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Abstract
Linear regression is a widely used statistical approach to model the relationship between a depen-

dent variable and one or more independent variables. Regression parameters are often estimated
using the method of ordinary least squares (OLS). Unfortunately, OLS estimates are very sensitive
to outliers. Tabatabai et. al. (2012) introduced TELBS robust linear regression method. TELBS es-
timates have high asymptotic efficiency and high breakdown point. In this study we use simulation
to assess the performance of TELBS robust technique in comparison with other methods such as
M estimate, MM estimate, S estimate, and Least Trimmed Square (LTS) estimate. We examine the
presence of outliers in the direction of response variable, covariates direction, and in both the re-
sponse and covariates direction. In addition, two real data sets are used to illustrate these methods.
Some diagnostic measures are introduced and computed to identify the outliers. Results indicate
that as the percentage of outliers increases, TELBS method outperforms other methods considered
in this study.

Keywords Ordinary Least Squares, TELBS robust estimate, M estimate, MM estimate, Outliers

1. Introduction

Linear regression is one of the most commonly used models for analyzing the effect of
explanatory variables on a response variable. It has widespread application in various field
of study, including social science, environment, biomedical research. The ordinary least
squares (OLS) method has been generally used for regression analysis. However, OLS
estimation of parameters is easily affected by the presence of outliers in the data. Outliers
(influential points) are observations that are far away from the main pattern of the data.
Outliers could be outlying in Y-space, X-space, or both. Usually, outliers outlying in X-
space are also referred to as leverage points, such points do not always show up the usual
least square residual plots. To remedy this problem, many robust regression methods have
been developed that are not easily affected by the outliers, including M estimation, MM
estimation, LTS, S estimation, and a newly developed TELBS robust estimation. We give
an overview of these methods in Section 2. To illustrate and compare the performance of
these methods, we apply them to two real data containing outliers in Section 3. We conduct
a simulation study to further compare these methods under various settings in Section 4.
Finally, we give a summary and discussion in Section 5.

2. Robust Regression Methods

We consider the standard multiple linear regression model given in the form of

y = Xβ + ε

where y is n by 1 response vector, X = (xij) is n by p design matrix of predictor variables,
β is p by 1 vector of parameters, ε is n by 1 vector of random errors. The OLS estimate of
parameter vector β is found by minimizing the sum of squared errors.
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2.1 M Estimation

Huber (1973) introduced the M-estimate that minimize a function ρ of the errors. The
objective function is given as

min

n∑
i=1

ρ(
ri
σ̂

) = min
n∑
i=1

(
yi − x′iβ̂

σ̂
)

where σ̂ is an estimate of scale. A reasonable ρ function should have the following proper-
ties:

ρ(r) > 0, ρ(0) = 0, ρ(r) = ρ(−r), and ρ(ri) > ρ(r′i) for i = 1, 2, ..., n. The M
estimate of the parameter β̂ can be obtained by taking partial derivatives with respect to β
and setting them equal to 0. The system of normal equations are given by

n∑
i=1

ψ(
ri
σ̂

)xi = 0

where ψ is the derivative of ρ and it is a redescending function. Iteratively reweighted least
square (IRLS) is one of the commonly used method to solve the nonlinear equations.

In general, M estimate is fairly robust to the outliers in y-direction, however, it is not
robust to leverage points (outliers in x-direction).

2.2 LTS Estimation

Least Trimmed Squares (LTS) estimate was proposed by Rousseeuw (1984). Let ri =
yi − x′iβ̂, i = 1, . . . , n, the LTS estimate of parameter is given as

β̂ = argmin
h∑
i=1

r2(i)

where r21 ≤ r22 ≤ . . . ≤ r2n are the ordered squared residuals. Usually, h is defined in
the range n/2 + 1 ≤ h ≤ (3n + p + 1)/4, with n and p being sample size and number
of parameters, respectively. LTS is considered as a high breakdown method with a BP
(breakdown point) of 50%.

2.3 S Estimation

S estimate was proposed by Rousseeuw and Yohai (1984) and defined as

β̂ = argminS(r1(β), . . . , rn(β))

where ri(β) is the ith residual, the dispersion S(β) is the solution of

1

n− p

n∑
i=1

ρ(
yi − x′iβ̂

S
) = K

where K =
∫
ρ(s)dΦ(s) such that β̂ and S(β̂) are asymptotically consistent estimate of β

and σ for the Gaussian regression model. Rousseeuw and Yohai suggested a redescending
influence function as, ρ(x) = x2

2 −
x4

2c2
+ x6

6c4
, if |x| ≤ c, otherwise, ρ(x) = c2

6 .
The turning constant c controls the breakdown value and efficiency of the S estimate.

