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Abstract
The difference in the location for two quadratic growth curves is compared in this paper. For a

2nd degree polynomial, the vertex gives the location of the curve in the XY plain. We present an
approximate confidence region for the difference of vertices of two quadratic growth curves using
both the gradient and delta methods. To test directly on the vertices, we derive a quadratic-form
statistic under the null hypothesis that there is no shift in the location of the vertices in two mixed
linear models. The statistic has an approximate chi-squared distribution. We compare the test
statistic with an F statistic, which is derived for indirect test on the difference in the location of
the vertices based on the intercept and slope parameters. We also present results for a simulation
study conducted to assess the influence of sample size, measurement time points and nature of the
random effects. Simulation results show that the test statistic performs well in terms of Type I
error rate and power. The test statistic is applied to the Tell Efficacy Longitudinal Study, in which
sound identification scores for children are modeled as quadratic growth curves for two independent
groups, control and treatment. The interpretations of shift in the location of the vertices are also
presented.

Key Words: Random Effect, Mixed Model, Quadratic Growth Curve, Vertex, Confidence Region,
Power Function

1. Introduction

Many longitudinal studies are designed to investigate a characteristic of an individual,
where the characteristic is measured repeatedly over time for each study participant. Often
the individuals are considerably correlated across measurement observations. A multivari-
ate model with general unrestricted covariance structure may be used to analyze these cor-
related data, but the growth curve model is usually applied. The analyses of growth curves
focus on the explanation of within-individual variation by the aging process or natural de-
velopment. The relation between time t and response y cannot be adequately described by
a linear trend model in some longitudinal studies. Adding a square term of the fixed effect
time t to the model gives a quadratic growth curve model, which can often describes the
true unknown model very well. The coefficient parameters of fixed effect are necessary
to determine the growth curve. The vertex of a quadratic curve gives the location of such
a curve, which is useful in order to solve an optimization problem. By all means reason-
able, it is important to derive the confidence region of the parabola’s vertex as well as the
confidence interval of t-coordinate and y-coordinate. For two independent groups, such as
control and treatment, the confidence region as well as the confidence interval for the differ-
ence of vertices of two quadratic growth curves are interesting. Both the t-coordinate and
y-coordinate of vertex are given by a non-linear combination of the model fixed regression
coefficients, not simply only one of them. However, common statistical computer packages
usually display confidence intervals for the fixed regression coefficient, but not for any of
their functions.

In Section 2, two models, mixed model and growth curve model, and three methods,
the gradient method, the delta method and mean response method are reviewed and the
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confidence region as well as power function are derived. To show the validity of the test
statistics, simulations using parameters and sample sizes and power analysis for testing the
difference between the vertices of two groups are given in Section 3. An application of
analysis of Tell Efficacy Study using these statistics is presented in Section 4. Conclusion
and discussion are drawn in Section 5.

2. Models and Methods for Confidence Set

The confidence region for the difference of vertices for two growth curves is investigated.
Two growth curve models are considered; one is second-order mixed model with random
intercept and the other is second-order mixed model with random intercept and random
slope. For two independent samples, they are defined as follows,
Second-order mixed model with only random intercept,

yi j = β
(mid)
0 +β

(e f f )
0 Di +β

(mid)
1 ti j +β

(e f f )
1 Diti j +β

(mid)
2 t2

i j +β
(e f f )
2 Dit2

i j +α0i + εi j (1)

where

Di =

{
−1 i f yi j comes f rom control group C,

+1 i f yi j comes f rom treatment group T.

is a dummy variable to indicate the group,
n is the number of time points, N is the number of individuals,
β ’s are regression coefficients of fixed effect,
α0i is random effect, α0i ∼ N(0,σ2

α0
),

εi j is the random error term for the ith individual at the jth occasion, εi j ∼ N(0,σ2
e ),

α0i and εi j are independent, Cov(α0i,εi j) = 0 for all i,
yi j denotes response variable for the ith individual at jth occasion,E(yi j)= β0+β1ti j+β2t2

i j

and Σy =ZGZ
′+R, whereG= σ2

α0
andR= σ2

e I .
From model (1), the individual models for control and treatment groups respectively are,

yi j = β
(C)
0 +β

(C)
1 ti j +β

(C)
2 t2

i j +α0i + εi j f or group C,

yi j = β
(T )
0 +β

(T )
1 ti j +β

(T )
2 t2

i j +α0i + εi j f or group T,

Second-order mixed model with random intercept and random slope,

yi j = β
(mid)
0 +β

(e f f )
0 Di +β

(mid)
1 ti j +β

(e f f )
1 Diti j +β

(mid)
2 t2

i j +β
(e f f )
2 Dit2

i j +α0i +α1iti j + εi j

(2)
where

Di =

{
−1 i f yi j comes f rom control group C,

+1 i f yi j comes f rom treatment group T.

is a dummy variable to indicate the group,
n is the number of time points, N is the number of individuals,
β ’s are regression coefficients of fixed effect,
α0i and α1i are random effects, α0i ∼ N(0,σ2

α0
), α1i ∼ N(0,σ2

α1
),

εi j are random error terms, εi j ∼ N(0,σ2
e ),

α0i, α1i and εi j are mutually independent, Cov(α0i,εi j) = 0 and Cov(α1i,εi j) = 0,
yi j denotes response variable for the ith individual at jth occasion,E(yi j)= β0+β1ti j+β2t2

i j
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and Σy =ZGZ
′+R, whereG=

(
σ2

α0
σα0α1

σα0α1 σα1

)
, andR= σ2

e I .

