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Abstract
Many longitudinal studies, especially in clinical trials, suffer from missing data issues. Most esti-

mation procedures assume that the missing values are ignorable. However, this assumption leads to
unrealistic simplification and is implausible for many cases. When non-ignorable missingness are
preferred, classical pattern-mixture models with the data stratified according to a variety of miss-
ing patterns and a model specified for each stratum, are widely used for longitudinal data analysis.
But this assumption usually results in under-identifiability because of the need to estimate many
stratum-specific parameters. Further, pattern mixture models have the drawback that a large sample
is usually required. In this paper, the continuous latent factor model is proposed and this novel
approach overcomes limitations which exist in pattern mixture models by specifying a continuous
latent factor. The advantages of this model, including small sample feasibility, are evaluated by
comparing with Roy’s pattern mixture model, based on simulations and an application on a clinical
study of AIDS patients with advanced immune suppression.
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1. Introduction

Missing values in multivariate studies pose many challenges. The primary research of in-
terest focuses on accurate and efficient estimation of means and covariance structure in
the population. The assumption and estimation of the covariance structure provide the
foundation of many statistical models, for instance, structural equation modeling, princi-
ple component analysis, and so on. Literature on multivariate missing data methods was
reviewed by Little and Rubin (2002), and Schafer (1997). For some frequentist statistical
procedures, we may generally ignore the distribution of missingness only when the miss-
ing data are missing completely at random (MCAR), such as in the generalized estimation
equations (GEE) estimation procedure. For likelihood or Bayes procedures, however, we
may ignore the missing values when the missing data are missing at random (MAR), as
in for example, the estimation procedure for linear mixed models. However, if missing at
random in the data is questioned, and one suspects that the missing mechanism is NMAR,
i.e. missingness may depend on missing values, then the joint modeling of the complete
data and the missing indicators is required. The reason to follow this modeling method
is that the resulting estimates of population parameters may be biased (Pirie and Leupker,
1988) unless these NMAR aspects of the data are taken into account in the analysis. Fur-
thermore, the results of the study may not be feasible to generalize, because the observed
respondents may not represent the target population. From a practical aspect, investigators
could not point out whether violations of the MAR assumption are severe enough to result
in a conclusions that are not valid.

Models for NMAR data have been proposed for a few decades, including selection
models (Diggle and Kenward, 1994a), pattern-mixture models (Diggle and Kenward, 1994b),
as well as shared-parameter models (Diggle and Kenward, 1994b). Many researchers have
extended this field in the last decade. Some authors have incorporated latent class structure
into pattern-mixture models to jointly describe the pattern of missingness and the outcome
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of interest (Lin et al., 2004; Muthn et al., 2003; Roy, 2003). Lin et al. (2004) proposed
a latent pattern-mixture model where the mixture patterns are formed from latent classes
that link a longitudinal response with a missingness process. Roy (2003) investigated la-
tent classes to model dropouts in longitudinal studies to effectively reduce the number of
missing-data patterns. Muthen et al. (2003) also discussed how latent classes could be
applied to non-ignorable missingness. Jung et al. (2011) extended traditional latent class
models, where the classes are defined by the missingness indicators alone.

All the above extensions are from the family of pattern-mixture models, and these mod-
els stratify the data according to time to dropout or missing indicators alone and formulate
a model for each stratum. This usually results in under-identifiability, since we need to
estimate many pattern-specific parameters even though the eventual interest is usually on
the marginal parameters. As the alternative, Guo et al. (2004) extended pattern-mixture to
a random pattern-mixture model for longitudinal data with dropouts. The extended model
works effectively on the case where a good surrogate for the dropout can be representative
for the dropout process. In most real studies, however, it maybe impossible to find good
measures for the missing mechanism. For instance, in a longitudinal study with many inter-
mittent missing values, time to dropout is not necessarily a good measure, and it probably
wouldn’t capture most features of missingness. That is, this measurement can not repre-
sent for subjects who have drop-in responses. Instead, modeling for missing indicators is
necessary in this case. Further, models other than the normal distribution will be required
to describe the missingness process. The violation of joint multivariate normality will lead
to an increase of computation difficulties. In the proposed new model, missing indicators
are directly modeled with a continuous latent variable, and this latent factor is treated as a
predictor for latent subject-level random effects in the primary model of interests. Some in-
formative variables related with missingness (e.g. time to first missing, number of switches
between observed and missing responses) will be served as covariates in the modeling of
missing indicators. The detailed description of the new model will be given in next section.