When c=1.548 and K=0.11995, the breakdown value of the S estimate is 50% and the

JSM 2014 - Section on Statistical Consulting

817



asymptotic efficiency is about 28%. S estimation is usually considered as high breakdown
and low efficiency method.

2.4 MM Estimation

MM estimation was introduced by Yohai (1987). It was the first estimate with a high
breakdown (50%) and high efficiency under normal distribution assumption. MM estimator
has three steps:

1. Compute an initial consistent estimate β̂0 with a high BP but possibly low efficiency
(LTS estimate and S estimate are two kinds of estimates that can be used as the initial
estimate). The commonly adopted influence function for S-estimate is given as

ρ(x) =

{
3(xc )2 − 3(xc )4 + (xc )6, if |x| ≤ c
1 otherwise

2. Calculate the MM estimate of the parameters β̂ that minimize the expression

n∑
i=1

ρ(
yi − x′iβ̂
σ̂0

)

where σ̂0 is the estimate of scale (standard deviation of the residuals) from first step.
3. The final step computes the MM estimate of scale s which is the solution to the

equation
1

n− p

n∑
i=1

ρ(
yi − x′iβ̂

s
) = 0.5

2.5 TELBS Robust Regression Method

Tabatabai et. al. (2012) proposed a new robust linear regression method, TELBS in 2012.
The TELBS estimate of parameter β is given by

β̂ = argmin
n∑
i=1

ρω(ti)

Li
(1)

where
ρω(x) = 1− Sech(ωx)

and ω is called turning constant, which is a positive real number. The function Sech(·) is
the hyperbolic secant function and ti is defined by

ti =
(yi − x′iβ̂)(1− hii)

σ
(2)

where σ is the error standard deviation, and hii is the diagonal element of the hat matrix of
the form

H = X(X ′X)−1X ′,

where X is the design matrix. Define Mj = Median{|x1j |, |x2j |, . . . , |xnj |} for j =
1, ..., p. Define Li =

∑p
j=1Max{Mj , |xij |}. Usually, σ is unknown and we suggested

using the estimator proposed by Rousseeuw and Croux (1993), which is given by

σ̂ = 1.1926Median(Median|ri − rj |), 1 ≤ i, j ≤ n, (3)
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where r is the residual. Taking the partial derivatives of (1) with respect to parameters and
setting them equal to zero results in the following system of equations:

n∑
i=1

ψω(ti)

Li

∂ti
∂βi

= 0 (4)

where ψω = ωSech(ωx)Tanh(ωx), which is the derivative of ρω. The weight wi is
defined as

wi =
ψ(ti)(1− hii)
σ(yi − x′iβ̂)Li

(5)

Then the equation (4) can be written as

n∑
i=1

wi(yi − x′iβ̂)xi = 0

Denote the weight matrix byW , it is a diagonal matrix. The elements on the main diagonal
are w1, w2, . . . , wn. Therefore, the estimate of the parameter β is given by

β̂ = (X ′WX)−1X ′Wy (6)

The following procedures are used to estimate the parameter.
Step 1. Set σ̂0 = 1, calculate an initial estimate of vector β by minimizing the function

given in (1).
Step 2. Calculate σ̂ and weightswi by using equation (3) and (5), then obtain the weight

matrix W .
Step 3. Calculate β̂ using equation (6).

Repeat step 2 to 3 until convergence occurs.
TELBS estimates of linear regression parameters has influence functions bounded in

both the explanatory and the response variable direction. It has high breakdown point
and high asymptotic efficiency. In all examples and simulations considered in this study,
TELBS method is evaluated under an efficiency level of 85% (ω=0.628).

3. Applications

To study the performance of TELBS and compare it with other robust methods, we apply
each method, LS, S, LTS, M, MM, and TELBS to two data sets. All results are obtained
by using R 2.12. We first consider a brain and body weight data. This example was taken
from a larger data set in Weisberg (1980) and Jerison (1973). It gives the brain weight
and body weight of 65 animals. We used a logarithmic transformation (common log) for
both variables, and a scatter diagram of the transformed data is given in Figure 1 (left). We
can see there are 3 outlying points. Tabaitabai (2012) proposed a new diagnostic measure
called Sh. We examine outliers by using three diagnostic measures: Cook’s distance (CD),
robust Studentized residual (SR), and Sh. We give a brief introduction of these measures
here.

