𝑖𝑗 − 𝑳𝑖𝑗𝜷̂𝑗) for RMPW adjusted original experimental unit i at site j; 

𝑟̂𝑖𝑗,𝐷 = 𝑌𝑖𝑗 − 𝑳𝑖𝑗𝜷̂𝑗 for duplicate experimental unit i; 𝑟̂𝑘𝑗,𝐶 = 𝑌𝑘𝑗 − 𝑳𝑘𝑗𝜷̂𝑗 for control 

unit k at site j. 
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Having obtained 𝐕̂𝑗 , we then estimate the variance-covariance matrix of the 

site-specific effects: 

𝐓̂ =
1

𝐽
∑

𝑛𝑗

𝑛̅
[(𝜷̂𝑗 − 𝜸̂)(𝜷̂𝑗 − 𝜸̂)

𝑇
− 𝐕̂𝑗]

𝐽
𝑗=1                  (6) 

where 

𝜸̂ = (∑ 𝑛𝑗
𝐽
𝑗=1 )

−1
∑ 𝑛𝑗𝜷̂𝑗
𝐽
𝑗=1                (7) 

which is the estimate of the population average causal effects. For the Heywood cases, in 

which 𝐓̂ is negative definite (i.e. there are negative variances or some correlations are 

greater than one in magnitude), we replace the negative variances and the corresponding 

covariances with 0. 

With 𝐓̂ at hand, we can further obtain the model-based estimator of the sampling 

variability of the point estimate of the population average causal effects: 

𝑉𝑎𝑟̂(𝜸̂) = (∑ 𝒏𝑗
𝐽
𝑗=1 )

−𝟐
∑ 𝒏𝑗

2(𝐓̂ + 𝑽̂𝑗)
𝐽
𝑗=1                 (8) 

 

7.2 Hypothesis testing for the Between-Site Variance and Covariance 
We propose the following hypothesis testing procedure for the variance of the 

site-specific direct and indirect effects. 𝐻0: var (𝛿𝑗
(𝐷)
) = 0 can be tested by means of 

the statistic 

∑ (𝜷̂𝑗,2 − 𝜸̂2)
2
/(𝑽𝑗)22

𝐽
𝑗=1                       (9) 

which is distributed 𝜒2 with J-1 degrees of freedom. Similarly, 𝐻0: var (𝛿𝑗
(𝐼)) = 0 can 

be tested by means of the statistic 

∑ (𝜷̂𝑗,3 − 𝜸̂3)
2
/(𝑽𝑗)33

𝐽
𝑗=1                      (10) 

which is also distributed 𝜒2 with J-1 degrees of freedom. 

 

8. Estimation Procedure 
 

To estimate the causal effects and their variations across sites for the HS sample, we 

first impute the missing data in the outcome and the covariates, and generate five imputed 

data sets. We estimate each data set separately, and combine the estimation results over 

the five. The estimation procedures are as follows: 

Step 1: Specify the propensity score model. We specify the propensity score model 

for the mediator under each treatment condition, conditional on the observed pretreatment 

covariates. Analyzing data from the HS sample, we estimate the propensity scores of high 

and low reading frequency under the HS condition for an HS unit, 𝜃𝑍1 and 1 − 𝜃𝑍1. 

After fitting another logistic regression model to the control group, we apply the model to 

predict the propensity scores of high and low reading frequency under the counterfactual 

control condition for an HS unit, 𝜃𝑍0 and 1 − 𝜃𝑍0. 

Step 2: Identify the common support. Under each treatment condition, among the 

children who have the same propensity scores, those with high reading frequency are 

expected to have their counterparts with low reading frequency. Therefore, we compare 

the distribution of the logit of 𝜃𝑍1  and 𝜃𝑍0  across the four treatment-by-mediator 

groups, and exclude the cases in which the propensity scores do not overlap across the 

four groups. One may add 20% of a standard deviation of the logit of each propensity 

score at each end to expand the range of the common support (Austin, 2011). The 

following analysis will be based on the cases within the common support. 

