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Abstract
Covariate-adaptive randomization (CAR) has been increasingly implemented in clinical trials to

balance important covariates. However, the properties of statistical inference following CAR are
not fully understood. In the literature, most studies are based on simulations. In this paper, we sum-
marize some recent advances on theoretical properties of hypothesis testing under CAR, proposed
by Ma et al. (2014). We will first give a general review of basic concepts of CAR and motivations to
study inference properties following CAR. We next summary the main results in the paper, includ-
ing describing the framework and assumptions and giving the theoretical properties. In the linear
model framework, asymptotical distributions of test statistics are given for testing treatment effects
and significance of covariates under null and alternative hypotheses. In particular, it is shown that
under a large class of CAR designs, (i) the hypothesis testing to compare treatment effects is usually
conservative in terms of small Type I error; (ii) the hypothesis testing to compare treatment effects is
usually more powerful than complete randomization; and (iii) the hypothesis testing for significance
of covariates is still valid. We close with a discussion of related work and possible future directions.

Key Words: Covariate-adaptive design, statistical inference, linear models, Pocock and Simon’s
marginal procedure, minimization, Type I error, power

1. Introduction

The purpose of this paper is to review properties of statistical inference for covariate-
adaptive randomization (CAR) in the linear model framework, proposed by Ma et al.
(2014). In clinical trials, two types of hypothesis testing are of particular interest, one is
to detect significant treatment effects between different treatment groups, which is usually
primary goals of clinal trial. The other one is to test whether a covariate is influential on
patients’ outmans, which becomes more and more important, especially in some biomarker
studies. In this paper, the properties of these two types of hypothesis testing will be given
for a large family of CAR, which provides theoretical foundation and guidance to apply
CAR in practice.

We begin in Section 2 with a brief review of covariate-adaptive randomization used
in clinical trials. In Section 3, we summarize the conclusions in Ma et al. (2014), which
evaluate Type I error and power of statistical inference in the linear model framework for
CAR. Section 4 provides discussion about the conclusions proposed, including assumptions
in deriving asymptotic properties and how to extend the methodologies to study inference
properties for generalized linear model under CAR. In Section 5 some conclusions remarks
are given.

∗Biogen Idec, Cambridge, MA 02142
†Department of Statistics, George Washington University, Washington. DC 20052
‡Department of Mathematics, Zhejiang University, Hangzhou, P.R. China 310006

JSM 2014 - Biopharmaceutical Section

872



2. Covariate-Adaptive Randomization

2.1 Covariate-Adaptive Design

In clinical trials, it is usually important to balance treatment arms with respect to key co-
variates. There are several advantages to apply covariate-adaptive randomization to clinical
trials, such as improving treatment comparability and statistical efficiencies. A natural idea
to achieve balance over covariates is stratification. Strata are defined as different combi-
nations of covariates’ levels. To get balanced trail, we could apply separate restricted ran-
domization within each stratum to obtain good balance within each stratum and further to
obtain overall balance. Depending what restricted randomization is used, we have stratified
permuted block design using permuted block design within strata and covariate-adaptive bi-
ased coin design using Efron’s biased coin design within strata. Stratified permuted block
design is the most popular method to balance covariates and is used in most of clinical
trials. However, it only works well for a trial with a few strata and large number of patients,
otherwise a large portion of incomplete strata would cause imbalance on stratum level and
further on the overall level.

To deal with many covariates, several marginal methods (also referred as minimization,
dynamic allocation in literature) were proposed. Taves (1974) proposed a minimization
method to deal with large number of covariates, but his method didn’t involve randomness.
Pocock and Simon (1975) generalized Taves’ method by incorporating randomness, which
has been more popular thereafter. Instead of attempting to eliminate imbalance within each
stratum, their method achieves balance by reducing weighted sum of marginal imbalances.
A simper version of Pocock and Simon’s marginal procedure with two treatments can be
described as follows. Suppose Nijk(n) is the number of patients on treatment k in level j
of covariate Zi, i = 1, ..., I , j = 1, ...,mi, k = 1, 2, after n patients are enrolled in the
study. Let (z1, ..., zI) be the covariate information for the next patient. Then the marginal
imbalance with respect to covariate i is defined as Di(n) = Nizi1(n) − Nizi2(n). The
next assignment is based on the weighted average of all marginal imbalances D(n) =∑I

i=1wiDi(n) by using the biased coin allocation,

Pr(In+1 = 1) =

⎧
⎨

⎩

p, if D(n) < 0
1− p, if D(n) > 0
1/2, if D(n) = 0

where 1/2 < p < 1 is the biased coin probability.
The usage of Pocock and Simon’s marginal procedure had increased in last decades.