Cook’s distance is widely used for identifying outliers. In Tabaitabai (2012), we sug-
gested a robust Cook’s distance using TELBS estimates of parameters, which is given by

CDi =
hiit

2
i

p(1− hii)4
, i = 1, 2, ..., n

where p is the number of parameters, ti and hii are defined in Section 2.5.
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Table 1: Summary of diagnostic measures for brain weight data
Observation CD SR Sh
1 0.0069 3.6013 -0.8091
2 0.0249 5.5704 0.1022
3 0.0011 -1.3180 -0.5288
4 0.0163 -3.3414 2.1828
...

...
...

...
62 0.0061 3.3907 -0.8374
63 2.2524 -24.5325 8.2490
64 1.7425 -22.2431 7.7345
65 4.2448 -25.6678 13.6624

The Studentized residual using TELBS estimates of parameters has the form

SRi =
ti

σ̂
√

1− hii
, i = 1, 2, ..., n

where σ̂ is defined by (3).
In addition to considering the elements of the main diagonal of the hat matrix hii, we

recommended a new influence measure in Tabaitabai (2012), which is defined as

Sh(i) =
hii −Median(hii)

σ̂h
, i = 1, 2, ..., n

where σ̂h = 1.1926Median(Median|hii − hjj |), 1 ≤ i, j ≤ n. Large value of |Sh(i)|
indicates the presence of an influential observation. This measure seems to be very good
for identifying the leverage points based on the results in Tabaitabai (2012) and this study.

Table 1 gives the values of the three measures for some of the observations using
TELBS as a robust estimator of regression parameters. Observations 63, 64, 65 are identi-
fied as outliers. To investigate weather a larger brain is required to govern a heavier body,
a linear regression model is used to fit the data with brain weight (y) and body weight (x).
Each method was fitted to the data and the fitted lines for LS and TELBS are given in Fig-
ure 1 (right). The result of estimates for each method is given in Table 2. Based on the
result, body weight has a significant effect on brain weight. Among five robust regression
methods, MM and TELBS provide the closest estimates to LS with the removal of three
outliers.

Another example we consider is a breast cancer data. Lea (1965) discussed the relation-
ship between mean annual temperature and the mortality rate for a type of breast cancer in
women. The subjects were residents of certain regions of Great Britain, Norway, and Swe-
den. A scatter diagram of temperature (x) vs. mortality index (y) (Figure 2 (left)) shows
a strong positive relationship between the two variables. We compute the values of the
three measures for the breast cancer data using TELBS as a robust estimator of regression
parameters, the result is given in Table 3. The data set contains a single outlier, observation
15, which has the largest values for each measure.

A simple linear regression model is used to fit the data. The fitted line for LS, TELBS,
and LS (with removal of an outlier) are given in Figure 2 (right). The estimates of param-
eters for each method are given in Table 4. M, MM give similar estimates as LS. LTS, S,
and TELBS give better fit in comparison to LS with the removal of an outlier. Among the
five robust methods, only TELBS can identify the significant effect of both the constant
term and temperature. In addition, to examine the goodness of fit for each model, a robust
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Figure 1: Left: Scatter diagram for brain weight data. Right: Scatter diagram with LS fit
(black line), TELBS fit (red line), and LS fit with removal of 3 outliers (dashed line).

Table 2: Summary of estimates for brain weight data for six comparison models
Parameter Estimate Standard errors P-value

LS Constant 0.9432 0.0704 < 0.0001
Body weight 0.5915 0.0412 < 0.0001

LS (3 outliers Constant 0.9271 0.0799 < 0.0001
removed) Body weight 0.7517 0.0464 < 0.0001

S Constant 0.8650 - -
Body weight 0.7470 - -

LTS Constant 0.8475 - -
Body weight 0.7713 - -

M Constant 0.9242 0.0462 < 0.0001
Body weight 0.6985 0.0270 < 0.0001

MM Constant 0.9196 0.0426 < 0.0001
Body weight 0.7460 0.0249 < 0.0001

TELBS Constant 0.9289 0.0435 < 0.0001
Body weight 0.7499 0.0255 < 0.0001

Table 3: Summary of diagnostic measures for breast cancer data
Observation CD SR Sh
1 0.0042 0.0287 2.1400
2 0.1058 0.1751 1.0225
3 0.0159 0.0671 1.0937
4 0.0004 0.0115 0.5614
...