2. Models and Estimation

2.1 Proposed Model

In this section we present a continuous latent factor model (CLFM) in longitudinal data
with non-ignorable missingness. For a J-time period study which may have as many as 2J

possible missing patterns; modeling the relationship among the missing indicators and their
relationships to the observed data is a challenge. The underlying logic of our new model
comes from the assumption that a continuous latent variable exists and allows flexibly for
modeling missing indicators. Suppose we have a data set with n independent individuals.
For individual i (i = 1, · · · , n), let Yi = (Yi1, · · · , YiJ)′ be a J-dimensional observed
vector with continuous elements used to measure a q-dimensional continuous latent vari-
able bi. Let Ri = (ri1, · · · , riJ)′ be a J-dimensional observed missing vector with binary
elements and ui be a continuous latent variable, which is used to measure Ri. The pri-
mary model of interest will be the joint distribution of Yi and Ri, given ui and possibly
additional observed covariates Xi, where Xi represents p-dimensional fully observed co-
variates. Figure 1 (model D) provides a diagram representing the proposed model for all the
observed and latent variables. As indicated in Figure 1, X1i, containing both time-variant
and time-invariant attributes for subject i, is the p1 dimensional covariates used in model
B; X2i is the p2 dimensional covariates used in model A; a p3 dimensional time-invariant
covariate vector X3i is used in modeling link function between bi and ui. These three
covariate-vectors form the covariates for model D, i.e. p = p1 + p2 + p3.
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Figure 1: Proposed model diagram: observed quantities are described in squared boxes,
latent quantities are in circled boxes

One of the fundamental assumptions of this new model is that Yi is conditionally in-
dependent of Ri given the latent variables ui and bi. This is a natural assumption when
modeling relationships between variables measured with error, i.e., we want to model the
relationship between the underlying variables, not the ones with error. Finally, we assume
that Yi is conditionally independent of ui given bi, and likewise, Ri is conditionally inde-
pendent of bi given ui. Hence, we introduce the following model for the joint distribution
of the responses Yi and missing indicators Ri,

f(Yi, Ri|Xi) =

∫∫
f(Yi|bi, X1i)f(Ri|ui, X2i)f(bi|ui,X3i)f(ui)duidbi (1)

with specific parametric models specified as follows: (Np(a, B) denotes the p-variate nor-
mal distribution with mean a and covariance matrix B)

(Yi|bi, X1i) ∼ind NJ(X1iβ + Z1ibi, Σε) (2)

(bi|ui,X3i) ∼ind Nq(X
′
3iγ, ζi) (3)

ui ∼ind N1(0, σ
2
u) (4)

f(Ri|ui, X2i) =
J∏
j=1

π
rij
ij (1− πij)1−rij (5)

A linear mixed model (growth curve) is used for the relationship between Yi and bi (model
B in Figure 1), where X1i is a known (J×p1) design matrix containing fixed within-subject
and between-subject covariates (including both time-invariate and time-varying covariates),
with associated unknown (p1 × 1) parameter vector β, Z1i is a known (J × q) matrix for
modeling random effects, and bi is an unknown (q × 1) random coefficient vector. We
specify Yi = X1iβ +Zibi + εi, where the random error term εi is a J-dimensional vector
with E(εi) = 0, V ar(εi) = Σε, and εi is assumed independent of bi. Furthermore, the
J × J covariance matrix Σε is assumed to be diagonal, that any correlations found in the
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observation vector Yi are due to their relationship with common bi and not due to some
spurious correlation between εi. A continuous latent variable model is assumed for the
relationship between Ri and ui (model A in Figure 4) with πij = Pr(rij = 1) representing
the probability that the response for subject i at time point j is missing. We apply the
logit link for the probability of the missingness, i.e., log(

πij(ui, X2i)
1−πij(ui, X2i)