According to Taves (2010), Pocock and Simon’s marginal procedure was implemented in
over 400 clinical trials from 1989 to 2008. However, despite its broad applications, the
theoretical properties of Pocock and Simon’s marginal procedure remain unknown ever
since it was proposed. Recently, Hu and Zhang (2013) theoretically proved that, under
Pocock and Simon’ marginal procedure, the marginal and overall imbalances are bounded
in probability, while the within-stratum imbalance increase with the rate of

√
n as the sam-

ple size increases. These conclusions provide foundation for us to further study theoretical
properties of statistical inference under these randomization methods.

Recently, Hu and Hu (2012) proposed a new family of covariate-adaptive procedures
which simultaneously eliminate imbalances at three different levels, including overall im-
balance, marginal imbalance and within-stratum imbalance. When a new patient enters the
trial and is read for randomization, the assignment will be based on the weighted average of
the above three imbalances, D(n) = w1Dstrtum(n) + w2Dmarginal(n) + w3Doverall(n),
where Dmarginal(n) is defined as in Pocock and Simon’s marginal procedure, Dstrtum(n)
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and Doverall(n) are within-stratum imbalance and overall imbalance, respectively. Theo-
retically, they proved that overall imbalance, marginal imbalance and within-stratum im-
balance are all bounded in probability under the new covariate-adaptive designs.

2.2 Motivation to Study Inference Properties for CAR

Even though many covariate-adaptive designs have been proposed and implemented in
clinical trials, the discussion of statistical inference associated with those methods is lim-
ited. In practice, conventional tests are often employed without consideration of covariate-
adaptive randomization scheme. It remains a concern if conventional tests are still valid
under covariate-adaptive designs. It is now generally accepted that covariates used in trial
design should also be incorporated in inference procedures. Forsythe (1987) suggested all
covariates used in minimization method should be included into analysis to achieve a valid
test through simulation studies. Shao, Yu and Zhong (2010) theoretically pointed out that
“one way to obtain a valid test procedure is to use a correct model between outcomes and
covariates, including those used in randomization”.

However, in practice, not all covariate information used in randomization can be fully
utilized in inference procedures. In a clinical trial described in Anderson et al. (2000),
Pocock and Simon’s marginal procedure is implemented to balance allocation over three
covariates including clinical centers, performance status and disease extent. A continuous
primary endpoint is compared between two treatment groups using the two sample t-test,
without adjusting covariate effects at all. In practice, some randomization covariates are
omitted in final analysis due to: (i) it is difficult to incorporate some covariates in the
analysis model, for example, investigation sites, etc.; (ii) adjusting too many covariates
usually means more complicated modeling techniques; and (iii) it requires correct model
specification, which is usually unknown in practice.

There have been doubts about validity of statistical inference for covariate-adaptive
designs, especially when covariates are fully or partially omitted in inference procedures.
Birkett (1985) and Forsythe (1987) had raised concerns about validity of unadjusted anal-
ysis under covariate-adaptive designs. They found that the two sample t-test is conserva-
tive in terms of small type I error if Taves’ minimization is used to allocate patients to
treatments through simulation studies. They also found that the two sample t-test is less
powerful for minimization than complete randomization for small treatment difference, but
more powerful if larger treatment difference exists. In Shao, Yu and Zhong (2010) some
theoretical work are done to study conservativeness of the two sample t-test. The following
linear model with outcomes Yij for patient i under treatment j, j = 0, 1, is assumed for
covariate-adaptive biased coin design,

Yij = µj + bZi + εij

where Zi is a univariate covariate, Zis are independent and identically distributed, µj and b
are unknown parameters and εijs are independent and identically distributed random errors
and independent of Zis. They theoretically proved that the two sample t-test is conservative
by assuming responses follow the above simple homogeneous linear model. Moveover, a
bootstrap test is proposed to adjust Type I error under covariate-adaptive biased coin design.

