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Abstract
This research is an extension of the previous probability model for evaluating long-term outcomes

due to regular screening. The previous model was for people without any screening history, while
the current extension focus on old people who has a screening history and are superficially healthy
so far. As before, People who take part in cancer screening are divided into four mutually exclusive
groups: True-early-detection, No-early-detection, Overdiagnosis, and Symptom-free-life. For each
case, we derive the probability formula with a screening history. Simulation studies using the HIP
(Health Insurance Plan for Greater New York) breast cancer study’s data provide estimates for these
probabilities and corresponding credible intervals. These probabilities change with a person’s age at
study entry, screening history, future planned screening frequency, screening sensitivity, and other
parameters. We also allow human lifetime to be subject to a competing risk of death from other
causes. The model can provide policy makers with important information regarding the distribution
of individuals participating in a screening program who eventually fall into one of the four groups.
Finally the method is applicable to other kinds of screening as well.

Key Words: over-diagnosis, true-early-detection, no-early-detection, symptom-free-life, sensitiv-
ity, sojourn time, transition probability density

1. Introduction

We have developed a probability model for evaluating long term effects and over diagnosis
for initially asymptomatic people who has no history of screening (Wu, et al 2014). How-
ever, most people in their 60s or older may have gone through at least one screening exam
before. How to extend the original model to the aged group with a screening history is very
challenging (Badgwell et al 2008): these people in their 70s or 80s maybe superficially
healthy, but what is the long term prospect of taking screening exams? Is it still necessary
to take screening exams at all? and if it is necessary, at what frequency, or how to plan it in
the future? This research is targeting this critical problem.

We will use women’s breast cancer as an example. We assume that a woman has taken
a sequence of screening exams before, however, breast cancer has never been found, i.e.,
no history of breast cancer, and currently she is asymptomatic. If she plan to take screening
exams in the future, then based on her future screening outcomes and her ultimate disease
status, She will belong to one of four possible groups eventually:

• Group 1: Symptom-free-life (SympF). A woman in Group 1 took part in screening
exams, but breast cancer was never detected and ultimately she died of other causes.

• Group 2: No-early-detection (NoED). A woman in Group 2 took part in screening
exams, but disease manifested itself clinically and was not detected by scheduled
screening exams.

• Group 3: True-early-detection (TrueED). A woman in Group 3 was diagnosed with
breast cancer at a scheduled screening exam and her clinical symptoms would have
appeared before her death.
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• Group 4: Overdiagnosis (OverD). A woman in Group 4 was diagnosed with breast
cancer at a scheduled screening exam but her clinical symptoms would NOT have
appeared before her death.

The definitions of these four groups were given originally in Wu, et al 2014. And the
probability of each group was derived when an individual has no history of screening and
currently asymptomatic. In this project, we will expand upon the previous work, and as-
sume an individual has a screening history.

The remainder of the paper is organized as follows. In Section 2 we propose a proba-
bility model and derive the probabilities for each of the four groups, treating the duration
of human lifetime as a random variable, with the cause of death subject to other competing
risks. In Section 3, we apply our method to the Health Insurance Plan for Greater New York
(HIP) breast cancer screening data, and present some simulation results for different screen-
ing schedules. Policy makers may use these probabilities to help assess different screening
strategies, such as changing screening frequencies, determining age to start screening, etc.
We conclude with a discussion in Section 4.

2. Probability Formulation

Consider a currently asymptomatic individual with a screening history who has no cancer
in the past. We assume the commonly followed disease progression model in which the
disease develops through three states S0 → Sp → Sc: S0 refers to the disease-free state or
the state in which the disease cannot be detected; Sp refers to the preclinical disease state,
in which an asymptomatic individual unknowingly has disease that a screening exam can
detect; and Sc refers to the disease state at which the disease manifests itself in clinical
symptoms. Let β(t) be the sensitivity at age t, the probability that the screening exam is
positive given that the individual is in the preclinical state, and let βi = β(ti). Let w(t) be
the probability density function (pdf) of time spending in the disease free state S0, Let q(x)
be the probability density function of the sojourn time in Sp, and let Q(z) =

∫∞
z q(x)dx

be the survivor function of the sojourn time. We assume that the sojourn time distribution
does not depend on the age of entry into Sp, that is, sojourn time and time spend in disease-
free state are independent. Throughout, the time variable t represents an individual’s age at
time of screening, and T represents a person’s lifetime, a continuous random variable with
a probability density function fT (t).