) = ui − τj ≡
X2iα + Z2iui, where τj are unknown parameters for determining an observation at time
point j is missing. As discussed earlier, this relationship is equivalent to a random logistic
regression, with appropriate design matrices X2i and Z2i. A latent variable regression,
bi = X

′
3iγ + ζi, is used to establish the relationship between latent variable bi and ui,

where X
′
3i = [X3i ui] is a p3 + 1 dimensional vector combining X3i and ui, γ is the

(p3 + 1) × q unknown regression coefficients for X
′
3i and the q × q matrix Ψ determines

variance-covariance structure for error term ζi. Finally the latent continuous variable ui is
assumed to be normally distributed with mean 0 and variance σ2u.

Note that the maximum likelihood (ML) estimation of the model (2) - (4) requires the
maximization of the observed likelihood, after integrating out missing data Ymis and latent
variables b and u from complete-data likelihood function. Detail of the ML estimation
technique will be given in next section.

2.2 Maximum Likelihood Estimation

The main objective of this section is to obtain the ML estimate of parameters in the model
and standard errors on the basis of the observed data Yobs and R. The ML approach is an
important statistical procedure which has many optimal properties such as consistency, effi-
ciency, etc. Furthermore, it is also the foundation of many important statistical methods, for
instance, the likelihood ratio test, statistical diagnostics such as Cook’s distance and local
influence analysis, among others. To perform ML estimation, the computational difficulty
arises because of the need to integrate over continuous latent factor u, random subject-level
effects b, as well as missing responses Ymis. The classic Expectation-Maximization (EM)
algorithm provides a tool for obtaining maximum likelihood estimates under models that
yield intractable likelihood equations. The EM algorithm is an iterative routine requiring
two steps in each iteration: computation of a particular conditional expectation of the log-
likelihood (E-step) and maximization of this expectation over the parameters of interest
(M-step). In our situations, in addition to the real missing data Ymis, we will treat the
latent variables b and u as missing data. However, due to the complexities associated with
the missing data structure and the nonlinearity part of the model (model A in Figure 1), the
E-step of the algorithm, which involves the computations of high-dimensional complicated
integrals induced by the conditional expectations, is intractable. To solve this difficulty, we
propose to approximate the conditional expectations by sample means of the observations
simulated from the appropriate conditional distributions, which is known as Monte Carlo
Expectation Maximization algorithm. We will develop a hybrid algorithm that combines
two advanced computational tools in statistics, namely the Gibbs sampler (Geman and Ge-
man, 1984) and the Metropolis Hastings (MH) algorithm (Hastings, 1970) for simulating
the observations. The M-step does not require intensive computations due to the distinct-
ness of parameters in the proposed model. Hense, the proposed algorithm is a Monte Carlo
EM (MCEM) type algorithm (Wei and Tanner, 1990). The description of the observed
likelihood function is given in the following.

Given the parametric model (2) - (4) and the i.i.d. J × 1 variables Yi and Ri, for
i = 1, . . . , n, estimation of the model parameters can proceed via the maximum likelihood
method. Let Wi = (Yobs

i ,Ri) be the observed quantities, di = (Ymis
i ,bi, ui) be the

missing quantities, and θ = (α, β, τj , γ,Ψ, σ
2
u,Σε) be the vector of parameters relating Wi
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with di and covariates Xi. With Birch’s regularity conditions (Birch, 1964) for parameter
vector θ, the observed likelihood function for the model (2) - (4) can be written as

Lo(θ|Yobs,R) =
n∏
i=1

f(Wi|X; θ) =
n∏
i=1

∫
f(Wi,di|Xi; θ)ddi (6)

where the notation for the integral over di is taken generally to include the multiple con-
tinuous integral for ui and bi, as well as missing observations Ymis

i . In detail, the above
function can be rewritten as following:

Lo(θ|Yobs,R) =

n∏
i=1∫∫∫

1√
2π
|Σε|−1/2exp

{
−1

2
(Ycom

i −X1iβ − Z1ibi)
TΣ−1ε (Ycom

i −X1iβ − Z1ibi)