In the literature, the results of statistical inference for covariate-adaptive designs are
restricted in several aspects. (1) Conclusions are mainly drawn by simulation, theoretical
work is very limited. Shao, Yu and Zhong (2010) proved the property of two sample t-
test based on covariate-adaptive biased coin design, which is a stratified design and less
commonly used in practice. (2) Only two sample t-test is discussed, where no covariate
information is incorporated in final analysis. In practice, it is often that a subset of ran-
domization covariates are used in final statistical inference. The corresponding theoretical
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properties remain unknown. (3) All studies focus on hypothesis testing for comparing
treatment effects. There is very little, if any, discussion about inference of covariates un-
der covariate-adaptive designs in the literature. In view of the importance of inference of
covariates in clinical and medical studies, for example, in some personalized medicine and
biomarker finding studies, we also want to study inference properties for covariates under
covariate-adaptive clinical trials.

3. Statistical Inference for CAR

3.1 Framework

We consider the same setting and follow the notations in Ma et al. (2014). Suppose two
treatments 1 and 2 are studied under CAR, µ1 and µ2 are main effects of treatment 1 and
2, respectively. Let N be the total number of patients enrolled in the study. Let Ii be
the assignment of the ith patient, i.e., Ii = 1 for treatment 1 and Ii = 0 for treatment 2,
i = 1, 2, ..., N . The following model is assumed for the response of the ith patient Yi,

Yi = µ1Ii + µ2(1− Ii) + β1Xi,1 + ...+ βpXi,p + γ1Zi,1 + ...+ γqZi,q + εi, (1)

where

- Xi,ks and Zi,js are discrete or continuous covariates which are independent and iden-
tically distributed as Xk and Zj , k = 1, ..., p and j = 1, ..., q;

- both Xi,ks and Zi,js are used in the randomization procedure, but only Xi,ks are used
in final statistical inference, k = 1, ..., p and j = 1, ..., q;

- all covariates are independent of each other, and EXk = 0 and EZj = 0 for all k and
j, k = 1, ..., p and j = 1, ..., q;

- εis are independent and identically distributed random errors with mean zero and
variance σ2

ε and independent of Xk and Zj ,k = 1, ..., p and j = 1, ..., q.

To study statistical inference for CAR, it is assumed only partial randomization co-
variates, Xk, k = 1, ..., p, are implemented into the analysis step. The following working
model is used to do statistical inference,

E[Yi] = µ1Ii + µ2(1− Ii) + β1Xi,1 + ...+ βpXi,p. (2)

Under the working model (2), the ordinary least squares (OLS) method is used to obtain
the estimator of β, which has the explicit form,

β̂ = (X⊤X)−1X⊤Y.

When model (2) is constructed to study clinical data collected from a CAR, the primary
interest is usually to compare treatment effects between different groups. The following
hypothesis testing is used to compare treatment effects of µ1 and µ2.

H0 : µ1 − µ2 = 0 versus HA : µ1 − µ2 ̸= 0. (3)

The test statistic for hypothesis testing (3) has the form.

T =
Lβ̂

(σ̂2L(X⊤X)−1L⊤)1/2
, (4)
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where L = (1,−1, 0, ..., 0) and σ̂2 = (Y−Xβ̂)⊤(Y−Xβ̂)/(N−p−2). If |T | > Z1−α/2,
where Z1−α/2 is (1− α/2) quantile of a standard normal distribution, we will reject the
null hypothesis, otherwise accept the null hypothesis.