0 t0

History �
t1 · · · tK1↑

Current

tK1+1

Future�
· · · tK1+K−1 T = tK1+K

Figure 1: Illustration of the screening history and future schedule.

Assume that this individual has gone through a sequence of breast cancer screening
at her ages t0 < t1 < · · · < tK1−1, and no breast cancer has been found so far, and
her current age is tK1 . In the future, she plans to take a few more screenings at her ages
tK1 < tK1+1 < tK1+2 < · · · < tK1+K−1, and her lifetime T > tK1+K−1, see Figure 1 for
illustration.

To derive the probability of each of the four cases, we break down the problem into a
few steps: 1). We derive the probability for the most simple case when K1 = K = 1 with
lifetime T fixed; 2). We allow the lifetime T to be a random variable when K1 = K = 1;
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3). We generalize the result for any fixed positive integers K1 and K when lifetime T is
fixed; 4). Finally we allow the lifetime T to be a random variable for any K1, and hence
the number of future screening exams K is a random variable as well.

2.1 Probability of Each Case When K1 = K = 1

For a superficially healthy woman at her current age t1, suppose she underwent only one
screening exam at age t0(< t1) before, and no breast cancer was found, we will derive the
probability of each case when there is only one screening exam (at her age t1) during her
lifetime, with a fixed lifetime T = t; then we extend to the case when her lifetime is a
random variable, T ∼ fT (t). See Figure 2 for illustration.

0 t0

History �
t1
↑
Current

Future�
T = t

Figure 2: Screening history and future schedule when K1 = K = 1.

First we define an event

H1 =

{
A woman had a screening exam at age t0, no BC was found,
and she is asymptomatic at current age t1

}
.

To calculate the probability of H1, that is, the conditional probability that no breast cancer
was found before/at age t1 when one’s lifetime T exceeds t1, this can arise as one of
three mutually exclusive events: either (i) she remains in the disease-free state through age
t1, the probability of which is 1 −

∫ t1
0 w(x)dx; or (ii) she enters state Sp before t0 but

remains in Sp long enough that no symptom presents before t1, and she was missed by the
screening exam at t0, the probability of which is (1 − β0)

∫ t0
0 w(x)Q(t1 − x)dx; or (iii)

she enters state Sp in (t0, t1), and no symptom presents before t1, the proability of whihc is∫ t1
t0
w(x)Q(t1−x)dx. Therefore the probability of H1 is the total of the three probabilities

(i)-(iii):

P (H1|T ≥ t1) = 1−
∫ t1

0
w(x)dx+ (1− β0)

∫ t0

0
w(x)Q(t1 − x)dx

+

∫ t1

t0
w(x)Q(t1 − x)dx. (1)

For a Group 1 case, a woman who never has detectable breast cancer during her lifetime
(0, t), it can follow one of 4 trajectories: (a) she has stayed in the disease-free state S0
throughout her lifetime (0, t); (b) she entered the preclinical state Sp before t0, her cancer
was not detected at t0 nor at t1, and her sojourn time was so long that no clinical symptom
appeared before her death; (c) she entered the preclinical state Sp in (t0, t1), her cancer was
not detected at t1, and she had a long sojourn time, so that no symptom appeared before
her death; (d) she entered the preclinical state Sp in (t1, t) and had a long sojourn time, so
that no symptom appeared before her death; Hence the conditional probability given her
lifetime T = t(> t1) is:

P (Case 1: SympF, H1|T = t)

= 1−
∫ t

0
w(x)dx+ (1− β1)(1− β0)

∫ t0

0
w(x)Q(t− x)dx

+ (1− β1)
∫ t1

t0
w(x)Q(t− x)dx+

∫ t

t1
w(x)Q(t− x)dx. (2)

