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Abstract 
A multivariate negative binomial regression model based on the multivariate negative 
binomial distribution is defined and studied. The regression model can be used to describe 
a count data with over-dispersion. The model allows for both positive and negative 
correlation between any pair of the response variables. The parameters of the regression 
model are estimated by using the maximum likelihood method. Some test statistics are 
discussed and a numerical data set is used to illustrate the applications of the multivariate 
count data regression model. 
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1.  Introduction 
 
Many univariate count data regression models have been defined and studied. Some of 
these models have been extended to bivariate and few have been extended to multivariate 
count data models. See the books by Cameron and Trivedi (2013) and Winkelmann (2008) 
and the references there-in. The univariate Poisson regression model has been extended to 
the multivariate Poisson regression (MPR) model, see for example Winkelmann (2008, p. 
205). The MPR model assumes that the conditional mean and the conditional variance of 
the response variable are equal. Thus, the MPR model does not allow for over- or under-
dispersion. Over-dispersion (or under-dispersion) relative to the Poisson distribution is a 
condition in which the conditional variance is more (or less) than the conditional mean. 
 
According to Cameron and Trivedi (2013, p. 311), there is no unique multivariate Poisson 
distribution. There are many ways to derive a multivariate model with Poisson marginals. 
A multivariate Poisson distribution can be obtained by the method of mixtures and 
convolutions. For example, the bivariate Poisson distribution was obtained through the 
method of trivariate reduction (Kocherlakota and Kocherlakota (1992, p.88)). Thus, an m-
variate Poisson distribution can be obtained by the method of (m+1)-variate reduction. This 
m-variate Poisson distribution only allows positive correlation between the count response 
variables. 
 
According to Alfò and Trovato (2004), the univariate approach is insufficient and it has to 
be extended when the primary focus of analysis of multivariate count data is to describe 
association among the counts. Three of the five multivariate count regression models 
discussed by Winkelmann (2008, Chapter 7) are the MPR model, the multivariate negative 
binomial regression (MNBR) model and the multivariate Poisson-gamma mixture 
(MPGM) model that allow non-negative correlations. These multivariate count regression 
models are obtained through the method of variate reduction. The MNBR and MPGM 
models allow for over-dispersion. A potential disadvantage of the MPGM is that its 
covariances cannot be determined independently of its dispersion. However, the 
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covariances and the dispersion for MNBR can be independently determined. A 
disadvantage of the MNBR and MPGM models is that each is characterized by one 
dispersion parameter. In view of this, one cannot determine if a response variable is over-
dispersed or under-dispersed. 
 
Attention has shifted to multivariate mixing models, such as Poisson-lognormal regression 
model (Chib and Winkelmann, 2001) in response to the drawbacks of only positive 
correlation and equi-dispersion. Estimation of multivariate Poisson-lognormal regression 
(MPLR) model involves numerical integration and this can be extremely time-consuming, 
especially for large number of response variables. Several authors (e.g. Ma et al., 2008) 
suggested using the Bayesian method to estimate the parameters of MPLR. Karlis and 
Meligkotsidou (2005) proposed a MPR model which allows for different covariances 
between the pairs of the count variables, which is an improvement on the multivariate 
distribution defined by Karlis (2003), where all the pairs have the same covariance. The 
model by Karlis and Meligkotsidou (2005) does not allow for negative correlation or over-
dispersion. Another approach to extend the univariate count data regression to the 
multivariate model is to model dependence among count variables through copula 
functions (see for examples van Ophem (1999), Lee (1999) and Cameron et al. (2004)). 
 
The properties of the Sarmanov (1966) bivariate distributions were discussed by Lee 
(1996), who gave as an example, the bivariate Poisson distribution which was later 
discussed by Lakshminarayana et al. (1999). Suppose ( )i ih y , i = 1, 2, are univariate 
probability mass functions. If ( )i tϕ , is a bounded non-constant function such that 

( ) ( ) [ ( )] 0t i i it h t E Tϕ ϕΣ = = , i = 1, 2, then the function {1 2 1 1 2 2( , ) ( ) ( ) 1h y y h y h y= +  

}1 1 2 2( ) ( )y yωϕ ϕ  defined by Sarmanov (1966) is a bivariate joint probability mass function, 

where ω  is a real number satisfying the condition 1 + 1 1 2 2( ) ( ) 0y yωϕ ϕ ≥  for all 1y  and 

2y . One general method given by Lee (1996) for finding iϕ  is by using the Laplace 

transform of ih . By definition, the Laplace transform of ih  is given by ( ) ( )itY
iL t E e−= . 