From model (2), the distinct models for control and treatment group are,

yi j = β
(C)
0 +β

(C)
1 ti j +β

(C)
2 t2

i j +α0i +α1iti j + εi j f or group C,

yi j = β
(T )
0 +β

(T )
1 ti j +β

(T )
2 t2

i j +α0i +α1iti j + εi j f or group T,

For both employed models, the relationship between the regression coefficients are,

β
(C)
k = β

(mid)
k −β

(e f f )
k f or k = 0,1,2,

β
(T )
k = β

(mid)
k +β

(e f f )
k f or k = 0,1,2,

2.1 Delta Method for Difference of Vertices

The second-order no-intercept mixed model with random intercept for control and treat-
ment groups is,

yi j = β0Di +β1Diti j +β2Dit2
i j +α0i + εi j

The equivalent model is,

yi j = β
(C)
0 +β

(T )
0 +β

(C)
1 ti j +β

(T )
1 ti j +β

(C)
2 t2

i j +β
(T )
2 t2

i j +α0i + εi j (3)

The second-order no-intercept mixed model with random intercept and slope for control
and treatment groups is,

yi j = β0Di +β1Diti j +β2Dit2
i j +α0i +α1iti j + εi j

The equivalent model is,

yi j = β
(C)
0 +β

(T )
0 +β

(C)
1 ti j +β

(T )
1 ti j +β

(C)
2 t2

i j +β
(T )
2 t2

i j +α0i +α1iti j + εi j (4)

For model (3) and (4), let b′ = (b(C)
0 ,b(T )0 ,b(C)

1 ,b(T )1 ,b(C)
2 ,b(T )2 ) be the maximum likelihood

estimator (MSE) of the regression coefficients β′ = (β
(C)
0 ,β

(T )
0 ,β

(T )
1 ,β

(T )
1 ,β

(C)
2 ,β

(C)
2 ). Pro-

vided that the covariance parameters of random effects are unknown, b is approximately
normally distributed in large sample with mean β and covariance Σb, i.e. b a∼ (β,Σb).
Where,

Σb =



σ2
b(C)

0

0 σ
b(C)

0 b(C)
1

0 σ
b(C)

0 b(C)
2

0

0 σ2
b(T )0

0 σ
b(T )0 b(T )1

0 σ
b(T )0 b(T )2

σ
b(C)

0 b(C)
1

0 σ2
b(C)

1

0 σ
b(C)

1 b(C)
2

0

0 σ
b(T )0 b(T )1

0 σ2
b(T )1

0 σ
b(T )1 b(T )2

σ
b(C)

0 b(C)
2

0 σ
b(C)

1 b(C)
2

0 σ2
b(C)

2

0

0 σ
b(T )0 b(T )2

0 σ
b(T )1 b(T )2

0 σ2
b(T )2


= (X ′Σ−1

y X)−1 .

The distinct estimated covariances for control and treatment groups are,

Σ̂b(T ) =


σ̂2

b(T )0

σ̂
b(T )0 b(T )1

σ̂
b(T )0 b(T )2

σ̂
b(T )0 b(T )1

σ̂2
b(T )1

σ̂
b(T )1 b(T )2

σ̂
b(T )0 b(T )2

σ̂
b(T )1 b(T )2

σ̂2
b(T )2

 , Σ̂b(C) =


σ̂2

b(C)
0

σ̂
b(C)

0 b(C)
1

σ̂
b(C)

0 b(C)
2

σ̂
b(C)

0 b(T )1
σ̂2

b(C)
1

σ̂
b(C)

1 b(C)
2

σ̂
b(C)

0 b(T )2
σ̂

b(C)
1 b(C)

2
σ̂2

b(C)
2

 .
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Let V (C)′ = (V (C)
x ,V (C)

y ) and V (T )′ = (V (T )
x ,V (T )

y ) denote the vertices of the control and
treatment groups respectively, then V (C),V (T ) and their estimates V̂ (C), V̂ (T ) follows,

V (C)
x =

−β
(C)
1

2β
(C)
2

, V (C)
y = β

(C)
0 −

β
(C)2
1

4β
(C)
2

, V (T )
x =

−β
(T )
1

2β
(T )
2

, V (T )
y = β

(T )
0 −

β
(T )2
1

4β
(T )
2

.

V̂ (C)
x =

−b(C)
1

2b(C)
2

, V̂ (C)
y = b(C)

0 −
b(C)2

1

4b(C)
2

, V̂ (T )
x =

−b(T )1

2b(T )2

, V̂ (T )
y = b(T )0 −

b(T )21

4b(T )2

.