JSM 2014 - International Chinese Statistical Association

795



For a Group 2 case, a woman whose cancer became symptomatic and was found in
(t1, T ), either (a) she entered Sp before t0 and was not detected by the 2 exams, or (b) she
entered the preclinical state in (t0, t1) and was missed by the screening exam at t1, or (c)
she entered the preclinical state after t1. In all situations, her sojourn time in Sp was shorter
than (t− x), where x is her age entering Sp. Hence the conditional probability is

P (Case 2: NoED, H1|T = t) = (1− β1)(1− β0)
∫ t0

0
w(x)[Q(t1 − x)−Q(t− x)]dx

+ (1− β1)
∫ t1

t0
w(x)[Q(t1 − x)−Q(t− x)]dx

+

∫ t

t1
w(x)[1−Q(t− x)]dx. (3)

For a Group 3 case, a woman is truly detected early at t1 by taking the scheduled exam,
and her symptoms would have appeared before death. That is, she must have entered Sp at
some age x before t1, and her sojourn time would have been between (t1−x) and (T −x).
Hence,

P (Case 3: TrueED, H1|T = t) = β1(1− β0)
∫ t0

0
w(x)[Q(t1 − x)−Q(t− x)]dx

+ β1

∫ t1

t0
w(x)[Q(t1 − x)−Q(t− x)]dx (4)

For a Group 4 case, the case of overdiagnosis, she is to be diagnosed at t1 but her
symptoms would not have appeared before death. That is, she must have entered Sp at
some age x(< t1), but her sojourn time would have extended to beyond time (T − x).
Hence,

P (Case 4: OverD, H1|T = t) = β1(1− β0)
∫ t0

0
w(x)Q(t− x)dx

+ β1

∫ t1

t0
w(x)Q(t− x)dx. (5)

The probability of each case when the lifetime T is a random variable and T ≥ t1 can
be obtained by

P (Case i,H1|T ≥ t1) =

∫ ∞
t1

P (Case i,H1|T = t)fT (t|T ≥ t1)dt, (6)

i = 1, 2, 3, 4.

where the conditional pdf fT (t|T ≥ t1) is

fT (t|T ≥ t1) =

{
fT (t)

P (T>t1)
= fT (t)

1−FT (t1)
, if t ≥ t1

0, otherwise
(7)

By adding (2) to (5), one can verify that for any t > t1,

4∑
i=1

P (Case i,H1|T = t) = 1−
∫ t1

0
w(x)dx+ (1− β0)

∫ t0

0
w(x)Q(t1 − x)dx

+

∫ t1

t0
w(x)Q(t1 − x)dx

= P (H1|T ≥ t1). (8)
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Since the right hand side of (8) does not depend on t, we have

4∑
i=1

P (Case i,H1|T ≥ t1) =

∫ ∞
t0

[
4∑
i=1

P (Case i,H1|T = t)]fT (t|T ≥ t1)dt

= P (H1|T ≥ t1). (9)

This implies

4∑
i=1

P (Case i|H1, T ≥ t1) =
4∑
i=1

P (Case i,H1|T ≥ t1)
P (H1|T ≥ t1)

= 1. (10)

2.2 Probability of Outcomes for Any K1 and K: Multiple Exams with a History

We generalize this idea to an individual with a history of any number of screenings, and we
focus on modeling the impact of future screening schedule on the four possible outcomes:
symptom-free-life, no-early-detection, true-early-detection and over-diagnosis. We assume
that an initially asymptomatic individual has gone through K1 screening exams so far,
which occurred at her ages t0 < t1 < · · · < tK1−1, see Figure 1. We let t−1 = 0, and her
current age is T = tK1(> tK1−1). Define an event

HK1 =


A woman had screening exams at her ages t0 < t1 < · · · < tK1−1,
no breast cancer was found ,
and she is asymptomatic at her current age tK1

 .