Step 3: Check balance in covariate distribution across the treatment-by-mediator 

combinations. When the sequential ignorability holds, inverse-probability-of-treatment 
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weighting (IPTW, Robins, 2000) transforms the data to approximate a sequential 

randomized design. We assign the weight 𝑝𝑟(𝑍 = 1|𝐴 = 1)/ 𝜃𝑍1 to the HS children 

with high reading frequency, 𝑝𝑟(𝑍 = 0|𝐴 = 1)/ (1 − 𝜃𝑍1) to the HS children with low 

reading frequency, 𝑝𝑟(𝑍 = 1|𝐴 = 0)/ 𝜃𝑍0 to the untreated children with high reading 

frequency, and 𝑝𝑟(𝑍 = 0|𝐴 = 0)/ (1 − 𝜃𝑍0) to the untreated children with low reading 

frequency. For each observed covariate, we conduct pairwise comparisons between these 

four subgroups. All of the covariates show a standardized difference less than .25 after 

weighting. 

Step 4: Create a duplicate, and estimate 𝑾𝑗. We then duplicate the HS sample and 

assign RMPW as shown in Table 1. 

Step 5: Estimate 𝜷̂𝑗 within each site, and then estimate 𝜸̂ by taking the weighted 

average of 𝜷̂𝑗 as shown in (7) 

Step 6: Estimate 𝑻̂ and test its significance. We estimate 𝑽̂𝑗 according to (4) and 

estimate 𝑻̂ according to (6). We then test the significance of the variance of the 

site-specific direct and indirect effects based on (9) and (10). Since the correlation 

between the observed and the counterfactual outcome for the experimental children is 

unknown, we use the robust estimator. 

Step 7: Obtain standard error of 𝜸̂. Based on the estimates of 𝑻̂ and 𝑽̂𝒋, we can 

estimate the standard error of 𝜸̂ according to (8).  

By combining the estimation results over the five imputed Head Start data sets, we 

obtain the average estimates of the causal effects and the variance estimates of the 

site-specific effects. The estimated average direct effect is 3.81 (SE=1.64, t=2.32, 

p=0.01), about 11% of a standard deviation of the outcome, with an estimated variance of 

251.96. The estimated average indirect effect is 0.13 (SE=0.21, t=0.61, p=0.27), with an 

estimated variance of 4.15, and the estimated covariance between the site-specific direct 

and indirect effects is -4.42. According to these results, the HS programs improved child 

vocabulary directly rather than through increasing parent reading to child. The 

HS-induced change in parent reading to child alone does not significantly improve child 

vocabulary. Only the direct effect appears to vary across the sites. 

 

9. Simulations 
 

We conduct a series of Monte Carlo simulations to assess the performance of the 

above procedure in estimating the population average direct effect and indirect effect and 

the joint distribution of the site-specific direct effect and indirect effect. We focus on the 

case of a binary randomized treatment, a binary mediator, and a continuous outcome. 

 

9.1 Sample Size  
We select four different sets of sample size: 1) 𝐽 = 100 and 𝑛𝑗 = 150, which 

represents a large sample size within each site; 2) 𝐽 = 300  and 𝑛𝑗 = 10 , which 

represents a small sample size within each site; 3) 𝐽 = 100 and 𝑛𝑗 ranges from 100 to 

200; and 4) 𝐽 = 328 and 𝑛𝑗 ranges from 1 to 46, with a mean of 7.5. The last set 

resembles the Head Start data. For the first two sets of sample size, we specify the 

site-specific probability of treatment assignment 𝐴̅𝑗 to be constantly 0.5. For the latter 

two sets of sample size, we specify that 𝐴̅𝑗~𝐵𝑒𝑡𝑎(14, 10), which is similar to the Head 

Start data. For each case, we generate 1,000 random samples. 

 

9.2 Data Generation 
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We generate three independent covariates 𝑋1 , 𝑋2 , and 𝑋3  with identical 

distributions: 𝑋𝑖𝑗 = 𝑋̅𝑗 + 𝑒𝑋𝑖𝑗 , in which 𝑋̅𝑗~𝑁(0,1) and 𝑒𝑋𝑖𝑗~𝑁(0,1). The treatment 

assignment is random with probability 𝐴̅𝑗  within each site. We then specify the 

distribution of the site-specific direct effect and indirect effect,  

(
𝛿𝑗
(𝐷)

𝛿𝑗
(𝐼)
)~𝑁((𝛿

(𝐷)

𝛿(𝐼)
) , (

var(𝛿𝑗
(𝐷)) cov(𝛿𝑗

(𝐷), 𝛿𝑗
(𝐼))

cov(𝛿𝑗
(𝐷)
, 𝛿𝑗
(𝐼)
) var(𝛿𝑗

(𝐼)
)

)). 