Thus, one can define ( ) (1) ( )i i iy y Y
i i iy e L e E eϕ − − −= − = − . 

 
Lee (1996) extended the bivariate Sarmanov distribution to multivariate case with several 
parameters measuring covariances of order 2, 3, …, m for m-variate distribution. Miravete 
(2009) presented two multivariate count data regression based on the Sarmanov family of 
distributions. The two models have the double Poisson and the gamma count distributions 
as their marginals. The mean and variance of the models are either not exact or they are 
not in closed forms (see Winkelmann (2008), pp. 49 and 59). 
 
Famoye (2010a) defined a new bivariate negative binomial regression model as a product 
of negative binomial marginals with a multiplicative factor. This is a bivariate Sarmanov 
regression model with negative binomial marginals. The correlation between the two 
negative binomial variates can be positive, zero or negative. However, the regression model 
only allows for over-dispersion. 
 
In this paper, we define a multivariate negative binomial regression (MNBR) model based 
on Sarmanov multivariate negative binomial distribution. Among the importance of the 
multivariate count data regression model are (i) it allows for any type of correlation 
between any two variates, (ii) it allows correlations and dispersions to be determined 
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independently and (iii) the means and the variances of the variates are in closed forms. The 
MNBR model is defined in section 2. We discuss parameter estimation for the MNBR in 
section 3. We present some tests in section 4 and in section 5; one numerical dataset is used 
to illustrate the MNBR model. Finally in section 6, some concluding remarks are given. 
 

2.  The Multivariate Negative Binomial Regression Model 
 
The probability mass function of the negative binomial distribution (NBD) is given by 

  
1

1 1
( ) (1 )y mm y

P Y y
y

θ θ
−

− + −
= = −

 
 
 

, y = 0, 1, 2, 3, … (1) 

for 0 < θ < 1 and m > 0. The model reduces to the Poisson distribution when the dispersion 
parameter 0m → . The NBD in (1) is over-dispersed when m > 0. 
 
Famoye (2010a) defined a bivariate negative binomial regression (BNBR) model as a 
product of negative binomial marginals. The regression model is given as 
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where 

11( ) [(1 ) / (1 )]t tY m
t t tc E e eθ θ

−− −= = − − , 0tm > , tµ  is the conditional mean of ty  

given the predictor variables, and 1/ ( )t t t tmθ µ µ−= + , (t = 1, 2). By using a similar 
approach, a new multivariate negative binomial regression (MNBR) model, which is an 
extension of the model in (2) can be defined as 
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  (3) 
 
When tνλ  = 0 the pair tY  and Yν  are independent. When tνλ  > 0, the model in (3) allows 

positive correlation and when tνλ  < 0, the model allows negative correlation. The 
parameter tm  measures the dispersion. If 0tm →  for all t, the multivariate negative 
binomial regression model reduces to the multivariate Poisson regression model. The 
variable tY  is over-dispersed when tm  > 0. 
 
In the MNBR model in (3), itY  (t = 1, 2, …, d; i = 1, 2, …, n; and n is the sample size) is a 
count response variable, and 0 1 2( 1, , , , )it it it it itkx x x x x′ = =   is a vector of covariates. Thus, 
the joint distribution of 1 2( , , , )i i idY Y Y  for any given 1 2( , , , )i i idx x x  is that of MNBR 
with mean 

1 1 1 1 1 1 1( | ) ( ) ( , )i i i i i iE Y x x f xµ γ β= = , …, ( | ) ( ) ( , )id id id id id id dE Y x x f xµ γ β= = , (4) 
where ( , ) 0it tf x β >  (t = 1, 2, …, d) is a known function of itx  and a vector 

0 1 2( , , , , )T
t t t t tkβ β β β β=   of regression parameters, and itγ  is a measure of exposure. The 

function ( , )it tf x β  is differentiable with respect to tβ . It may be difficult to know which 
covariates affect each or a combination of 1Y , 2Y , …, dY . To simplify our analysis in this 
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paper, we will assume that the same covariates affect every count response variable tY . 
Under this assumption, 1 2i i id ix x x x= = = = , however, the parameter vectors 1β , 2β , 
…, dβ  are not assumed to be equal. 
 