For treatment and control group, the first-order partial derivative of V̂ (T ) with respect to
β(T ) evaluated at β(T ) = b(T ) is,

∂V (T )

∂β(T )
|
β(T )=b(T )

= D̂(T ) =

(
0 −1

2 b(T )−1
2

1
2 b(T )1 b(T )−2

2

1 −1
2 b(T )1 b(T )−1

2
1
4 b(T )21 b(T )−2

2

)
.

∂V (C)

∂β(C)
|
β(C)=b(C)

= D̂(C) =

(
0 −1

2 b(C)−1
2

1
2 b(C)

1 b(C)−2
2

1 −1
2 b(C)

1 b(C)−1
2

1
4 b(C)2

1 b(C)−2
2

)
.

When the sample size tends to be large, based on the multivariate delta method, V̂ (T ),
the estimate ofV (T ) for treatment group, is approximately multivariate normally distributed
with mean V (T ) and covariance ΣV̂ (T ) , i.e., V̂ (T ) a∼ MV N(V (T ),ΣV̂ (T )). Using the esti-
mated covariance Σ̂V̂ (T ) , where

Σ̂V̂ (T ) = D(T )
Σ̂b(T )D

(T )′ =

(
σ̂2

V̂ (T )
x

σ̂
V̂ (T )

x V̂ (T )
y

σ̂
V̂ (T )

x V̂ (T )
y

σ̂2
V̂ (T )

y

)

V̂ (T )
x

a∼N(V (T )
x ,σ2

V̂ (T )
x

) and V̂ (T )
y

a∼N(V (T )
y ,σ2

V̂ (T )
y

). Similarly, the estimated vertex for control

group V̂ (C) a∼MV N(V (C),ΣV̂ (C)) and V̂ (C)
x

a∼ N(V (C)
x ,σ2

V̂ (C)
x
), V̂ (C)

y
a∼ N(V (C)

y ,σ2
V̂ (C)

y
), where

Σ̂V̂ (C) = D(C)
Σ̂b(C)D(C)′ =

(
σ̂2

V̂ (C)
x

σ̂
V̂ (C)

x V̂ (C)
y

σ̂
V̂ (C)

x V̂ (C)
y

σ̂2
V̂ (C)

y

)

The summation of two independent normal distribution as described by Casella and Berger
(2002), is normal with the summation of mean and variance. Define the difference between
the two vertices of control and treatment group,V (di f f )′ =V (T )′−V (C)′ =(V (di f f )

x ,V (di f f )
y ).

Suppose that control group and treatment group are independent, the covariance of V (di f f )

is Σ
(di f f )
V = ΣV (C) +ΣV (T ) . The distribution for the difference of x−coordinates, V (di f f )

x =

V (T )
x −V (C)

x , and the difference of y−coordinates, V (di f f )
y = V (T )

y −V (C)
y , are V̂ (di f f )

x
a∼

N
(
(V (T )

x −V (C)
x ),(σ2

V̂ (T )
x

+σ2
V̂ (C)

x
)
)

and V̂ (di f f )
y

a∼N
(
(V (T )

y −V (C)
y ),(σ2

V̂ (T )
y

+σ2
V̂ (C)

y
)

)
. There-

fore, the approximate (1−α)% confidence interval of V̂ (di f f )
x is

(V̂ (di f f )
x −Z1−α/2σ̂

V̂ (di f f )
x

, V̂ (di f f )
x +Z1−α/2σ̂

V̂ (di f f )
x

).

Similarly, the approximate (1−α)% confidence interval of V̂ (di f f )
y is

(V̂ (di f f )
y −Z1−α/2σ̂

V̂ (di f f )
y

, V̂ (di f f )
y +Z1−α/2σ̂

V̂ (di f f )
y

).
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2.2 Gradient Method for Difference of X- Coordinates for Same Quadratic Term

When assuming the quadratic terms of two growth curves are the same, β
(C)
2 = β

(T )
2 = β2,

the confidence interval for the difference of x-coordinates is illustrated (Martin Bach-
maier, Test and confidence set for the difference of the x-coordinates of the vertices of
two quadratic regression models, Stat Papers, 51:285-296, 2010.). For model (1) and (2),
the x−coordinates of vertices for control and treatment groups are,

V (C)
x =

−β
(C)
1

2β
(C)
2

=
−(β (mid)

1 −β
(e f f )
1 )

2β
(mid)
2

, V (T )
x =

−β
(T )
1

2β
(T )
2

=
−(β (mid)

1 +β
(e f f )
1 )

2β
(mid)
2

,

V̂ (C)
x =

−b(C)
1

2b(C)
2

=
−(b(mid)

1 −b(e f f )
1 )

2b(mid)
2

, V̂ (T )
x =

−b(T )1

2b(T )2

=
−(b(mid)

1 +b(e f f )
1 )