To examine how true variances of the causal effects affect the estimation results, we 

compare two different distributions of the site-specific direct effect and indirect effect: 

(1) (
𝛿𝑗
(𝐷)

𝛿𝑗
(𝐼)
)~𝑁((

3
0.1
) , (
6.25 4.5
4.5 9

)), which represents relatively large variances;  

(2) (
𝛿𝑗
(𝐷)

𝛿𝑗
(𝐼)
)~𝑁((

3
0.1
) , (

0.5 −0.1
−0.1 0.3

)), which represents relatively small variances. 

We then generate the observed outcome and mediator from the following model, 

allowing for an interaction between the treatment and the mediator: 

𝑙𝑜𝑔𝑖𝑡{𝑃(𝑍𝑖𝑗 = 1|𝐴𝑖𝑗, 𝑿𝑖𝑗)} = 𝛼0𝑗 + 𝛼1𝑗𝐴𝑖𝑗 +𝑿𝑖𝑗
𝑇𝜶𝑗 

𝑌𝑖𝑗 = 𝜃0𝑗 + 𝜃1𝑗𝐴𝑖𝑗 + 𝜃2𝑗𝑍𝑖𝑗 + 𝜃3𝑗𝐴𝑖𝑗𝑍𝑖𝑗 + 𝑿𝑖𝑗
𝑇𝜽𝑗 + 𝑒𝑖𝑗 

in which 𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2). 

Valeri & VanderWeele (2013) derived the expressions of the direct and indirect 

effects from the above model: 

𝛿𝑗
(𝐷)
= 𝜃1𝑗 + 𝜃3𝑗 ∙

𝑒𝑥𝑝(𝛼0𝑗 + 𝑿𝑖𝑗
𝑇𝜶𝑗)

1 + 𝑒𝑥𝑝(𝛼0𝑗 + 𝑿𝑖𝑗
𝑇𝜶𝑗)

 

𝛿𝑗
(𝐼) = (𝜃2𝑗 + 𝜃3𝑗) ∙ {

𝑒𝑥𝑝(𝛼0𝑗 + 𝛼1𝑗 + 𝑿𝑖𝑗
𝑇𝜶𝑗)

1 + 𝑒𝑥𝑝(𝛼0𝑗 + 𝛼1𝑗 + 𝑿𝑖𝑗
𝑇𝜶𝑗)

−
𝑒𝑥𝑝(𝛼0𝑗 + 𝑿𝑖𝑗

𝑇𝜶𝑗)

1 + 𝑒𝑥𝑝(𝛼0𝑗 + 𝑿𝑖𝑗
𝑇𝜶𝑗)

} 

We first set values for 𝛼0𝑗, 𝛼1𝑗, 𝜶𝑗, 𝜃0𝑗, 𝜃2𝑗, 𝜽𝑗  and 𝜎𝑒
2 , which are invariant across 

simulations: 

𝛼0𝑗~𝑁(0.18, 0.0001), 𝛼1𝑗~𝑁(−0.25, 0.0001) 

𝛼𝑗
(1)
~𝑁(−0.1, 0.0025), 𝛼𝑗

(2)
= −0.2, 𝛼𝑗

(3)
= 0.25 

𝜃0𝑗~𝑁(0.5, 0.49), 𝜃2𝑗~𝑁(−0.17, 0.01) 

𝜃𝑗
(1)
~𝑁(0.4, 0.64), 𝜃𝑗

(2)
= 0.6, 𝜃𝑗

(3)
= 0.9 

𝜎𝑒
2 = 0.09 

With 𝛿𝑗
(𝐷)

 and 𝛿𝑗
(𝐼)

 already specified, we then determine 𝜃3𝑗 and 𝜃1𝑗: 

𝜃3𝑗 = 𝛿𝑗
(𝐼)

{
𝑒𝑥𝑝(𝛼0𝑗 + 𝛼1𝑗 +𝑿𝑖𝑗

𝑇𝜶𝑗)

1 + 𝑒𝑥𝑝(𝛼0𝑗 + 𝛼1𝑗 +𝑿𝑖𝑗
𝑇𝜶𝑗)

−
𝑒𝑥𝑝(𝛼0𝑗 + 𝑿𝑖𝑗

𝑇𝜶𝑗)

1 + 𝑒𝑥𝑝(𝛼0𝑗 + 𝑿𝑖𝑗
𝑇𝜶𝑗)

}⁄ − 𝜃2𝑗 

𝜃1𝑗 = 𝛿𝑗
(𝐷) − 𝜃3𝑗

𝑒𝑥𝑝(𝛼0𝑗 + 𝑿𝑖𝑗
𝑇𝜶𝑗)

1 + 𝑒𝑥𝑝(𝛼0𝑗 + 𝑿𝑖𝑗
𝑇𝜶𝑗)

 

Finally, we generate the outcome and the mediator for each case.  