The marginal distribution of tY  (t = 1, 2, …, d) in (3) is negative binomial with mean 

1 / (1 )t t t tmµ θ θ−= −  and variance 2 1 2/ (1 )t t t tmσ θ θ−= − . To find the covariance between 

tY  and Yν , we need ( )tE Y Yν . The covariance between any pairs tY  and Yν  is t t tc c A Aν ν νλ , 

where 1 1 1 1/ (1 ) / (1 )t t t t t t tA m e e mθ θ θ θ− − − −= − − −  (t = 1, 2, …, d). The d(d – 1)/2 correlation 
coefficients between any two variates are given by / ( )t t t t tc c A Aν ν ν ν νρ λ σ σ= , (t, ν , = 1, 

2, …, d and t < ν ). Thus, the parameter tνλ  can be written in terms of the correlation 
coefficient tνρ . For the marginal bivariate distribution of tY  and Yν , 

1 (1 )(1 ) 0t tc cν νλ+ − − ≥  since ( , ) 0tP y yν ≥ . Therefore, tνλ  satisfies 

| | 1 / [(1 )(1 )]t tc cν νλ ≤ − − , which allows tνρ  to take on negative, zero or positive values. 
By using this result, the correlation coefficient satisfies the condition 
| | min(1,  / [ (1 )(1 )])t t t t tc c A A c cν ν ν ν νρ σ σ≤ − − . Note that the second quantity in the 
minimum function may exceed 1, especially when tc  and cν  are very close to 1. 
 
The covariances and the dispersion parameters for the MNBR in (3) can be determined 
independently. This is an advantage over the multivariate count regression models derived 
through variate reduction in Winkelmann (2008). 
 
The model in (3) belongs to the multivariate Sarmanov family with parameters measuring 
covariances of order 2. It is straightforward to extend the model in (3) to include parameters 
measuring covariances of order 3, 4, …, d as proposed by Lee (1996). In order to keep the 
number of covariance parameters to a minimum, we will consider in this paper the MNBR 
in (3). 
 

3.  Parameter Estimation 
 
Suppose we have n independent vectors ( 1 2, , ,i i idy y y ), where the i-th vector has the 
MNBR model in (3). The log-likelihood function, log ( ; ) log ( , , ; )L y L m yµ µ λ= , for the 
MNBR model is 

1 1
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The log-likelihood in (5) is maximized over the parameters tβ , tm  (t = 1, 2, …, d), and 

tνλ  (t, ν , = 1, 2, …, d and t < ν ). It is not difficult to obtain the first and second partial 
derivatives with respect to the parameters. On taking the expectations of the second partial 
derivatives and multiplying them by –1, we obtain the Fisher information matrix. For 
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estimation purposes, it is better to express the parameter tνλ  in terms of the correlation 
coefficient tνρ  since the correlation coefficient lies between –1 and +1. One can use the 
Newton-Raphson (or any other optimization routine) iterative technique to obtain the 
maximum likelihood estimates of the MNBR parameters. If the optimization routine 
requires an initial estimates for the model parameters tβ , tm  (t = 1, 2, …, d), and tνρ  (t, 
ν , = 1, 2, …, d and t < ν ), maximum likelihood estimates from the univariate NBR models 
can be used for tβ  and .tm  The initial estimate of tνρ  may be taken as the sample 
correlation coefficient or zero. The asymptotic Wald statistic for testing the significance of 
each model parameter can be computed. In the numerical example provided in section 5, 
we expressed tνλ  in terms of tνρ . 
 