}
1√
2π
|Σb|−1/2exp

{
−1

2
(bi −X

′
3iγ)TΣ−1b (bi −X

′
3iγ)

}
1√

2πσ2u
exp

{
− u2i

2σ2u

}


J∏
j=1

(
exp(X2iα+ Z2iui)

1 + exp(X2iα+ Z2iui)

)rij (
1− exp(X2iα+ Z2iui)

1 + exp(X2iα+ Z2iui)

)1−rij
 duidbidY

mis
i

(7)
where Ycom

i = (Yobs
i ,Ymis

i ), Σb = σ2uγγ
T + Ψ. As discussed above, the E-step involves

complicated, intractable and high dimension integrations.
In order to obtain valid ML estimates, one needs to investigate the convergence of the

EM algorithm. However, in our case, determining the convergence of the MCEM algorithm
is not straightforward. Meng and Schilling (1996) pointed out that the log-likelihood func-
tion can ’zigzag’ along the iterates even without implementation or numerical errors, due to
the variability introduced by simulation at the E-step. Further to evaluate the observed-data
log-likelihood function, some numerical method has to be used because of a closed form
is lacking. In the absence of accurate evaluation of the observed-data log-likelihood func-
tion, we could not judge whether any large fluctuation is due to the implementation errors,
to the numerical errors in computing the log-likelihood values, or to non-convergence of
the MCEM algorithm. We will implement bridge sampling to solve this problem, as sug-
gested by Meng and Schilling (1996). Standard error estimates of the ML estimates can be
obtained by applying the formula of Louis. (Louis, 1982)

3. Applications

3.1 Simulation Studies

To study the effectiveness of the continuous latent factor model (CLFM), we simulated data
that includes non-ignorable missingness from Diggle-Kenward selection model and fitted
different models to investigate how much the results changed accordingly. Firstly, the sim-
ulation were carried with 500 replicates, as follows. Given the known fixed effects, random
effects, and link parameter values, plus the random error covariances, we generated miss-
ing values for each subject in the study. For sample size, we included two different sizes,
a moderate sample size 300, as well as a small sample size 80. That is, we simulated data
from baseline and at follow-up times that were observed. The total length of time in the
study was six time points. Once each replicate was generated using the true known param-
eter values associated with the underlying model, three models were fitted and compared,
including classic model where missing data are excluded from estimation, Roy’s model,
and CLFM model.
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Figure 2: Point estimates and confidence interval (credible interval for Bayesian estimates)
for fixed effects from simulated repeated-measure model with higher missing probability.
The study sample size is 80. The true values are indicated by the dashed lines. 1, ignorable
model; 2, Roy’s model; 3, CLFM model from Bayesian approach.

Figures 2 and 3 summarize point estimates and standard errors for both fixed and ran-
dom effects. As expected, CLFM produced the best results for both cases, in terms of MSE.
More specifically, one can observe that the ignorable likelihood approach tends to underes-
timate fixed intercept and slope in the model; furthermore 95 percent confidence intervals
obtained from this approach do not cover the true values.

In Figure 3, true values of variance components in random effects, including σ2b0 , σ2b1
and σb0b1 , are labeled as blue dotted lines, and red lines represent the non-significant level.
Based on these plots, the variance components are indicated to be non-significant from the
ignorable likelihood approach and Roy’s model, but CLFM shows the correct result. In
summary, CLFM can correct bias and generate efficient estimators when missing values
are not ignorable in a study that contains substantial of missingness.

3.2 Randomized Study of Dual or Triple Combinations of HIV-1 Reverse Transcrip-
tase Inhibitors

In this section, we will illustrate an application of CLFM by using data from a random-
ized, double-blind, study of AIDS patients with advanced immune suppression, which is
measured as CD4 counts ≤ 50 cells/ mm3. (Henry and Erice, 1998)

3.2.1 Description of Study

Patients in an AIDS Clinical Trial Group (ACTG) Study 193 A were randomized to dual
or triple combinations of HIV-1 reverse transcriptase inhibitors. Specifically, HIV patients
were randomized to one of four daily regimens containing 600 mg of zidovudine: zidovu-
dine plus 2.25 mg of zalcitabine; zidovudine plus 400 mg of didanosine; zidovudine al-
ternating monthly with 400 mg didanosine; or zidovudine plus 400 mg of didanosine plus
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Figure 3: Point estimates and confidence interval (credible interval for Bayesian estimates)
for random effects from simulated repeated-measure model with higher missing probabil-
ity. The study sample size is 80. The true values are indicated by the blue dashed lines,
the non-significant level is indicated by the red dashed lines. 1, ignorable model; 2, Roy’s
model; 3, CLFM model from Bayesian approach.