2b(mid)
2

,

From large sample theory, if the distribution of one parameter is unknown, normal distribu-
tion could be applied to estimate the distribution of this parameter. Hence for large sample
the distribution for the estimate of difference of the two vertices, V̂ (di f f ) is approximately
normal. Because of the large degrees of freedom, z score can be used as an approximation
to t score,

V (di f f )
x ∈C(V (T )

x −V (C)
x )

⇔
(b(e f f )

1 +b2V (di f f )
x )2

ˆVar(b(e f f )
1 )+2V (di f f )

x ˆCov(b(e f f )
1 ,b2)+ [V (di f f )

x ]2 ˆVar(b2)
6 Z2

1−α/2

⇔ (b(e f f )
1 +b2V (di f f )

x )2 6
(

ˆVar(b(e f f )
1 )+2V (di f f )

x ˆCov(b(e f f )
1 ,b2)+ [V (di f f )

x ]2 ˆVar(b2)
)
·Z2

1−α/2

⇔ A · [V (di f f )
x ]2 +B ·V (di f f )

x +C 6 0,
(5)

where, A = b2
2− ˆVar(b2) ·Z2

1−α/2

B = 2b(e f f )
1 b2−2 ˆCov(b(e f f )

1 ,b2) ·Z2
1−α/2

C = [b(e f f )
1 ]2− ˆVar(b(e f f )

1 ) ·Z2
1−α/2 .

To solve the inequality, if A 6= 0, then A ·x2
0 +B ·x0 +C is a parabola. It has two nulls if the

discriminant D = B2− 4AC is positive. With regard to the numerical stability concerning
small values of 4AC, we compute either zero in two different ways:

x01 =

{
−2C

B−
√

B2−4AC
when B < 0,

−B−
√

B2−4AC
2A when B > 0.

x02 =

{
−B+

√
B2−4AC

2A when B 6 0,
−2C

B+
√

B2−4AC
when B > 0.

Therefore when A > 0 and D > 0, this leads to a two-sided confidence interval [x01,x02].
When A< 0 and D> 0, the confidence interval goes to (−∞,x02]

⋃
[x01,+∞). In this project,

only the first situation is considered, i.e. the confidence interval for the difference of x-
coordinates for vertices V̂ (di f f )

x is [x01,x02].

2.3 Mean Response Method for Difference of Y-Coordinates

Given the x−coordinates of two vertices for control and treatment groups V̂ (C)
x ,V̂ (T )

x , the
difference of y−coordinate of vertex V̂ (di f f )

y can be calculated as,

V̂ (di f f )
y = V̂ (T )

y −V̂ (C)
y = (b(T )0 +b(T )1 ·V̂

(T )
x +b(T )2 ·V̂

(T )2
x )− (b(C)

0 +b(C)
1 ·V̂

(C)
x +b(C)

2 ·V̂
(C)2
x )
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where V̂ (di f f )
y is treated as a difference of the mean responses V̂ (C)

y and V̂ (T )
y . The normal

distribution can be applied instead of the t distribution when sample size goes large, then
the difference of y−coordinate of vertex V̂ (di f f )

y distributes approximately normally,

V̂ (di f f )
y −V (di f f )

y

σ̂2
V̂ (di f f )

y

a∼ N(0,1) ,

Therefore the (1−α)% confidence interval of V (di f f )
y is

(V̂ (di f f )
y −Z1−α/2σ̂

V̂ (di f f )
y

, V̂ (di f f )
y +Z1−α/2σ̂

V̂ (di f f )
y

).

The estimated variance of V (di f f )
y for the mean response method is equivalent to the esti-

mated variance for the delta method. Hence the conclusion is drawn that the two methods
provide identical confidence interval for y−coordinate.

2.4 Confidence Region for the Difference of Vertices

In order to compute a confidence region for the difference of vertices, the large sample
chi-square distribution for a quadratic form is applied. The chi-square distribution with k
degrees of freedom is the distribution of a sum of the squares of k independent standard
normal random variables. As proven, the estimated difference of vertex follows an approx-
imate multivariate normal distribution,

V̂ (di f f ) a∼MV N
(
V (di f f ),ΣV̂ (di f f )

)
where ΣV̂ (di f f ) = ΣV̂ (T ) + ΣV̂ (C) . For the bivariate standard normal distribution in vector
form, the sum of the squares of two independent standard normal variables is chi-square
distribution with two degrees of freedom:(

V̂ (di f f )
x −V (di f f )

x

V̂ (di f f )
y −V (di f f )

y

)′
Σ̂
−1
V̂ (di f f )

(
V̂ (di f f )

x −V (di f f )
x

V̂ (di f f )
y −V (di f f )

y

)
∼ χ

2
(2) .

Therefore the approximate (1−α)% confidence region for the difference of the vertices
for two groups is(

V̂ (di f f )
x −V (di f f )

x

V̂ (di f f )
y −V (di f f )

y

)′
Σ̂
−1
V̂ (di f f )

(
V̂ (di f f )

x −V (di f f )
x

V̂ (di f f )
y −V (di f f )

y

)
6 χ

2
1−α,2 ,

The confidence region is an ellipse from this equation.