We used the PROC NLMIXED in SAS to maximize the log-likelihood function. The 
Hessian matrix is obtained by taking the second partial derivatives of (5), multiplying by –
1 and finally evaluating at the maximum likelihood estimates. In PROC NLMIXED, the 
inverse of this Hessian matrix is the estimated covariance matrix of the parameter 
estimates. In addition to the goodness of fit statistics, PROC NLMIXED gives the 
parameter estimates with their standard errors, which are the square roots of the diagonal 
entries in the estimated covariance matrix. 
 
A measure of goodness of fit for the MNBR may be based on the log-likelihood statistic 
given in (5). In order to account for the number of estimated parameters in the MNBR 
model, one can use the Akaike Information Criterion (AIC) which has the form 
AIC 2 log ( ; ) 2L y pµ= − + , where p is the number of estimated parameters in the model. 
A model with a smaller AIC is generally preferred. 
 

4.  Some Tests 
 
In this section, we are interested in some hypotheses on the MNBR model. We will test for 
the independence of the two random variables tY  and Yν  (t, ν , = 1, 2, …, d and t ≠  ν ). 
We will also compare the MPR model with the MNBR model to determine if MNBR model 
is more suitable. The last test will be used to check if the dispersion parameters are the 
same. 
 
4.1 Test for Independence 
A pair of random variables tY  and Yν  are independent when the parameter tνλ  (or tνρ ) is 
equal to zero. For tY  and Yν  to be independent, we test the null hypothesis 
 0 : 0tH νλ =  against : 0a tH νλ ≠ . (6) 
Let indL  be the likelihood function under 0H  and let aL  be the likelihood function under 

.aH  The test statistic is given by 2 log( / )ind ind aL Lχ = − , which has an approximate chi-
square distribution with 1 degree of freedom. The hypotheses in (6) can be extended to test 
for pairwise independence. For this situation, the null hypothesis becomes 0 : 0tH νλ =  for 
all pairs (t, ν ), where t, ν  = 1, 2, …, d. Suppose .p indL  is the likelihood function under 

0H , the test statistic is given by . .2 log( / )p ind p ind aL Lχ = − , which has an approximate chi-
square distribution with d(d – 1)/2 degrees of freedom. An alternative to using the 
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likelihood ratio statistic to test the null hypothesis in (6) is to use a score statistic. The 
reader is referred to Famoye (2010b) for the score test for the BGPD. 
 
4.2 Test of MPR Model Against MNBR Model 
The MNBR model in (3) reduces to the MPR model when the parameters 0tm →  (t = 1, 
2, …, d). To assess the usefulness of the MNBR model over the MPR model, one can test 
the null hypothesis that all tm  is zero against the alternative that at least one tm  > 0. When 
all 0tm → , this corresponds to a situation in which there is no dispersion. To test for no 
dispersion in any of the d-variates, we test the null hypothesis 
 0 : 0tH m =  (t = 1, 2, …, d) against 0:aH H  is not true. (7) 
If disL  is the likelihood function under 0H  and aL  is the likelihood function under aH , 
the test statistic 2 log( / )dis dis aL Lχ = −  cannot be approximated by chi-square distribution 
with d degrees of freedom because tm  = 0 are on the boundary of the parameter space. By 
using the results of Chernoff (1954) [see also Self and Liang (1987)], the test statistic disχ  

is asymptotically distributed as a random variable which has a probability mass of 2 d−  at 
the point 0, and a mixture of chi-square distributions above zero. The mixing probability 
for the 2

kχ  component is 2d d
kC − , where k = 1, 2, …, d. If d = 4, we have a mixture of 

1
4

2
1χ , 3

8
2
2χ , 1

4
2
3χ , and 1

16
2
4χ  for probability above zero. 

 
4.3 Test for Homogeneity of Dispersion Parameters 
In the formulation of the MNBR, we have the dispersion parameters 0tm >  (t = 1, 2, …, 
d). To test for constant dispersion or homogeneity of dispersion parameters, we test the 
hypothesis 
 0 1 2: dH m m m m= = = =  against 0:aH H  is not true. 
Let conL  be the likelihood function under 0H  and let aL  be the likelihood function under 

.aH  The test statistic is given by 2 log( / )con con aL Lχ = − , which has an approximate chi-
square distribution with d – 1 degrees of freedom. 
 