...
...

...
14 0.0081 -0.0542 0.4343
15 6.6114 0.4135 10.0281
16 0.0016 -0.0097 6.6091
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Figure 2: Left: Scatter diagram for breast cancer data. Right: Scatter diagram with LS fit
(black line), TELBS fit (red line), and LS fit with removal of an outlier (dashed line).

version of the coefficient of determination R2 is evaluated by using the formula given on
pp.69 in Tabaitabai (2012). The result is included in Table 4. For LS method, the R2 in-
creases from 0.76 to 0.85 after removing the outlier. All robust methods give R2 0.86 or
higher.

4. A Simulation Study

To further evaluate the performance of the TELBS estimates in comparison with M, MM, S,
and LTS estimates, we conduct a simulation study under a small sample size (n=15) and a
relative large sample size (n=30). We consider different contamination levels under various
direction of contamination such as x-direction, y-direction, and both x and y direction. The
simulation study is performed with R 2.12 and based on 5000 simulations. We consider
a linear regression models with two covariates (x1 and x2) and generate both x1 and x2
and the random errors from a standard normal distribution with parameters 1, 3, and 3 for
intercept and two covariates respectively. To evaluate the robustness of these estimates, we
randomly choose 10%, 20%, 40% of the data and contaminate them by magnifying their
size by a factor of 100, first in the direction of response variable (y), explanatory variables
(both x1 and x2), then both the response and explanatory variables (y, x1, and x2). The bias

is estimated by the equationBias = |
∑m

i=1(β̂i)
m −β|, where m is the number of simulations.

The mean square error is estimated by MSE =
∑m

i=1(β̂i−β)2
m .

Table 5 and 6 give the results of Bias and MSE for each method for sample size of 15
and 30 respectively when the contamination is in the x1, x2 direction. Table 7 and 8 give
the results of Bias and MSE for each method for sample size of 15 and 30 respectively
when the contamination is in the y-direction. Table 9 and 10 give the results of Bias and
MSE for each method for sample size of 15 and 30 respectively when the contamination
is in both x1, x2, and y directions. By examining the simulation results, we see that M
estimation underperforms in all cases especially in the x1, x2 direction. It fails to give a
close estimate of the parameters when the contamination level increases to 20% or higher.
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Table 4: Summary of estimates for breast cancer data for six comparison models
Parameter Estimate Standard errors P-value

LS Constant -21.7947 0.0704 < 0.0001
(R2=0.76) Temperature 2.3577 0.0412 < 0.0001
LS (1 outlier Constant -52.6181 15.8239 0.0055
removed) Temperature 3.0152 0.3466 < 0.0001
(R2=0.85)
S Constant -47.7873 - -
(R2=0.89) Temperature 2.9296 - -
LTS Constant -48.5596 - -
(R2=0.91) Temperature 2.9600 - -
M Constant -32.0048 14.8267 0.9756
(R2=0.87) Temperature 2.5792 0.3301 < 0.0001
MM Constant -29.0534 16.6295 0.9487
(R2=0.86) Temperature 2.5161 0.3702 < 0.0001
TELBS Constant -42.1086 14.2273 0.0031
(R2=0.87) Temperature 2.7956 0.3167 < 0.0001

LTS, S, and MM estimation perform well in most cases except for the x1, x2 direction and
a contamination level of 40% for both sample sizes, they provide a relative large bias and
MSE. In addition, MM and S method fail to give a good estimate for the y-direction with
a contamination level of 40% when the sample size is small. TELBS outperforms all other
methods in all cases considered, it provides similar or smaller bias and MSE in comparison
with other methods under each case.
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Table 5: Bias and MSE with contamination in x1, x2 direction (n=15)
Par LTS S M MM TELBS

10% β0 0.0063 0.0143 0.0433 0.0036 0.0133
Bias β1 0.0308 0.0251 2.8605 0.0308 0.0293