We first calculate P (HK1 |T ≥ tK1), the conditional probability that no breast cancer was
found before/at age tK1 given that her lifetime T exceeds tK1 .There are (K1 + 2) mutually
exclusive events for HK1 to happen: (i) She never progressed out of the disease-free state
S0 throughout her lifetime, the probability of which is 1−

∫ tK1
0 w(x)dx; or (ii) shen entered

state Sp in age interval (tj−1, tj), j = 0, . . . ,K1 − 1, but remains in Sp long enough that
no symptom presents before tK1 , and she was missed by the following (K1 − j) exams; or
(iii) she entered Sp after tK1−1, and with no symptoms before tK1 . Thus the probability of
HK1 is the sum of these probabilities:

P (HK1 |T ≥ tK1) = 1−
∫ tK1

0
w(x)dx

+
K1−1∑
j=0

(1− βj) · · · (1− βK1−1)

∫ tj

tj−1

w(x)Q(tK1 − x)dx

+

∫ tK1

tK1−1

w(x)Q(tK1 − x)dx. (11)

Now if she plans to undergoK screening exams in the future, occuring at her age tK1 <
tK1+1 < · · · < tK1+K−1, we first derive the conditonal probability for each outcomes
when her life time T is fixed, then we will allow her lifetime to be a random variable.

Given that her lifetime is T = tK1+K(> tK1+K−1), a Group 1 case where clinical
breast cancer never occurs in her lifetime, can arise as any one of (K1 +K + 2) mutually
exclusive events: (a) she remained in the disease-free state S0 throughout her lifetime, the
probability of which is 1 −

∫ tK1+K

0 w(x)dx. (b) she entered the preclinical state Sp when
she was between ages tj−1 and tj , j = 0, . . . ,K1 +K−1, and she was not detected by the
following (K1 + K − j) exams, and she had a long sojourn time, so no clinical symptom
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appeared before her death (K1 +K disjoint events). (c) she entered Sp after tK1+K−1 and
without clinical symptoms before her death. Then we add the probability together:

P (Case 1, HK1 |T = tK1+K)

= 1−
∫ tK1+K

0
w(x)dx+

∫ tK1+K

tK1+K−1

w(x)Q(tK1+K − x)dx

+
K1+K−1∑
j=0

(1− βj) · · · (1− βK1+K−1)

∫ tj

tj−1

w(x)Q(tK1+K − x)dx. (12)

For a Group 2 case, we calculate the probability of no early detection by defining
IK1+K,j as the probability of being an interval case in the interval (tj−1, tj), j = K1 +
1,K1 + 2, · · · ,K1 +K, in a sequence of K screening exams. Thus

P (Case 2, HK1 |T = tK1+K) = IK1+K,K1+1 + IK1+K,K1+2 + · · ·+ IK1+K,K1+K , (13)

where

IK1+K,j =
j−1∑
i=0

(1− βi) · · · (1− βj−1)
∫ ti

ti−1

w(x)[Q(tj−1 − x)−Q(tj − x)]dx

+

∫ tj

tj−1

w(x)[1−Q(tj − x)]dx, for ∀j = K1 + 1, · · · ,K1 +K.

(14)

A Group 3 case, true early detection, can arise as one of K disjoint events depending
on her age at diagnosis by screening, namely, at tj , j = K1,K1 + 1, · · · ,K1 + K − 1. If
she is diagnosed at tj , then she must have entered the preclinical state Sp before tj , and was
not detected by the previous j exams, and her sojourn time must have been in the interval
(tj − x, tK1+K − x), where x represent the onset time of the preclincal state. Therefore

P (Case 3, HK1 |T = tK1+K)

=
K1+K−1∑
j=K1

βj


j−1∑
i=0

(1− βi) · · · (1− βj−1)
∫ ti

ti−1

w(x)[Q(tj − x)−Q(tK1+K − x)]dx

+

∫ tj

tj−1

w(x)[Q(tj − x)−Q(tK1+K − x)]dx

}
(15)

A Group 4 case, overdiagnosis, also can arise as one of K disjoint events. She might
have been diagnosed at the jth exam, but her sojourn time would have been longer than
tK1+K − x, thus her symptoms did not appear before her death:

P (Case 4, HK1 |T = tK1+K)

=
K1+K−1∑
j=K1

βj


j−1∑
i=0

(1− βi) · · · (1− βj−1)
∫ ti

ti−1

w(x)Q(tK1+K − x)dx

+

∫ tj

tj−1

w(x)Q(tK1+K − x)dx

}
. (16)