3. Power Analysis

Power plays an important role to reject the null hypothesis of same vertex for two groups
given that the vertices of two groups are actually different. The null hypothesis,

H0 : V (C) = V (T )

where V (C) and V (T ) are distinct vertices of control and treatment group may be tested
indirectly with an F−test or directly by a Chi-square test depends on the quadratic term.
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3.1 Power Function for F Test

Repeated measurements on two samples, control and treatment, from a population can be
presented by a split plot design model,

yi jk = µ...+ρi(k)+ τ j + γk +(τγ) jk + εi jk

where,
yi jk is the response for ith subject at jth occasion for group k,
µ... is a constant for grand mean,
ρi(k) is the random effect for subject i nested within group k, and ρi(k) are independent
N(0,σ2

ρ ),
τ j is the fixed time effect and τ j are constants subject to the restriction ∑τ j = 0,
γk is the fixed group effect and γk are constants subject to the restriction ∑γk = 0,
εi j are independent N(0,σ2

ε ), and independent of the ρi(k),
i = 1,2, ...,N; j = 1,2, ...r;k = 1,2. N is the sample size and r is the number of occasions.
The 2nd order linear mixed regression model with covariance structure compound symme-
try in longitudinal study is,

yi jk = β0Xi jk +β1Xi jkti j +β2Xi jkt2
i j +α0i + εi jk,

which is equivalent to model (3). In order to test the difference between two vertices of
control and treatment group H0 : V (C) = V (T ), F test statistic can be used to test the null
hypothesis H0 :β(C) =β(T ), if the quadratic terms of two groups are equal, i.e. β

(C)
2 = β

(T )
2 .

Given that the different quadratic terms β
(C)
2 6= β

(T )
2 , the F test is an indirect test. The

equivalent null hypothesis for the F test is H0 :Cβ = 0, where

C =

 1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

 , β =



β
(C)
0

β
(C)
1

β
(C)
2

β
(T )
0

β
(T )
1

β
(T )
2


The F test statistic is,

F =
b′C[C ′(X ′V −1X)−1C]−1C ′b

rank(C)
, (6)

with the non-centrality parameter

λ1 = β
′C[C ′(X ′V −1X)−1C]−1C ′β,

where V = ZGZ ′+R. The numerator degrees of freedom is rank(C), and the denomi-
nator degrees of freedom 2N(r− 1)− rank(C) by Between Within method, and the exact
power function is,

Power = Prob
{

Fλ1 > F1−α

}
,

where F1−α is the critical value for the central F distribution with Type I error rate α.
When the linear mixed model contains both random intercept and random slope terms,

the equivalent 2nd order model is model (4). To test the null hypothesis H0 : β(C) = β(T ),
an approximate F test statistic (6) is employed, with the approximate degrees of free-
dom which can be computed by either Satterwaite method or Konward and Ronger (1997)
method. The approximate power function is,

Power = Prob
{

Fλ1 > F1−α

}
.
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3.2 Power Function for Chi-Square Test

The non-central chi-square distribution can be applied as a direct test to compute power for
the null hypothesis H0 : V (C) = V (T ). As proven, V̂ (di f f ) a∼MV N

(
V (di f f ),ΣV̂ (di f f )

)
, then

V̂ (di f f )′Σ−1
V̂ (di f f )V̂

(di f f ) distributes approximately as a non-central chi-square with 2 degrees
of freedom and the non-centrality parameter

λ2 =V (di f f )′
Σ
−1
V̂ (di f f )V

(di f f )

=

 −β
(T )
1

2β
(T )
2

− −β
(C)
1

2β
(C)
2

β
(T )
0 − β

(T )2
1

4β
(T )
2

−β
(C)
0 +

β
(C)2
1

4β
(C)
2


′

ΣV̂ (di f f )

 −β
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1

2β
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2

− −β
(C)
1

2β
(C)
2

β
(T )
0 − β

(T )2
1

4β
(T )
2

−β
(C)
0 +

β
(C)2
1

4β
(C)
2

 .

That is, V̂ (di f f )′Σ−1
V̂ (di f f )V̂

(di f f ) a∼ χ2
2,λ2

. Under the null hypothesis, the non-centrality param-
eter λ2 = 0. The power function is,

Power = Prob
{

χ
2
2,λ2

> χ
2
1−α,2

}
,

where χ2
1−α,2 is the critical value given test size level α . Using the estimated covariance

Σ̂V̂ (di f f ) , the consistent statistic for ΣV̂ (di f f ) , the decision rule is, reject the null hypothesis if(
V

(T )
x −V (C)

x

V
(T )

y −V (C)
y

)′
Σ̂V̂ (di f f )

(
V

(T )
x −V (C)

x

V
(T )

y −V (C)
y

)
> χ

2
1−α,2,

otherwise do not reject the null hypothesis.