400 mg of nevirapine (triple therapy). In this study, we focus on the comparison of the
first three treatment regimens (dual therapy) with the forth (triple therapy)as described in
Fitzmaurice’s work. (Fitzmaurice and Laird, 2004)

Measurements of CD4 counts were scheduled to be collected at baseline and at 8-week
intervals during follow-up. However, the CD4 count data are unbalanced due to unequal
measurements and also CD4 counts have missing data that were caused by skipped visits
and dropout. Table 1 presents four randomly selected subjects. The number of measure-
ments of CD4 counts during the first 40 weeks of follow-up varied from 1 to 9, with a
median of 4, based on the available data. The goal in this study is to compare the dual and
triple therapy groups in terms of short-term changes in CD4 counts from baseline to week
40. The responses of interest are based on log transformation CD4 counts, log(CD4 counts
+ 1), available on 1309 patients.

Figure 4 describes the trend in the mean response in the dual and triple therapy groups
via lowess smoothed curves on observed data. The curves reveal a modest decline in the
mean response during the first 16 weeks for the dual therapy group, followed by a steeper
decline from week 16 to week 40. By comparison, the mean response increases during the
first 16 weeks and declines after for the triple therapy group. The rate of decline from week
16 to week 40 appears to be similar for the two groups. However, one has to notice that
there is a substantial amount of missing data in the study, therefore the plot of the mean
response over time can be potentially misleading, unless the data are missing completely at
random (MCAR). Moreover, based on a small random sample of individuals, we observed
that those with drop-out tend to have large CD4 counts. In other words, there is a trend that
a patient in the study tended to skip a visit due to a large magnitude of current CD4 count.
That is, a patient tends to skip a visit because of no treatment benefits or side effects. When
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Table 1: Data example on log CD4 counts for four randomly selected subjects from ACTG
study 193A

Subject ID Group Time log(CD4 + 1)
56 0 0.0 1.7047
56 0 8.1 1.7981
56 0 16.1 0.6932
56 0 25.4 1.0986
56 0 33.4 0.6932
56 0 39.1 0.6932
529 1 0.0 4.0073
529 1 7.4 3.7136
529 1 16.4 3.5264
529 1 25.4 3.1781
529 1 33.6 3.6636
763 0 0.0 2.8622
763 0 8.0 1.9459
763 0 14.9 1.6094
763 0 21.9 1.7917

data are missing due to this reason, a plot of the mean response over time can be deceptive.
Figure 5 describes observed responses at different visit points in each group. Almost all
patients from both groups are treated at baseline and their CD4 count data are collected.
There are two sharp decreases in response rate, one is from week 0 to week 8 and the other
is from week 32 to week 40. Approaching the end of the study, most patients are dropping
out from study, and response rates at week 40 are close to 20 percent for both treatments.
The missing information can substantially influence the analysis and even bias findings. In
the example, we will implement CLFM which assumes missing data are not ignorable, and
compare with the conventional model that ignores missingness.

In the following we describe a model for the mean response that enables the rates of
change before and after week 16 to differ within and between groups, and this model was
also been adopted by Fitzmaurice and Laird (2004) in their work. Specifically, one could
assume that each patient has a piecewise linear spline with a knot at week 16. That is, the
response trajectory of each patient can be described with an intercept and two slopes–one
slope for the changes in response before week 16, another slope for the changes in response
after week 16. Further, we assume the average slopes for changes in response before and
after week 16 are allowed to vary by group. Because this is a randomized study, the mean
response at baseline is assumed to be the same in the two groups, as supported by Figure 4.
Hence instead of the conventional growth curve model, we applied a special growth curve
model to capture changing trends of responses on CD4 counts.