It is proved that for any screening number K1 ≥ 1 and K ≥ 1,

4∑
i=1

P (Case i,HK1 |T = tK1+K) = P (HK1 |T ≥ tK1) (17)
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For an individual currently at age tK1 , her lifetime is not fixed but is a random variable,
so it may not be realistic to consider the future number of exams K to be a fixed value.
However, if she plans to follow a future screening schedule tK1 < tK1+1 < . . ., then
K = n if tK1+n−1 < T < tK1+n, the screening number K = K(T ) is a random variable,
changing with the lifetime T . The probability of each case (i = 1, 2, 3, 4) when her lifetime
T is longer than tK1 can be obtained as the weighted average

P (Case i,HK1 |T ≥ tK1) =

∫ ∞
tK1

P (Case i,HK1 |K = K(T ), T = t)fT (t|T ≥ tK1)dt,

where fT (t|T ≥ tK1) = fT (t)
1−FT (tK1

) , if t ≥ tK1 . The probability inside the integration,
P (Case i, HK1 |K = K(T ), T = t), was derived in (12)-(16).

It is straight forward to verify by (17) that for any future screening schedule when the
lifetime T is random,

4∑
i=1

P (Case i|HK1 , T ≥ tK1) = 1. (18)

3. A Projection of Long Term Outcomes Using the HIP Data

We applied our method to the Health Insurance Plan of the Greater New York (HIP) breast
caner data (Shapiro et al. 1988), using lifetime distribution derived from the actuarial
lifetable on the Social Security Administration (SSA) website.

3.1 Bayesian Estimate of the Probability

According to our results in Section 2, the probability of each case is a function of the three
key parameters (screening sensitivity β(t), the transition pdf w(t), the survival function
of the sojourn time Q(x)), a person’s current age tK1 , her screening history, her future
screeing schedule, and human lifetime distribution.

The three key parameters: age-dependent sensitivity β(t), the age-dependent transition
probability w(t), and the survival function of sojourn time Q(x), were estimated from the
HIP data in Wu, Rosner and Broemeling (2005). The parametric models for β(t), w(t), and
Q(x) were

β(t) =
1

1 + exp{−b0 − b1(t−m)}
, (19)

w(t) =
0.2√
2πσt

exp
{
−(log t− µ)2/(2σ2)

}
, (20)

Q(x) =
1

1 + (xρ)κ
, κ > 0, ρ > 0, (21)

where m is the average age of women at the study entry. The unknown parameters in this
model are θ = (b0, b1, α1, α2, κ, ρ). The 0.2 in the w(t) is the upper limit of making a
transition from the disease-free state to the preclinical state. Using Markov Chain Monte
Carlo (MCMC), 2000 Bayesian posterior samples (θ∗j ) were generated, for details, see Wu,
et al 2005. Using the HIP data, the posterior predictive probability of each case can be
estimated as

P (Case i|T ≥ tK1 , HK1 , HIP ) =

∫
P (Case i, θ|T ≥ tK1 , HK1 , HIP )dθ

=

∫
P (Case i|T ≥ tK1 , HK1 , θ)f(θ|HIP )dθ
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≈ 1

n

n∑
j=1

P (Case i|T ≥ tK1 , HK1 , θ
∗
j ) (22)

where θ∗j is the random sample drawn from the posterior distribution f(θ|HIP ) and n =
2000 is the posterior sample size (Wu et al 2005).

3.2 Results

We applied (22) to the 2000 MCMC posterior samples, to conduct Bayesian inference on
three hypothetical cohorts of asympomatic women currently at age 60, 70 and 80, assuming
that they have started their first screening at age 50, with either annual screening or biennial
screening until now (∆1 = 1 or 2 years). For each group, we assumed that they are
superficially healthy at their current age with no cancer ever found, and we have examined
annual or biennial screening interval in the future (∆2 = 1, 2 years). The number of screens
K = K(T ) = d(T − tK1)/∆2e is a function of the lifetime T , therefore it is a random
variable in the simulation.