4. Analysis of Simulation Results

4.1 Two Quadratic Growth Curves With Same Quadratic Term

For mixed model with only random intercept (1), 1000 data sets are generated respectively
for control and treatment group with the regression coefficient parameters β

(C)
0 , β

(T )
0 , β

(C)
1 ,

β
(T )
1 and same quadratic term β2 equal to 2, 2, 8, 8.1 and -1, and covariance coefficients

σ2
α0

equals 1 for sample size 20 and 100. The true distinct model for control group is,

yi j = 2+8xi j− x2
i j +α0i + εi j, i = 1,2, ...,N j = 0,1, ...,5.

The true model for treatment group is,

yi j = 2+8.1xi j− x2
i j +α0i + εi j, i = 1,2, ...,N j = 0,1, ...,5.

With the vertices for control and treatment group V ′ = (4,18) and V ′ = (4.05,18.4025),
the difference between them is V (di f f )′ = (0.05,0.4025). The profile plots and smoothed
profile plots are shown in Figure 1. For a better display, only 100 datasets are randomly
selected from each group; red represents treatment group and blue is for control group.
Quadratic trend is intuitively suggested from the figure. The red curves are above the blue
curves which indicates the y-coordinate of vertex for treatment group is larger than that for
control group.

The results of simulation for confidence intervals of difference of x-coordinates are
shown in Table 1. In this table, symbol I represents delta method and symbol II represents
gradient method. The results include the empirical coverage as well as lower bound and
upper bound for the empirical coverage. From the columns of the empirical coverage, two
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(a) Profile Plot for Sample Size 20 (b) Smoothed Plot for Sample Size 20

(c) Profile Plot for Sample Size 100 (d) Smoothed Plot for Sample Size 100

Figure 1: Profile and Smoothed Plots for Mixed Model with Only Random Intercept

out of the 12 conditions had the nominal coverage outside the bounds; they are Type I
error rate 0.1 sample size 20 for both methods. The reason for the bias should be the small
sample size, since for sample size 100, both methods performs well for all the different
error rates. The conclusion is that both delta method and gradient method are applicable
for the confidence interval of the difference for x-coordinates.

Table 1: Confidence Interval for Difference of x-Coordinates

Type I Sample Empirical lower upper Empirical lower upper
Error Size Coverage I bound bound Coverage II bound bound
0.01 100 0.993 0.98621 0.99979 0.994 0.98771 1.00029
0.01 20 0.991 0.98331 0.99869 0.991 0.98331 0.99869
0.05 100 0.955 0.94215 0.96785 0.955 0.94215 0.96785
0.05 20 0.959 0.94671 0.97129 0.961 0.94900 0.97300
0.1 100 0.91 0.89511 0.92489 0.91 0.89511 0.92489
0.1 20 0.931 0.91782 0.94418 0.931 0.91782 0.94418

The results of simulation for confidence intervals for the difference of y-coordinates
are displayed in Table 2; the results for the delta method and mean response method are
identical. The table contains the empirical coverage as well as lower bound and upper
bound for the empirical coverage. From the table, all the 18 conditions had the nominal
coverage within the bounds. Therefore, both delta method and mean response method are
appropriate to compare the difference of y-coordinates.

Table 3 shows the simulation results of the confidence region for the difference of ver-
tices. The table includes the empirical coverage as well as lower bound and upper bound
for the empirical coverage. From the table, none of the 6 conditions had the nominal cov-
erage outside the bounds. Hence, the approximate chi-square distribution with two degrees
of freedom applied to obtain the confidence region for the difference of vertices are practi-
cable.
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Table 2: Confidence Interval for Difference of y-Coordinates

Type I Sample Empirical lower upper
Error Size Coverage bound bound
0.01 100 0.987 0.97778 0.99622
0.01 20 0.986 0.97643 0.99557
0.05 100 0.94 0.92528 0.95472
0.05 20 0.954 0.94102 0.96698
0.1 100 0.893 0.87692 0.90908
0.1 20 0.906 0.89082 0.92118

Table 3: Confidence Region of Difference of two vertices

Type I Sample Empirical lower upper
Error Size Coverage bound bound
0.01 100 0.992 0.98475 0.99925
0.01 20 0.989 0.98051 0.99749
0.05 100 0.956 0.94329 0.96871
0.05 20 0.95 0.93649 0.96351
0.1 100 0.897 0.88119 0.91281
0.1 20 0.916 0.90157 0.93043

4.2 Direct Chi-square Test vs Indirect F Test

For linear mixed model with only random intercept, twelve datasets are generated with dif-
ference regression coefficients, different variances of random effect, different sample sizes
but same time measurements. There are six occasions for j = 1,2.25,3.5,5.25,6.5,7.75;
and sample sizes are selected to be 20 and 100. Two variances chosen for the random effect
are 1.44 and 78 with apparent difference between them. The regression coefficients for
control and treatment groups with vertex are listed in Table 4.As mentioned, both direct F
test and indirect chi-square test can be applied to test the difference between the vertices
from two groups. For the F test, the null hypothesis is H0 : β(C) = β(T ); and for the chi-
square test, the null hypothesis is H0 :V (di f f )′ = 0. Provided that the quadratic term of two
groups are equal, i.e. β

(C)
2 = β

(T )
2 , F test and chi-square test are equivalent.