Besides testing treatment effects, we consider general forms of hypothesis testing for
significance of covariates. Let C be an m × (p + 2) matrix of rank m with m < (p + 2),
where entries of the first two columns of C are all zeros so that Cβ doesn’t include any
treatment effects. Then the hypothesis testing of interest is,

H0 : Cβ = ξ0 versus HA : Cβ = ξ1 ̸= ξ0. (5)

The test statistic for hypothesis testing (5) is,

T ∗ =
m−1(Cβ − ξ0)

⊤[C(X⊤X)−1C⊤]−1(Cβ − ξ0)

σ̂2
. (6)

If T ∗ > χ2
m,(1−α)/m, where χ2

m,(1−α) is (1− α) quantile of a χ2 distribution with degree
of freedom m, we will reject the null hypothesis, otherwise accept the null hypothesis.

A special case of testing (5) is evaluating significance of a single covariate (biomarker).
Without loss of generality, we consider the hypothesis testing for β1, the coefficient of X1.
To test the significance of β1, the hypothesis is

H0 : β1 = 0 versus HA : β1 ̸= 0. (7)

The test statistic for hypothesis testing (7) can be reduced to,

T1 =
ℓβ̂

(σ̂2ℓ(X⊤X)−1ℓ⊤)1/2
, (8)

where ℓ = (0, 0, 1, 0, ..., 0). If |T1| > Z1−α/2, where Z1−α/2 is (1− α/2) quantile of a
standard normal distribution, we will reject the null hypothesis, otherwise accept the null
hypothesis.

In clinical trials, CAR are usually based on discrete covariates (Taves, 2010). If a con-
tinuous covariate is to be used in randomization, a continuous-discrete conversion need
be performed to breakdown the continuous covariate into a discrete variable with sev-
eral subcategories. Let C = {j | Zj is continuous, j = 1, ..., q} and C∗ = {k |
Xk is continuous, k = 1, ..., p}. If k ∈ C∗ or j ∈ C, the covariate-adaptive design is
applied with respect to discrete variables, d∗k(Xk) or dj(Zj), where d∗k, dj are discrete
functions. Suppose X̃i,k and Z̃i,j are ith observations of covariates X̃k and Z̃j , k = 1, ..., p
and j = 1, ..., q. X̃i,k and Z̃i,j are used in the covariate-adaptive randomization process.
We further define three levels of imbalance between patients in two treatments. Consider
X̃k have s∗k levels and Z̃j have sj levels, resulting in

∏p
k=1 s

∗
k

∏q
j=1 sj strata in total. Let

Wi = (X̃i,1, ..., X̃i,p, Z̃i,1, ..., Z̃i,q) represents the covariate profile of the ith patient used in
randomization, i.e., Wi = (xt11 , x

t2
2 , ..., x

tp
p , zr11 , zr22 , ..., z

rq
q ) if X̃i,k is at level xtkk and Z̃i,j

is at level zrjj . For convenience, we use (t1, t2, ..., tp, r1, r2, ..., rq) to denote the stratum
formed by patients who have the same covariate profile (xt11 , x

t2
2 , ..., x

tp
p , zr11 , zr22 , ..., z

rq
q ),

and use (k; tk) to denote the margin formed by patients with X̃k = xtkk , and similarly (j, rj)

to denote the margin formed by patients with Z̃j = z
rj
j . Then let

- DN be the difference between the numbers of patients in treatment group 1 and 2 as total,
i.e., the number in group 1 minus the number in group 2;

- DN (k; tk) and DN (j; rj) be the differences between the numbers of patients in the two
treatment groups on the margin (k; tk) and (j, rj), respectively;

- DN (t1, t2, ..., tp, r1, r2, ..., rq) be the difference between the numbers of patients in the
two treatment groups within the stratum (t1, t2, ..., tp, r1, r2, ..., rq).
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3.2 Properties

First, we consider the hypothesis tests for comparing treatment effects. We have the fol-
lowing main theorem.

Theorem 3.1 Suppose that a covariate-adaptive design satisfies following two conditions:

(A) the overall imbalance is bounded, that is, DN = Op(1);

(B) the marginal imbalances for all covariates are bounded in probability, that is, DN (k; tk) =
Op(1) and DN (j; rj) = Op(1), k = 1, 2, ..., p, j = 1, 2, ..., q.