5.  Applications 
 
In this section, the MNBR defined in this paper will be illustrated with one numerical 
multivariate count dataset. Cameron et al. (1988) analyzed various measures of health-care 
utilization by using a sample of 5190 single-person households from the 1977-78 
Australian Health Survey. The data are obtained from the Journal of Applied Econometrics 
1997 Data Archive. Various authors, including Mullahy (1997) and Cameron and 
Johansson (1997) used the data to illustrate univariate regression models. Gurmu and Elder 
(2000) used the data to illustrate a generalized bivariate negative binomial regression 
model. Famoye (2010a) used the data to illustrate the Sarmanov bivariate negative 
binomial regression model. Famoye (2013) used the data to illustrate the multivariate 
generalized Poisson regression model. 
 
In this paper, we model four health care utilization response variables by the MNBR model. 
The four response variables 1 2 3 4( , , , )y y y y  are the number of consultations with a doctor 
during the past two weeks to the survey ( 1y  = doctor), the number of consultations with 
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non-doctor health professional during the past four weeks to the survey ( 2y  = non-doctor), 
the total number of prescribed medications used in the past two days ( 3y  = prescribe) and 
the total number of non-prescribed medications used in the past two days ( 4y  = non-
prescribe). The complete data has six response variables. The four response variables used 
for illustration are chosen from the six response variables because of the following: 1y  and 

2y  have been analyzed by various authors to illustrate some bivariate count models. 
Among the other response variables, the only one that has a negative correlation with 1y  
or 2y  is 4y . Furthermore, the SAS NLMIXED procedure used to fit MPR model to all six 
variables could not converge after 16 hours of execution. Thus, we use the variables 1y , 

2y , 3y , and 4y . The descriptive statistics and the correlations between the pairs of the 
variables are given in Table 1. 
 

Table 1: Mean, variance and correlation for health-care utilization data 

  Correlation 
 2y   3y  4y  

 
Mean  Variance 

y1 
y2 
y3 
y4 

 0.1481* 0.3078* –0.0149 
  0.1634* 0.0089 
   –0.0435* 

0.3017 0.6370 
0.2146 0.9318 
0.8626 2.0032 
0.3557 0.5075 

* significant at 5% level 
 
The predictor variables are made up of four socio-economic variables and eight insurance 
and health status variables. The socio-economic variables are dummy variable for whether 
or not the patient is female (gender), age in years divided by 100 (age), the square of “age 
in years divided by 100” (agesq), and annual income in ten-thousands of dollars (income). 
The insurance and health status variables are indicator variable for private insurance 
coverage (levyplus), free government insurance coverage due to low income (freepoor), 
free government insurance coverage due to old age, disability or veteran status (freerepa), 
number of illnesses in the past two weeks (illness), number of days of reduced activity in 
the past two weeks due to illness or injury (actdays), general health questionnaire score 
using Goldberg’s method with high score indicating bad health (hscore), indicator variable 
for chronic condition not limiting activity (chcon1), and indicator variable for chronic 
condition limiting activity (chcon2). The summary statistics for these predictor variables 
are contained in Cameron et al. (1988). 
 
The marginal mean of itY  is assumed to have a log-linear relationship with the covariates 

ix  through 
  0 0 1 1 2 2 12 12log[ ( )]it it t it t it t it tE Y x x x xβ β β β= + + + + , (8) 
for t = 1, 2, 3, 4 and i = 1, 2, …, 5190. The regression function (8) relates the logarithm of 
the marginal means to the explanatory variables. The correlation between itY  and iYν  is 
specified in terms of parameter tνλ , which can be written in terms of tνρ . The predictors 

1itx  through 12itx  are listed in Table 2. We fitted the MPR and MNBR models to the data 
and the results are presented in Table 2. 