Table 4: Parameters for Power Analysis

β0 β1 β2 Vertex

Parameter I
Control 3.73 1.41 -0.062 (11.37, 11.75)

Treatment 2.98 2.29 -0.062 (18.47, 24.13)

Parameter II
Control 4.0552 1.5184 -0.08737 (8.69, 10.65)

Treatment 4.3705 1.9574 -0.08737 (11.20, 15.33)

Parameter III
Control 9.92 1.149 -0.5818 (9.87, 15.59)

Treatment 9.4378 1.4489 -0.5818 (12.45, 18.46)

The results of power analysis for the twelve combinations are displayed in Table 5.
For each combination, 1000 datasets are generated to test whether the difference of the
two vertices is significant via F test and Chi-square test. From the table, for the smaller
random effect variance, no matter which set of regression coefficient is applied, both the
two tests always reject the null hypothesis. The only exception is sample size 20 with
third set of coefficients; the F test rejects two hundred more times than the chi-square test
which indicates the higher power of F Test. When the variance of random effect becomes
large, it is more obvious that F test rejects more than the Chi-square test for almost every
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combination which leads to the higher power of the F test. The conclusion is that given the
same quadratic term for two groups, F test is more powerful than chi-square test.

Table 5: Chi-square Test vs F-Test with Denominator Degrees of Freedom Between-Within

Parameters I Parameters II Parameters III
N = 20 N = 100 N = 20 N = 100 N = 20 N = 100

σ2
αo = 1.44

F Test Reject 1000 1000 1000 1000 977 1000
DNR 0 0 0 0 23 0

χ2 Test
Reject 990 1000 1000 1000 745 1000
DNJ 10 0 0 0 255 0

σ2
αo = 78

F Test Reject 1000 1000 733 1000 422 972
DNJ 0 0 267 0 578 28

χ2 Test
Reject 306 951 238 997 63 647
DNJ 694 49 762 3 937 353

* Mixed model with only random intercept

5. Application

We apply the proposed test statistics on the study of growth of language and early liter-
acy skills in preschoolers who have developmental speech and language impairment. The
confidence intervals and confidence region for the difference of vertices from control and
treatment groups are performed.

5.1 Description of Study

U.S. Department of Education data for the Individuals with Disabilities Education Act
(IDEA) demonstrate that 13% of four-year olds and five-year olds are receiving special ed-
ucation services in preschool and that 82% of these children indicate developmental speech
and language impairment (DSLI) as a primary diagnosis. Young children with DSLI often
fail to develop crucial pre-literacy skills, which will place those children at high risk for
later reading failure and literacy difficulties.

In a recent study, examining the efficacy of ”Teaching Early Literacy and Language”
(TELL) curriculum in promoting the early literacy and oral language growth trajectories
of preschoolers with DSLI is performed. The variables in TELL curriculum (Wilcox and
Gray, 2011) including a series of instructions, scripted teaching activities, materials for
implementation of oral language and early literacy activities, and professional development
for teachers. They target one specific skill ( e.g., vocabulary, identification of beginning
sounds in a word) or small set of skills ( e.g., inferential language, print concepts, letter
sounds and identification) over a relatively short period of time ( e.g., weeks). The TELL
curriculum has shown positive results in oral language and early literacy activities in an
earlier small randomized controlled trial. In contrast, researchers compare those trajectories
of children who received the TELL curriculum with those who were randomly assigned to
control classes.

In our study, we focus on one specific item from TELL curriculum, Curriculum Based
Measurement (CBM) Letter Sound Identification (SoundID). Fifty-seven children with
DSLI are randomly assigned to offer the TELL curriculum or accept those with business
as usual (BAU). The efficacy variable, SoundID test score were obtained by six follow-up
time measurements. The mean and standard deviation of SoundID scores for both children
with DSLI from TELL and BAU curriculum are displayed in Table 6. On average, com-
pared to the children received BAU, children who accepted TELL curriculum have higher
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SoundID scores from the second time point.

Table 6: Sound Identification Score by Group (TELL Curriculum vs. Control): Mean,
Standard Deviations at Each Occasion

Variables TELL (n = 32) Control (n = 25)
Mean (SD) Mean (SD)

SoundID (T1) Scores 3.970 (4.730) 6.917 (9.180)
SoundID (T2) Scores 9.120 (7.310) 6.920 (8.524)
SoundID (T3) Scores 10.260 (8.080) 8.720 (9.095)
SoundID (T4) Scores 14.148 (8.023) 10.714 (9.670)
SoundID (T5) Scores 15.741 (7.744) 10.955 (8.666)
SoundID (T6) Scores 17.692 (8.480) 9.429 (8.818)

5.2 Comparison of Vertices for TELL Curriculum and Control Group

The profile plot and smoothed profile plot for children with DSLI received TELL curricu-
lum and BAU are shown in Figure 2, which indicate the quadratic curve for model. The
model for children accepted TELL curriculum was conducted first; two models are com-
pared based on the three criteria AIC, AICc and BIC displayed in Table 7, they are linear
mixed model with only random intercept and compound symmetry structure and linear
mixed model with random intercept and slope and unstructured covariance structure. The
three criteria all suggest the later model by the smaller values of the criteria.