Then

(i) under H0 : µ1 − µ2 = 0,

T
D−→ N(0, τ2), τ2 =

σ2
ε +

∑
j∈C

γ2j σ
2
δ,j

σ2
ε +

q∑
j=1

γ2jVar(Zj)
=

σ2
δ

σ2
z
. (9)

where σ2
z = σ2

ε +
q∑

j=1
γ2jVar(Zj), σ2

δ = σ2
ε +

∑
j∈C

γ2j σ
2
δ,j and σ2

δ,j = E[Var(δi,j |dj(Zi,j))].

Hence,

(1) If γj = 0, j = 1, 2, ..., q, then τ = 1. Thus, when all covariates Zs are not related to
Y , the hypothesis testing (3) can achieve correct Type I error.

(2) If at least one γj ̸= 0, j = 1, 2, ..., q, then τ < 1. In this case, the hypothesis testing
(3) is conservative.

(ii) under HA : µ1 − µ2 ̸= 0, consider a sequence of local alternatives, i.e., µ1 − µ2 = δ/
√
N

for a fixed δ ̸= 0, then

T
D−→ N(∆, τ2), ∆ =

δ

2σz
. (10)

Hence, the power increases as more covariates are incorporated into model.

In Theorem 3.1, two mild conditions (A) and (B) are assumed to derive the asymptotic
distribution of the test statistic for comparing treatment effects. These conditions are sat-
isfied by a variety of covariate-adaptive designs (see Corollary 3.2 for examples). Under
these conditions, the numerator Lβ̂(= µ̂1 − µ̂2), has a smaller variance than the model-
based variance estimator in the denominator if covariates are omitted from the working
model. Based on the asymptotic distributions of the test statistic under both the null hy-
pothesis and the alternative hypothesis, Type I error is smaller than the nominal level if at
least one γj ̸= 0, and power performance can be discussed as well.

Now consider the power of the hypothesis testing (2), under the alternative hypothesis,
the power is

Pr(|T | > Z1−α/2) = Φ(
δ

2σδ
−

σzZ1−α/2

σδ
) + Φ(− δ

2σδ
−

σzZ1−α/2

σδ
) + o(1).

The power of test (2) under complete randomization (based on the same setting as described
in Section 2.2) is

Pr(|T | > Z1−α/2) = Φ(
δ

2σz
− Z1−α/2) + Φ(− δ

2σz
− Z1−α/2) + o(1).
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From the power expressions for both covariate-adaptive designs and complete randomiza-
tion above,it can be concluded that the limiting power under covariate-adaptive designs is
smaller than that under complete randomization when δ is relatively small, and it is larger
than complete randomization when δ is large. This conclusion agrees with simulation stud-
ies about two sample t-test in literature (Forsythe, 1987; Shao, Yu and Zhong, 2010) for
certain covariate-adaptive designs, and our conclusion is more general, which can be ap-
plied a general family of CAR.

The following theorem shows that hypothesis tests regarding significance of covariates
can still achieve correct Type I error in covariate-adaptive designs, even though the power
would be affected if not all covariates are incorporated in the analysis model.

Theorem 3.2 Under the same conditions as in Theorem 3.1,

(i) under H0 : Cβ = ξ0,

T ∗ D−→ χ2
(m)/m. (11)

Hence, the hypothesis testing (5) can achieve correct Type I error.

(ii) under HA : Cβ = ξ1, consider a sequence of local alternatives, i.e., (ξ1 − ξ0) = η/
√
N

for a fixed η ̸= 0, then

T ∗ D−→ χ2
(m)(λ)/m, λ = η⊤[CM−1C⊤]−1η/σ2

z , (12)

where M = diag(1/2, 1/2,Var(X1), ...,Var(Xp)) and λ is the noncentral parameter.
Therefore, the power increases as more covariates are incorporated into model.