 

9.3 Evaluation Criteria 
The evaluation criteria include: (1) bias in the point estimate; (2) mean squared error 

(MSE); and (3) CI (Confidence Interval) coverage rate. 

 

9.4 Simulation Results 

JSM 2014 - Social Statistics Section

922



The bias, MSE, and coverage rates for the CIs of the estimates of the population 

average direct and indirect effects are presented in Table 2, with a comparison among 

different sample sizes, treatment assignment probabilities and true variances of the 

effects. 

 

Table 2: Comparison of the average estimates across different sample sizes 

 

 Bias 
 

MSE 
 

% CI coverage 

True Variance of Direct and 

Indirect Effects 
Big Small 

 
Big Small 

 
Big Small 

Direct effect estimate (𝛿(𝐷))         

J = 100, 𝑛𝑗 = 150
a 0.01 0.00  0.13 0.01  96.1 93.5 

J = 100, 𝑛𝑗 = 100~200
b  -0.01 0.00  0.13 0.01  95.8 92.8 

J = 300, 𝑛𝑗 = 10
a 

0.01 0.02  0.49 0.02  95.4 95.8 

J = 328, 𝑛𝑗 = 1~46
b 

0.05 0.02  0.57 0.02  96.2 96.2 

Indirect effect estimate (𝛿(𝐼))   

 
 

J = 100, 𝑛𝑗 = 150 0.02 0.00  0.10 0.00  94.7 92.7 

J = 100, 𝑛𝑗 = 100~200  -0.02 0.00  0.10 0.00  94.2 95.4 

J = 300, 𝑛𝑗 = 10 -0.02 -0.02  0.03 0.00  93.9 74.9 

J = 328, 𝑛𝑗 = 1~46 -0.03 -0.03  0.07 0.00  89.9 78.3 

Note: a 𝐴̅𝑗 = 0.5 for these two cases. b 𝐴̅𝑗~𝐵𝑒𝑡𝑎(14, 10) for these two cases. 

As Table 2 shows, the estimates of the population average direct and indirect effects 

are almost always unbiased and have a high CI coverage rate under different settings. 

When the site size is small, and when 𝐴̅𝑗 and 𝑛𝑗 vary across sites, there is a minor 

increase in the bias and MSE and a reduction in the CI coverage rate. When the true 

variances of the site-specific effects increase, the MSE of the average effect estimates 

also tends to increase. 

Table 3 presents the simulation results for the model-based and robust estimators of 

the variance and covariance of the site-specific effects. We compare across different 

sample sizes, treatment assignment probabilities, and true variances of the effects. When 

the site size is relatively small, the information at each site is limited for estimating the 

site-specific error variance. Hence, we use the homogeneous model-based variance 

estimator here. Since the true direct and indirect effects are set to be constant across the 

sites, the correlation between the observed and the counterfactual potential outcome for 

the experimental units, namely 𝜌𝐸,𝐷 in Section 7, is 1.  

According to the results summarized in Table 3, when the site size is relatively big, 

the robust and model-based estimators perform similarly well. When the site size is 

relatively small, in comparison with the model-based estimators, the robust estimators 

have smaller bias but bigger MSE for 𝑣𝑎𝑟̂(𝛿𝑗
(𝐼)) and 𝑐𝑜𝑣̂(𝛿𝑗

(𝐷), 𝛿𝑗
(𝐼)), and have much 

bigger bias and MSE for 𝑣𝑎𝑟̂(𝛿𝑗
(𝐷)). However, these simulation results are based on the 

fact that 𝜌𝐸,𝐷 is correctly specified. When 𝜌𝐸,𝐷 is unknown, which is typically the case 

in real data analyses, the robust estimator is more reliable. 
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Table 3: Comparison of the variance estimates among different samples 

 

  Robust Estimator   Model-based Estimator 

 

Bias 
 

MSE 

 

Bias 
 

MSE 

 True Variance Big Small   Big Small 

 

Big Small   Big Small 

Variance of direct effect estimate (𝑣𝑎𝑟̂(𝛿𝑗
(𝐷)
)) 