β2 0.0453 0.0024 2.8787 0.0201 0.0041
MSE β0 0.3578 0.2009 1.4704 0.1013 0.1104

β1 0.5463 0.3102 8.3910 0.1811 0.1208
β2 0.4892 0.3025 8.4568 0.1765 0.1248

20% β0 0.0013 0.0111 0.0615 0.0086 0.0004
Bias β1 0.1122 0.0478 2.9603 0.0954 0.0243

β2 0.0333 0.0438 2.9595 0.0656 0.0004
MSE β0 0.3453 0.2407 1.4053 0.1277 0.1123

β1 0.6102 0.4066 8.7679 0.3716 0.1471
β2 0.5491 0.3729 8.7689 0.3598 0.1578

40% β0 0.0184 0.0249 0.0116 0.0098 0.0074
Bias β1 1.1986 2.0264 2.9694 0.5988 0.0945

β2 1.2098 2.0440 2.9698 0.4667 0.0846
MSE β0 0.7477 0.8525 0.8245 0.4445 0.1517

β1 3.8151 6.1377 8.8176 1.9756 0.2917
β2 3.7654 6.1337 8.8202 1.6455 0.3258

Par represents parameter

Table 6: Bias and MSE with contamination in x1, x2 direction (n=30)
Par LTS S M MM TELBS

10% β0 0.0006 0.0135 0.0106 0.0096 0.0003
Bias β1 0.0175 0.0024 2.9442 0.0100 0.0048

β2 0.0193 0.0029 2.9463 0.0072 0.0068
MSE β0 0.1618 0.1091 0.6456 0.0430 0.0472

β1 0.1775 0.1213 8.6988 0.0646 0.0520
β2 0.1829 0.1289 8.7063 0.0622 0.0524

20% β0 0.0001 0.0092 0.0449 0.0041 0.0097
Bias β1 0.0058 0.0245 2.9683 0.0093 0.00003

β2 0.0007 0.0154 2.9684 0.0025 0.0001
MSE β0 0.1471 0.0939 0.5305 0.0508 0.0523

β1 0.1752 0.1216 8.8106 0.0744 0.0574
β2 0.1790 0.1297 8.8114 0.0729 0.0542

40% β0 0.0146 0.0063 0.0305 0.0054 0.0036
Bias β1 1.0612 1.7339 2.9695 1.7953 0.0105

β2 1.0295 1.7392 2.9697 1.7851 0.0114
MSE β0 0.1774 0.2492 0.3478 0.2372 0.0602

β1 3.2150 5.2153 8.8182 5.3454 0.0703
β2 3.2074 5.2251 8.8194 5.3484 0.0656
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Table 7: Bias and MSE with contamination in y-direction (n=15)
Par LTS S M MM TELBS

10% β0 0.0143 0.0078 0.0204 0.0097 0.0002
Bias β1 0.0415 0.0184 1.2148 0.0156 0.0034

β2 0.0247 0.0164 1.0158 0.0187 0.0149
MSE β0 0.2929 0.1992 22.7041 0.1042 0.1227

β1 0.3675 0.2245 144.0982 0.1153 0.1614
β2 0.4045 0.2210 145.7049 0.1239 0.1526

20% β0 0.0143 0.0201 2.4941 0.0049 0.0137
Bias β1 0.0118 0.0115 9.6629 0.0167 0.0037

β2 0.0146 0.0133 8.0754 0.0082 0.0043
MSE β0 0.2673 0.1701 401.0656 0.1025 0.1324

β1 0.3623 0.1972 1484.186 0.1278 0.1651
β2 0.3676 0.2014 1105.711 0.1332 0.1687

40% β0 0.0097 1.4106 32.4270 4.2684 0.0013
Bias β1 0.0018 4.4432 98.1562 18.6975 0.0071

β2 0.0203 4.6559 100.8857 19.6652 0.0214
MSE β0 0.1644 370.1686 4344.272 1001.424 0.1673

β1 0.2174 1181.942 16414.03 3050.492 0.2545
β2 0.2200 1293.672 17105.19 3449.291 0.2808

Table 8: Bias and MSE with contamination in y-direction (n=30)
Par LTS S M MM TELBS

10% β0 0.0183 0.0047 0.0355 0.0075 0.0156
Bias β1 0.0088 0.0179 0.1092 0.0068 0.0061

β2 0.0207 0.0111 0.1175 0.0009 0.0024
MSE β0 0.1582 0.1002 0.0635 0.0435 0.0507

β1 0.1904 0.1140 0.0713 0.0465 0.0552
β2 0.1922 0.1103 0.0742 0.0431 0.0581

20% β0 0.0077 0.0175 0.0038 0.0022 0.0077
Bias β1 0.0023 0.0062 0.9126 0.0045 0.0055