Theorem 3.1 and Theorem 3.2 imply that the overall difference and marginal imbal-
ances play important roles in statistical inference for covariate-adaptive designs. For strati-
fied permuted block design, the difference between the number of patients in two treatments
within any stratum is the half of block size at maximum. Since the number of strata is finite
for any covariate-adaptive design, the overall and marginal imbalance are less than a con-
stant, thus the conditions (A) and (B) are satisfied. The theoretical properties for Pocock
and Simon’s marginal procedure remains unknown for decades and recently are derived by
Hu and Zhang (2013). In their paper, the authors demonstrate the marginal imbalances and
overall imbalance are bounded in probability for Pocock and Simon’s marginal procedure,
thus the conditions (A) and (B) are also satisfied. Furthermore, Hu and Hu (2012) proposed
a large class of covariate-adaptive designs, which satisfy the conditions (A) and (B). Here
we summarize these results in the following corollary.

Corollary 3.1 Both Theorem 3.1 and Theorem 3.2 hold under the following covariate-
adaptive designs:

(i) Pocock and Simon’s marginal procedures (Pocock and Simon, 1975);

(ii) stratified permuted block designs; and

(iii) the class of covariate-adaptive designs proposed by Hu and Hu (2012).

REMARK 3.1 If we consider complete randomization as a special case of covariate-adaptive
design, it does not satisfy the conditions in Theorem 3.1, because the marginal imbalance
DN (j; rj) = Op(N1/2) for complete randomization. The numerical study in the next
section shows that the test of treatment effect under complete randomization is not conser-
vative.
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Based on Theorem 3.2, we can see that hypothesis testing of covariates is still valid
in the sense of Type I error under covariate-adaptive designs. A linear regression model
can be directly used to test significance of prognostic factors with a working model only
containing partial covariate information. One the other hand, however, the power may be
harmed by omitting important covariates in the working model. Consider the non-central
parameter in (12), it increases with σ2

z reduced, so the power increases with fewer important
covariates omitted from the model. Therefore, it is helpful of incorporating more important
covariates, if possible, to obtain a more powerful test.

Corollary 3.2 gives an important special case of testing covariates, where only a single
coefficient is considered.

Corollary 3.2 Under the same conditions as in Theorem 3.1,

(i) under H0 : β1 = 0,

T1
D−→ N(0, 1). (13)

Hence, the hypothesis testing (7) can achieve correct Type I error.

(ii) under HA : β1 ̸= 0, consider a sequence of local alternatives, i.e., β1 = δβ1/
√
N for a

fixed δβ1 , then

T1
D−→ N(∆β1 , 1), ∆β1 =

δβ1σ1
σz

,

where σ2
1 = Var(X1). Hence, the power increases as more covariates are incorporated

into model.

According to Theorem 3.1 and Theorem 3.2, a model with only influential covariates
can achieve valid tests. It is known that too many unnecessary variables in the model will
increase variations of estimators and affect statistical results. Hence, if only influential
variables are incorporated in the model, it will not only reduce unnecessary variations, but
also give valid inference. Detailed proofs of Theorem 3.1 and Theorem 3.2 and extensive
simulation studies are in Ma et al. (2014).

4. Discussions

4.1 Assumption of Independent Covariates

In Section 3, the properties of statistical inference are studied for linear models under a large
family of covariate-adaptive randomization. Among several assumptions to derive the the-
oretical results, it is assumed that all the covariates used in randomization are independent
of each other. Based on this critical assumption of independence and other assumptions,
it is proved that the hypothesis testing to compare treatment effects between two groups is
conservative and the hypothesis testing for a linear combination of covariates remains valid.
However, despite its importance in theory, the independence assumption is very strong and
may be not satisfied in practice. Therefore, there are concerns whether the conclusions in
the last section still hold if covariates are correlated. A simulation studies show that the
conclusion holds under certain cases and more theoretical adjustment is desired.

A simulation case. The purpose is to study Type I error of hypothesis testing for com-
paring treatment effects when randomization covariates are correlated. Simulations are
carried out for three randomization procedures: Pocock and Simon’s marginal procedure,
stratified permuted block design and complete randomization. The following linear model
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Table 1: Simulated Type I error for Pocock and Simon’s marginal procedure (PS), strati-
fied permuted block design (SPB) and complete randomization (CR) in % with ρ = 0.5.
Simulations based on 10000 runs.