For the lifetime distribution, we used the conditional lifetime density for females at
current age 60, 70, and 80 derived from the actuarial life table from the Social Security
Administration (SSA) website. Details on how to derive the conditional PDF is given
in Wu, et al (2012), and the corresponding PDF curves were ploted in Figure 3. The
probabilities of each of the four cases P (Case i|HK1 , T ≥ tK1 , HIP ) with standard errors
were reported in Table 1.

The probability of “Overdiagnosis” for all age groups is very small, between 0.20% and
0.32% from Table 1. This probability decreases when a woman’s current age increases, and
it decreases as the screening time interval (∆2) increases. It depends more on the future
screening interval ∆2, and less on the historic screening interval ∆1.

The probability of “True-early-detection” is higher for annual screening group in the
future than that for biennial screening within each age group. That is, This probability
decreases as the future screening time interval increases. The probability is also lower
when current age increases from 60 to 80; Similar to the probability of over-diagnosis, the
past screening interval causes little changes on the probability of “true-early-detection.”

The probability of “No-early-detection” is between 0.45% and 2.76%. It increases as
the future screening interval increases; and it decreases when current age increases.

The probability of “Symptom-free-life” is very high. It increases from about 93% to
98% when the current age increases from 60 to 80. It is comparatively stable: not changing
much with the past or the future screening interval.

Most people are more concerned with the percentage of over-diagnosis among the
screen-detected cases. The estimated probabilities (and its 95% HPD intervals) of “Over-
diagnosis” and “True-early-detection” when it is a screen-detected case were listed in Table
2.

The percentage of “Overdiagnosis” among the screen-detected is about 7%, 10% and
15% for current age groups 60, 70, and 80 respectively, so this probability increases signif-
icantly with a person’s current age. However, it doesn’t change much with future or past
screening intervals. The 95% highest probability density (HPD) interval for this percentage
is pretty wide also. Since the probability of “true-early-detection” is one minus the proba-
bility of “over-diagnosis” conditional on that it is a screen-detected case, this probability is
contrary to that of “over-diagnosis”: it decreases with a person’s current age, and remains
stable with different future and past screening intervals. The length of the 95% HPD inter-
val for these two probabilities (percentages) increases as a person’s current age increases,
showing large variation with an advanced age.
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4. Discussion

This study provides a way to evaluate the long term outcomes of the screening program
under different future screening schedules for old people with a screening history. We sep-
arated all asymptomatic participants in a screening program into four mutually exclusive
groups: symptom-free-life, no-early-detection, true-early-detection, and over-diagnosis.
This kind of analysis can provide policy makers with estimates of the probability of true-
early-detection, overdiagnosis, and other outcomes that result from different future screen-
ing frequency. We used a Bayesian approach to incorporate uncertainty easily, and to cal-
culate the variations and the credible invervals of the probability (or percentage).

This is an extension of our previous work on long term outcomes for people without a
screening history (Wu, Kafadar, Rosner 2014). Comparing results for the 60-year-old age
group, when there is no screening history, that is, when a 60-years-old woman takes her ini-
tial screening at 60 and who plans to take future screening annually, the probability for the
4 cases: symptom-free-life, no-early-detection, true-early-detection, and over-diagnosis,
are 93.21%, 1.39%, 5.03%, 0.33% respectively. Which is similar to the results when a
60-years-old started her screening at 50, with either annual or biennial screening history,
and plan to take screening annually in the future (see the first 2 rows in Table 1). Similarly,
we can compare the age 60 cohort without a screening history and biennial screening in the
future (Wu et al 2014 Table 2), with the age 60 cohort with an annual/biennial history, and
biennial screening in the future, the results is very close too. When we focus on the screen-
detected cases, the probability of over-diagnosis is only slightly higher for the age 60 cohort
with a screening history. In summary, it seems that screening history didn’t have much im-
pact for the long term outcomes in the future if we know that they are asymptomatic and
cancer-free at their current age.