3.2.2 Model Specification

Let tij denote the time since baseline for the jth measurement on the i-th subject with
tij = 0 at baseline, we consider the following linear mixed effects model:

E(Yij |bi) =β1 + β2tij + β3(tij − 16)+ + β4Groupi × tij + β5Groupi × (tij − 16)+

+ b1i + b2itij + b3i(tij − 16)+

where Groupi = 1 if the ith subject is randomized to triple therapy, and Groupi = 0
otherwise; (tij − 16)+ = tij − 16 if tij > 16 and (tij − 16)+ = 0 if tij ≤ 16; b1i, b2i and
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Figure 4: Lowess smoothed curves of log(CD4 + 1) against time (in weeks), for subject in
the dual and triple therapy groups in ACTG study 193A

b3i are random effects in this splined growth curve model. In this model, (β1 + b1i) is the
intercept for the ith subject and has an interpretation as the true log CD4 count as baseline,
i.e. when tij = 0. Similarly, β2 + b2i is the ith subject’s slope, or rate of change in log CD4
counts from baseline to week 16, if this patient is randomized to dual therapy; (β2+β4+b2i)
is the ith subject’s slope if randomized to triple therapy. Finally, the ith subject’s slope from
week 16 to week 40 is given by {(β2 +β3)+(b2i+b3i)} if randomized to dual therapy and
{(β2 + β3 + β4 + β5) + (b2i + b3i)} if randomized to triple therapy. The model described
above will be fitted without incorporating missing data. In order to fit CLFM, one has
to specify the model for the missing part. Assume that R is a missing indicator matrix
where its (i, j)th element rij = 1 if Yij is missing and rij = 0 if it is observed. Within a
framework of CLFM, we incorporate information on missing values through modeling the
missing information matrix R with time location parameters, and a continuous latent factor
u. Further, there are strong indications which support a application of this model. Based
on Figure 5 one can see that the response variable tends to be missing over time. In other
words, time locations are good indicators for explaining missing data. From Figure 5 one
might also notice that the two therapies have identical missing proportions which suggests
a group effect for therapies is not necessary in modeling R. The continuous latent factor u
is used to describe individuals’ variability in missingness, and two regression parameters γ1
and γ2 are specified to provide information on random intercept b0 and slope b1, in order to
correct estimation bias. A third regression parameter was also explored which links u with
b3, but analysis results showed that this parameter is not significant. Hence we exclude
this parameter in the final results. To estimate CLFM, we adopt two approaches: MECM
to obtain ML estimates and full Bayesian estimates with specified conjugate priors. Point
estimates and corresponding standard errors from a Bayesian perspective are summarized
by posterior mean and standard deviation. Roy’s model is also implemented by summarized
missing patterns from R into three latent classes. (The number of latent classes for Roy’s
model is determined by information criteria)
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Figure 5: Proportions of observed responses in the dual and triple therapy groups in ACTG
study 193A