Randomization N t-test lm(Z1) lm(Z2) lm(Z1, Z2)
PS 100 1.07 3.34 3.40 4.90

200 0.82 3.27 3.23 4.98
500 0.82 3.12 3.27 4.88

SPB 100 1.10 3.42 3.63 5.15
200 1.07 3.36 3.37 5.11
500 0.86 3.38 3.40 5.13

CR 100 5.05 4.97 4.99 5.08
200 5.27 5.10 5.44 5.36
500 4.90 4.98 4.89 4.67

with two discrete covariates Z1 and Z2 is assumed to be the underlying true model with
µ1 = µ2,

Yi = µ1Ii + µ2(1− Ii) + Zi,1 + Zi,2 + εi,

where εi is distributed as N(0, 1). Z1 and Z2 follow Bernoulli(0.5) with the correlation
between Z1 and Z2 equal to ρ = 0.5. The hypothesis tests are based on the two sample
t-test (t-test), the linear model with a single covariate Z1 (lm(Z1)), the linear model with a
single covariate Z2 (lm(Z2)), the linear model with both covariate Z1 and Z2 (lm(Z1, Z2)).

In simulations, the following setting of parameters is used. In Pocock and Simon’s
marginal procedures, equal weights are assigned to two covariates and the biased coin
probability is equal to 0.75. The block size 4 is used for stratified permuted block design.
The simulation results are presented in Table 1.

4.2 Inference for GLM

Most work in this paper is in the linear model framework where outcomes of clinical trials
are continuous. When responses are binary, Feinstein and Landis (1976) and Green and
Byar (1978) studied statistical problems comparing successful rate between two treatment
groups on a special case where there are two strata and two treatment considered. Under
this restricted assumption, they showed that Type I error is smaller than the nominal level
under stratified randomization. Gail, Wieand and Piantadosi (1984) studied estimates of
treatment effect in randomized experiments with nonlinear regression and omitted covari-
ates. Gail (1988) studied properties of the score test for perfectly balanced studies across
strata (not randomization) on a large family of generalized linear models. The following
underlying model between response and treatment is assumed,

E(Y |T,X = i) = h(αT + βi),

where Y is the response variable, α is the treatment effect, and βi is the stratum parameter
for X = i. This covers a large range of generalized linear model. For example, h(η) =
exp(η)/[1+exp(η)] in logistic regression. The properties of the score test is studied under
perfectly balanced studies with no covariates included in analysis, so the working model is

E(Y |T,X = i) = h(µ+ αT ).

JSM 2014 - Biopharmaceutical Section

880



The properties of Type I error for several kinds of generalized linear models are given
under the studies that are perfectly balanced. For example, Type I error is shown to be
conservative for logistic regression. However, the properties of the score test and other
tests, such as the Wald test and the likelihood ratio test, are unknown for general covariate-
adaptive designs. Considering wide applications of clinical trials with response variables
that are not continues, the inference properties of generalized linear models and even more
advanced models under covariate-adaptive randomized clinical trials are desired. Those
topics are left for future research.

5. Conclusion

In this paper, we reviewed theoretical properties of statistical inference under CAR based
on linear models. In Section 2, the asymptotic distributions of several test statistics under
both null and alternative hypotheses are given. Instead of focusing on a specific covariate-
adaptive design, the problem is studied from the angle of imbalance measure of different
levels (overall, marginal, within-stratum). So the conclusions can be applied to a broad
range of covariate-adaptive designs, including stratified permuted block design and Pocock
and Simon’s marginal procedure. For example, to apply Theorems 3.1 and 3.2 to a specific
covariate-adaptive randomized clinical trial, one just need to check the conditions (A) and
(B) to see if they are satisfied. Furthermore, in Section 3 we discussed topics about infer-
ence properties based on more general assumptions and statistical models. The results sum-
marized in this paper provide new insights about balance and efficiency of clinical trials,
and the framework can be used to study other statistical methods under covariate-adaptive
designs.
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