J = 100, 𝑛𝑗 = 150
a -0.85 -0.04 

 

7.36 0.02 

 

-1.22 -0.12 

 

8.08 0.03 

J = 100, 𝑛𝑗 = 100~200
b  -0.72 -0.03 

 

6.74 0.01 

 

-1.08 -0.12 

 

7.43 0.03 

J = 300, 𝑛𝑗 = 10
a 41.99 1.57 

 

2370.78 3.19 

 

3.61 -0.45 

 

216.94 0.24 

J = 328, 𝑛𝑗 = 1~46
b 64.65 2.65 

 

4791.52 7.77 

 

3.94 -0.46 

 

239.06 0.25 

Variance of indirect effect estimate (𝑣𝑎𝑟̂(𝛿𝑗
(𝐼)
)) 

J = 100, 𝑛𝑗 = 150 0.57 0.02 

 

8.50 0.01 

 

0.48 0.01 

 

8.24 0.01 

J = 100, 𝑛𝑗 = 100~200  0.40 0.02 

 

8.07 0.01 

 

0.31 0.02 

 

7.88 0.01 

J = 300, 𝑛𝑗 = 10 -0.76 -0.03 

 

17.19 0.02 

 

-2.03 -0.09 

 

16.52 0.02 

J = 328, 𝑛𝑗 = 1~46 -0.13 0.00 

 

25.11 0.03 

 

-1.26 -0.05 

 

21.41 0.02 

Covariance between direct and indirect effect estimates (𝑐𝑜𝑣̂(𝛿𝑗
(𝐷), 𝛿𝑗

(𝐼))) 

J = 100, 𝑛𝑗 = 150 0.22 0.01 

 

3.34 0.01 

 

0.19 0.01 

 

3.29 0.01 

J = 100, 𝑛𝑗 = 100~200  0.01 0.00 

 

2.74 0.01 

 

0.00 0.00 

 

2.69 0.01 

J = 300, 𝑛𝑗 = 10 0.82 0.07 

 

18.68 0.03 

 

-2.19 0.10 

 

13.99 0.01 

J = 328, 𝑛𝑗 = 1~46 -0.57 0.04   20.82 0.03   -2.99 0.10   16.50 0.01 

Note: a 𝐴̅𝑗 = 0.5 for these two cases. 
b 𝐴̅𝑗~𝐵𝑒𝑡𝑎(14, 10) for these two cases. 
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The simulation for the case that is similar in structure to the Head Start data reveals 

that there are considerably large bias and MSE in 𝑣𝑎𝑟̂(𝛿𝑗
(𝐷)
). In general, when the site 

size is relatively small, the variance estimate of the site-specific direct effect becomes 

particularly unreliable. 

To compare the RMPW approach with path analysis, we also conduct simulations in 

the case of a binary randomized treatment, a continuous mediator, and a continuous 

outcome. This is because standard multilevel path analysis does not apply when the 

mediator is binary. Our results show that, in comparison with multilevel path analysis, the 

RMPW approach is much less demanding computationally, and the bias in 𝑣𝑎𝑟̂(𝛿𝑗
(𝐷)) 

and 𝑣𝑎𝑟̂(𝛿𝑗
(𝐼)) is much smaller if the outcome model is misspecified, especially when 

the true variances are relatively big. Due to the space limit, we do not display the detailed 

results here. 

 

10. Conclusions 
 

The RMPW extension to data from multi-site trials provides an important alternative 

to the existing methods for multilevel mediation analysis. This approach relaxes the 

assumption of no treatment-by-mediator interaction and simplifies the outcome model 

specification. More importantly, the RMPW approach enables researchers to investigate 

possible heterogeneity of mediation mechanisms across sites. Such empirical information 

is essential for improving future intervention designs. However, the RMPW approach 

faces some potential challenges often shared by other competing methods. For example, 

when selection mechanisms vary across sites, site-specific propensity score models may 

be overfitted; omitted pretreatment covariates may cause bias; and there is a lack of 

adjustment strategies for post-treatment covariates. In light of these potential constraints, 

increasing the sample size at each site and collecting comprehensive pretreatment 

information are essential. Conceptualizing and investigating the relationships among 

multiple mediators may provide a solution for handling observed post-treatment 

covariates. Sensitivity analysis may be conducted to assess the impact of omitted 

pretreatment and posttreatment confounders. 
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