3.2.3 Summary of Analyses under MAR and MNAR

In this study, one research question of interest is treatment effects in the changes in log
CD4 counts. The null hypothesis of no treatment group differences can be expressed as
H0 : β4 = β5 = 0. The ML estimates on fixed effects from three models are given in
Table 2, including the conventional model with a MAR assumption, Roy’s model that han-
dles non-ignorable missing data from pattern-mixture modeling, and CLFM. The Bayesian
estimates for CLFM are also displayed in Table 2. For the likelihood approach with MAR
assumptions, a test of H0 : β4 = β5 = 0 yields a Wald statistic, W 2 = 59.12, with 2
degrees of freedom, and corresponding p-value is less than 0.0001. For the full Bayesian
approach, we compute Deviance information criterion (DIC) to compare two models: one
assumes no treatment effects by excluding interaction terms between treatment groups and
study time; the other assumes treatment effects are significant. DIC for a model with em-
bracing treatment effects is 15792.7, which is less than the one from the model with no
groups effects, 18076.5. Based on the criteria, ’the smaller the better’, there is evidence to
support the fact that treatment group differences in changes in log CD4 counts are signifi-
cant. The tests from Roy’s model and MCEM approach on CLFM also support this group
variety, with p-values for both less than 0.0001. Based on the magnitude of the estimate
of β4, and its standard error from all approaches, there is a significant group difference
in the rates of change from baseline to week 16. The estimated response curve for two
groups are displayed in Figure 2. In this figure, dashed lines represent the response curve
from CLFM, dotted lines correspond to results from Roy’s model, while solid lines are
results from the MAR approach; blue color describes dual therapy group, and red one cor-
responds to triple therapy. In the dual therapy group, there is a significant decrease in the
mean of the log CD4 counts from baseline to week 16, based on the ignorable likelihood
approach. The estimated change during the first 16 weeks is −0.12, which can be obtained
from 16×−0.0073. On the untransformed scale, this corresponds to an approximate 10%
decrease in CD4 counts. However, CLFM which assumes missing data are not ignorable
suggests that this decrease is not significant, since the 95 percent credible interval for β2
covers zero ([−0.01638, 0.006517]). Further, Roy’s model also confirms this finding with
the 95 percent confidence interval [−0.016076, 0.005876]. By observing missingness from
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baseline to week 16, subjects with higher log CD4 counts tend to be missing. CLFM in-
volves non-ignorable missing data in the analysis, and the average of log CD4 counts tend
to recover to a higher value. Hence, the decrease in the mean of the log CD4 counts from
baseline to week 16 is not significant, when non-ignorable missing data are considered. By
comparison, in the triple therapy group, there is a significant increase in the mean response.
Based on the ignorable approach, the estimated change during the first 16 weeks in the triple
therapy group is 0.31, (16×(−0.0073+0.0269)); the estimated slope for the triple therapy
group is 0.0196 with a standard error 0.0033. In terms of the untransformed scale, it corre-
sponds to an approximate 35 percent increase in CD4 counts. In CLFM, a similar estimate
is obtained: the corresponding estimated change is 0.36. (16 × (−0.0047 + 0.0273)); the
estimated slope for the triple therapy group is 0.0226, and it corresponds to an approximate
40 percent increase in CD4 counts.

The loess curves in Figure 4 suggest that the rate of decline from week 16 to week
40 is similar for the two groups. The null hypothesis of no treatment group difference
in the rates of change in log CD4 counts from week 16 to week 40 can be expressed as
H0 : β4 + β5 = 0. The estimates of β4 and β5 from all approaches appear to support the
null hypothesis since they are of similar magnitude but with opposite signs. In the work of
Fitzmaurice and Laird (2004), a test of the null hypothesis, H0 : β4 +β5 = 0, is given and
a Wald statistic is yielded withW 2 = 0.07, with 1 degree of freedom. The corresponding p
value is greater than 0.75 based on the ignorable likelihood approach. DIC comparison for
the Bayesian version of CLFM also suggests that two groups have similar rate of decline
from week 16 to week 40. The Wald tests for Roy’s model and MCEM version of CLFM
further indicate this parallel change profiles after week 16, with both p-values are greater
than 0.6.

The estimated variances of the random effects in Table 2 indicate that there is substan-
tial individual variability in baseline CD4 counts and the rates of change in CD4 counts.
For instance, in the triple therapy group, many patients show increases in CD4 counts
during the first 16 weeks, but some patients have declining CD4 counts. Specifically, ap-
proximately 95 percent of patients are expected to have changes in log CD4 counts from
baseline to week 16 between −0.64 and 1.27. Hence, approximately 26 percent of patients
are expected to have decreases in CD4 counts during the first 16 weeks of triple therapy,
based on the ignorable likelihood approach; by comparison, a larger variability from pa-
tient to patient is indicated by CLFM. 95 percent of patients are expected to have changes
in log CD4 counts from baseline to week 16 between−1.15 and 1.87, and correspondingly
approximately 30 percent of patients are expected to decrease CD4 counts from CLFM.
Substantial components of variability due to measurement error are also suggested from all
models.