(a) Profile Plot for TELL Efficacy Example (b) Smoothed Plot for TELL Efficacy Example

Figure 2: Profile and Smoothed Plots for TELL Efficacy Example

Table 7: Model Selection for Children Received TELL Curriculum

Information Criteria Random Intercept Model Random intercept and Slope Model
AIC 986.8 957.1
AICc 986.9 957.4
BIC 989.7 963.0

The proposed methods for the confidence interval of vertex are applied, the estimated
vertex, lower and upper limits are displayed in Table 8. The delta method for the con-
fidence interval of x-coordinate is (3.885, 15.958), while the gradient method obtain the
confidence interval (6.686, 76.715) which is too wide to be usable. The delta method and
mean response method for the confidence intervals of y-coordinate are identical (11.682,
29.536).
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Table 8: Confidence Intervals of Vertex for Children with DSLI Who Received TELL
Curriculum

Method Vertex Lower Limit Upper Limit
Delta for x-coordinate 9.921 3.885 15.958

Gradient for x-coordinate 9.921 6.686 76.715
Delta for y-coordinate 20.609 11.682 29.536

Mean Response for y-coordinate 20.609 11.682 29.536

Similar model analysis are also used to children with DSLI who accepted BAU, the re-
sults for model selection and confidence interval are displayed in Table 9 and Table 10. For
x-coordinate of the estimated vertex, confidence interval from the delta method is (4.104,
7.699) while that from gradient method is (4.746, 11.422). For y-coordinate of the esti-
mated vertex, confidence interval from the delta method and mean response method are
both (6.909, 14.528).

Table 9: Model Selection for Children Received BAU

Information Criteria Random Intercept Model Random intercept and Slope Model
AIC 696.9 687.4
AICc 697.0 687.7
BIC 699.3 692.3

Table 10: Confidence Intervals of Vertex for Children with DSLI Who Received BAU

Method Vertex Lower Limit Upper Limit
Delta for x-coordinate 5.886 4.104 7.669

Gradient for x-coordinate 5.886 4.746 11.422
Delta for y-coordinate 10.718 6.909 14.528

Mean Response for y-coordinate 10.718 6.909 14.528

For the Letter Sound Identification of children with DSLI who received the TELL cur-
riculum, the estimated vertex is 20.61 letters at 10th scheduled visit, while for children
with DSLI in BAU, the estimated vertex is 10.72 letters at 6th scheduled visit. The TELL
curriculum treatment produced a shrift up to 9.89 letters and a shift to the right of 4 time
measurements. The vertex of treatment is outside the scope of the occasion, and results can
be interpreted that children from BAU class have reached a plateau at 6th scheduled visit
but that children accepted TELL curriculum would continue to increase proficiency after
the 6th visit. In order to test the difference between the two groups, methods for confi-
dence set for difference of vertices in the second proposed topic are applied; the results are
displayed in Table 11. For the difference of x-coordinates of vertices, the gradient method
is not applicable since the quadratic term for control children and TELL children are not
equal, which is against the assumption. The results illustrate that the time for children
reach the plateau is not significantly different while the sound identification of letters are
significantly different, which indicates the advantages of the TELL curriculum.

6. Conclusion and Discussion

Several methods for confidence interval and confidence region for the difference of ver-
tices from two independent groups with quadratic growth curve model were discussed in
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Table 11: Confidence Intervals for difference of Vertices for Control and TELL Children

Method Difference of Vertices Lower Limit Upper Limit
Delta for x-coordinates 4.035 -2.259 10.329
Delta for y-coordinates 9.891 0.184 19.329

Mean Response for y-coordinates 9.891 0.184 19.329

this report. Initially, the delta method and gradient method were performed for confidence
interval of the difference of x-coordinates for the vertices, while the delta method and mean
response method for the difference ofy-coordinates. The approximate chi-square distribu-
tion with two degrees of freedom were derived in the confidence region analysis and power
analysis. Furthermore, in the simulation study, three different sample sizes were chosen in
order to examine the influence of size for all the methods. Three different Type I error rates
were chosen as well for the purpose of making the methods more convincible. Depending
on all the simulation results, a conclusion could be drawn that all methods described in this
study for confidence region of the difference of vertices for quadratic growth curves of 2nd

degree polynomial are applicable for different sample sizes, different Type I error rates and
different models. For the power analysis, the indirect F test and direct chi-square test are
compared, and F test has larger power than the chi-square test. An interesting topic for
further research can be dealing with vertices of quadratic growth curves with heterogeneity
in the random-effects population.
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