β2 0.0026 0.0109 1.1691 0.0001 0.0076
MSE β0 0.1404 0.0896 24.1282 0.0475 0.0503

β1 0.1586 0.0979 47.0104 0.0491 0.0603
β2 0.1701 0.0921 108.3892 0.0498 0.0584

40% β0 0.0096 0.0023 27.9896 0.0087 0.0061
Bias β1 0.0047 0.0071 86.2142 0.0134 0.0074

β2 0.0010 0.0107 87.1350 0.0014 0.0054
MSE β0 0.0882 0.0811 2259.844 0.0727 0.0643

β1 0.0865 0.0823 11145.62 0.0834 0.0751
β2 0.1040 0.0912 11531.11 0.0809 0.0737
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Table 9: Bias and MSE with contamination in both x1, x2, and y-direction (n=15)
Par LTS S M MM TELBS

10% β0 0.0122 0.0097 0.2276 0.0073 0.0065
Bias β1 0.0088 0.0026 0.0878 0.0162 0.0078

β2 0.0091 0.0101 0.1919 0.0182 0.0161
MSE β0 0.3143 0.2312 4.3738 0.1174 0.1113

β1 0.4150 0.3584 21.6543 0.2469 0.1338
β2 0.4478 0.3159 22.2062 0.2289 0.1433

20% β0 0.0257 0.0002 0.3366 0.0014 0.0106
Bias β1 0.0003 0.0152 0.0514 0.0123 0.0212

β2 0.0248 0.0181 0.0562 0.0093 0.0283
MSE β0 0.3565 0.2052 2.0022 0.1325 0.1222

β1 0.4818 0.3436 5.2538 0.2807 0.1283
β2 0.5007 0.3403 6.5749 0.2593 0.1392

40% β0 0.0167 0.0061 6.0666 0.0169 0.0265
Bias β1 0.0532 0.0231 0.0448 0.0175 0.1012

β2 0.0228 0.0179 0.0371 0.0210 0.0276
MSE β0 0.3509 0.2635 160.056 0.2073 0.1496

β1 0.4819 0.3831 0.7726 0.3756 0.2257
β2 0.4859 0.3997 0.9163 0.3631 0.1975

Table 10: Bias and MSE with contamination in both x1, x2, and y-direction (n=30)
Par LTS S M MM TELBS

10% β0 0.0134 0.0047 0.1341 0.0006 0.0021
Bias β1 0.0176 0.0065 0.0248 0.0116 0.0091

β2 0.0147 0.0154 0.0240 0.0092 0.0012
MSE β0 0.1674 0.1172 0.3124 0.0478 0.0474

β1 0.1827 0.1388 2.8842 0.0973 0.0581
β2 0.1759 0.1408 3.2812 0.0964 0.0565

20% β0 0.0046 0.0107 0.3152 0.0011 0.0015
Bias β1 0.0040 0.0165 0.0214 0.0030 0.0069

β2 0.0041 0.0054 0.0356 0.0029 0.0034
MSE β0 0.1579 0.1116 0.2796 0.0527 0.0491

β1 0.2466 0.1444 0.8944 0.1323 0.0548
β2 0.1935 0.1449 0.8763 0.1269 0.0563

40% β0 0.0023 0.0005 6.2696 0.0075 0.0067
Bias β1 0.0029 0.0078 0.0227 0.0012 0.0142

β2 0.0338 0.0073 0.0080 0.0221 0.0077
MSE β0 0.1286 0.0936 120.129 0.0802 0.0601

β1 0.1945 0.1595 0.3154 0.1551 0.0708
β2 0.1758 0.1606 0.3416 0.1545 0.0686
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5. Discussion

We introduce some commonly used robust linear regression methods and a newly devel-
oped TELBS method in this article. We study the performance of these methods by using
two examples and a simulation study. Results indicate that M estimation fails to provide
good estimates in some cases especially when the sample size is small and the outliers are
in the x-direction. LTS, S, MM perform well in most cases except when the contamination
level is high (40%). TELBS robust method performs well in all cases considered and out-
performs other methods considered in this study as the percentage of outliers increases. It
provides a flexible and powerful alternative to the practitioners in the field of robust linear
regression.
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