In this study, missing data are potentially not ignorable with analyzing a random se-
lected subsample, especially for the first 16 weeks. To evaluate effectiveness of treatment
therapies, we compared three approaches, including the ignorable model which assumes
missing data are MAR, Roy’s model that handles non-ignorable missing data from pattern-
mixture perspective, and CLFM with NMAR assumption. Controversial results on change
rates of log CD4 counts at dual therapy group during first 16 weeks were obtained; that
is, ignorable suggested there is a significant decrease in log CD4 counts, whereas both
Roy’s model and CLFM indicated this decrease is not substantial. This disagreement is
due to those potential non-ignorable missing values. However, all approaches supported
that triple therapy has similar change rate on log CD4 counts from week 16 to week 40,
compare with dual therapy group. Further, with incorporating missing values, efficacy for
both therapy groups is shown to be more substantial from CLFM, which can be seen from
the log CD4 counts at week 40. Compared with Roy’s model, the proposed CLFM is more
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Figure 6: Fitted response curve in the dual and triple therapy groups in ACTG study 193A

flexible in extending the model with a more general distribution.

4. Conclusion and Discussion

In a longitudinal study, an incomplete dataset does not contain information that enables us
to identify underlying a missing mechanism, unless extra unverifiable assumptions can be
made. In the last two decades, researchers have investigated the implications of NMAR
missing data by fitting selection models and pattern-mixture models. However, these mod-
els include difficulties to implement in a real case. Selection models make unverifiable
assumptions for the missing mechanism, while pattern-mixture models tend to have over-
parameterization issues, as well as conditional independence assumptions. In this paper,
we developed a non-ignorable model based on the idea of continuous latent factor of re-
sponse behavior (missing behavior), and argue that this model excludes most implementing
difficulties and is a useful alternative to a standard analysis with MAR assumption.

We believe that this new approach will avoid untestable missing mechanism assump-
tions from selection models, and also believe that the new model will be more appealing
to social behavioral and clinical researchers than pattern-mixture models, because the new
model eliminates over-parameterizations issues. Further, the continuous latent factor pro-
vides an intuitive description of the response patterns in the study, and offers a feasible
way to test conditional independence assumptions. For researchers who are interested in
implementing CLFM model, we encourage them to compare latent factor models on miss-
ing indicator matrix with either constant slope or heterogeneous slopes and choose the
one with better fitting in CLFM, based on information criteria or the likelihood ratio test.
Lastly, CLFM is more feasible for small samples. With the truth that the underlying miss-
ing mechanism for missing data is unknown, (that is whether missingness is due to MAR
or NMAR), we take this new method primarily as a tool for sensitivity analysis. In the
case that a researcher cannot determine the distribution of missing data, the most respon-
sible and objective approach to proceed is to explore and present alternative results from
different plausible models.

In this paper, we have explored the proposed CLFM under the assumption of a mul-
tivariate normal distribution for the complete data. The normal model is an intuitive and
natural starting point for this method, but it also has limitations. Many longitudinal studies
will have discrete responses, such as measuring the total number of bleeding counts in a

JSM 2014 - Social Statistics Section

855



Hemophilia study; or even binary responses. In the future, we will be extending our method
to more flexible models for multivariate discrete responses. One promising approach is the
Bayesian estimation approach which allows these extensions more straightforward.

To achieve an in-depth understanding of our method’s properties, it is desirable to per-
form more simulation studies to compare this method to existing MAR and NMAR alter-
natives under a variety of missing data mechanisms. Only one robust analysis has been
done in this paper, and we are expected to conduct more simulation studies on this topic.
Some might regard them as artificial, because in each realistic example the true mechanism
is unknown. Nevertheless, it would be interesting to explore whether the proposed model
performs better or worse than other methods when its assumptions are violated.

In proposing CLFM, we have a fundamental assumption which is conditional indepen-
dence. Unlike models that belong to pattern mixture family, this assumption is feasible
to be tested in CLFM. As another future work, we will explore the assessment on this
assumed conditional independence in the CLFM from the fitted residuals. One approach
is to calculate the residual from both the longitudinal and missing pattern models. When
these residuals can be treated as approximately iid normal, a correlation coefficient close
to 0 will indicate the conditional independence. For a more complicated distribution, some
graphical approaches may be useful and could be applied as auxiliary tools.
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