We want to point out that from our simulation, the probability of over-diagnosis is
increasing as people aging, so it seems wise to take fewer screening exams for the 80
years old. This is the first model to handle the situation of people with a screening his-
tory, and it provides a systematic approach to evaluate the long-term outcomes in regular
screening. Our method is predictive: we use existing data to obtain information on three
key parameters: screening sensitivity, sojourn time distribution, and transition probability,
then use these parameters and our probability model to predict the probability of true-
early-detection, no-early-detection, over-diagnosis and symptom-free-life for different age
groups with different screening histories, and different future screening frequencies. we
hope our model will help policy makers evaluate a screening program’s long-term effects
more appropriately.
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Figure 3: Conditional PDF of lifetime for females in the US at current age t0.
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Table 1: A projection of breast cancer screening outcomes using the HIP data

(∆1,∆2)
a Pb(SympF) P(NoED) P(TrueED) P(OverD)

Initial screen age t0 = 50, current age tK1 = 60
(1 yr, 1 yr) 93.62(1.07) 1.34(0.63) 4.69(1.04) 0.32(0.22)
(2 yr, 1 yr) 93.52(1.06) 1.34(0.62) 4.78(1.04) 0.32(0.22)
(1 yr, 2 yr) 93.69(1.08) 2.75(0.89) 3.28(0.71) 0.25(0.19)
(2 yr, 2 yr) 93.59(1.06) 2.76(0.88) 3.36(0.72) 0.25(0.20)

Initial screen age t0 = 50, current age tK1 = 70
(1 yr, 1 yr) 95.84(0.69) 0.84(0.48) 3.00(0.72) 0.30(0.19)
(2 yr, 1 yr) 95.73(0.68) 0.85(0.48) 3.09(0.72) 0.31(0.20)
(1 yr, 2 yr) 95.91(0.69) 1.73(0.62) 2.11(0.50) 0.23(0.17)
(2 yr, 2 yr) 95.81(0.68) 1.74(0.62) 2.20(0.52) 0.24(0.18)

Initial screen age t0 = 50, current age tK1 = 80
(1 yr, 1 yr) 97.74(0.34) 0.45(0.31) 1.55(0.40) 0.27(0.16)
(2 yr, 1 yr) 97.64(0.34) 0.45(0.31) 1.63(0.41) 0.28(0.17)
(1 yr, 2 yr) 97.80(0.34) 0.90(0.35) 1.09(0.28) 0.20(0.14)
(2 yr, 2 yr) 97.70(0.34) 0.91(0.35) 1.17(0.31) 0.21(0.15)

a ∆1,∆2 are scr. interval in history and in future correspondingly.
b The mean probability (with standard error) are in percentage.

Table 2: Estimated probability of true-early-detection and over-diagnosis in screen-
detected cases (with 95% credible interval)

(∆1,∆2) P(TrueED|De) P(OverD|D)
Initial screen age t0 = 50, current age tK1 = 60

(1 yr, 1 yr) 93.15 (74.55, 97.87) 6.85 (2.13, 25.45)
(2 yr, 1 yr) 93.24 (74.84, 97.88) 6.76 (2.12, 25.16)
(1 yr, 2 yr) 92.81 (73.18, 97.94) 7.19 (2.06, 26.82)
(2 yr, 2 yr) 92.93 (73.44, 97.96) 7.07 (2.04, 26.56)

Initial screen age t0 = 50, current age tK1 = 70
(1 yr, 1 yr) 90.32 (67.38, 96.70) 9.68 (3.30, 32.62)
(2 yr, 1 yr) 90.49 (67.98, 96.73) 9.51 (3.27, 32.02)
(1 yr, 2 yr) 90.00 (66.09, 96.80) 10.00 (3.20, 33.91)
(2 yr, 2 yr) 90.21 (67.18, 96.84) 9.79 (3.16, 32.82)

Initial screen age t0 = 50, current age tK1 = 80
(1 yr, 1 yr) 84.89 (56.66, 94.22) 15.11 (5.78, 43.34)
(2 yr, 1 yr) 85.16 (57.19, 94.27) 14.84 (5.73, 42.81)
(1 yr, 2 yr) 84.56 (55.40, 94.36) 15.44 (5.64, 44.60)
(2 yr, 2 yr) 84.92 (55.76, 94.38) 15.08 (5.62, 44.24)

d The estimated conditional probability was calculated as p∗i /(p∗3 +p∗4), i = 3, 4, for each of the 2000 posterior
samples, then averaged. It is a percentage.
e The event ScrD = {Screen-detected case}
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