 
 

JSM 2014 - Health Policy Statistics Section

712



 

 
To check the adequacy of MNBR model over the MPR model, we observe that all the 
dispersion parameters are significant. This shows that the data exhibit substantial over-
dispersion. Furthermore, the log-likelihood values show that the MNBR model provides a 
better fit than the MPR model. The multivariate generalized Poisson regression (MGPR) 
model yielded a log-likelihood value of –14584.06. This value is very close to the log-
likelihood value for the MNBR model given in Table 2. The AIC statistics for the MPR, 
MNBR and MGPR are respectively 31803.12, 29293.34, and 29292.12. Under the MPR 
model, all pairs of correlations are significant. However, under the MGPR and MNBR 
models, the pairs of response variables ( 1y , 2y ) and ( 2y , 4y ) are not significant. 
 
The significant parameters under the MNBR and the MGPR models are the same. The 
MNBR model estimates show that only illness and hscore are important determinants of 
all the four response variables. The MNBR model shows that the predictors gender, 
freepoor, actdays and chronic condition 1 are significant for doctor’s visits ( 1y ). However, 
the predictors freerepa, actdays, chronic conditions 1 and 2 are significant at 5% for non-
doctor’s visits ( 2y ). The number of prescribed medications ( 3y ) are responsive to gender, 
age, levyplus, freerepa, actdays, chronic conditions 1 and 2 while the predictors gender, 
age, agesq, freerepa, and chronic condition 1 are important determinants of the number of 
non-prescribed medications ( 4y ). 
 
Gurmu and Elder (2000) stated that there is enough evidence that doctor and non-doctor 
are dependent counts and therefore they should be jointly estimated. Famoye (2010a) 
observed that the response variables 1y  and 2y  appeared not to be dependent from using 
the bivariate negative binomial regression model. A similar result is obtained in the MNBR 
model estimates in Table 2. The response variables 1y  and 2y  appear to be independent 
since 12ρ  (p-value = 0.1835) is not significant. 
 
  

 
 

JSM 2014 - Health Policy Statistics Section

713



 

 

Table 2: Parameter estimates (standard errors in parentheses) for health-care data 

 y1 y2 
Variable  MPR model  MNBR model  MPR model  MNBR model 
Constant (x0) 
Gender (x 1) 
Age (x 2) 
Agesq (x 3) 

Income (x 4) 
Levyplus(x 5) 
Freepoor (x 6) 
Freerepa (x 7) 
Illness (x 8) 
Actdays (x 9) 
Hscore (x 10) 
Chcon1 (x 11) 
Chcon2 (x 12) 

–2.221 (0.181)* 
0.131 (0.055)* 
1.144 (0.943) 

–0.863 (0.997) 
–0.237 (0.087)* 

0.136 (0.071) 
–0.467 (0.185)* 

0.120 (0.088) 
0.175 (0.017)* 
0.123 (0.005)* 
0.034 (0.009)* 
0.169 (0.065)* 
0.239 (0.080)* 

–2.306 (.227)* 
0.175 (0.068)* 
0.794 (1.231) 

–0.558 (1.342) 
–0.187 (0.107) 
0.126 (0.085) 

–0.535 (.214)* 
0.190 (0.113) 

0.198 (0.023)* 
0.140 (0.008)* 
0.035 (0.014)* 
0.141 (0.078) 

0.247 (0.100)* 

–2.475 (0.235)* 
0.323 (0.068)* 

–2.893 (1.206)* 
3.975 (1.282)* 

–0.056 (0.109) 
0.319 (0.095)* 
0.043 (0.201) 
0.460 (0.114)* 
0.064 (0.021)* 
0.100 (0.006)* 
0.044 (0.011)* 
0.504 (0.085)* 
1.063 (0.096)* 

–2.837 (.434)* 
0.217 (0.124) 

–2.184 (2.429) 
3.322 (2.625) 

–0.079 (0.191) 
0.294 (0.157) 

–0.147 (0.346) 
0.573 (0.218)* 
0.137 (0.047)* 
0.136 (0.017)* 
0.075 (0.028)* 
0.414 (0.142)* 
1.120 (0.182)* 

ˆ tm  1.094 (0.104)* 8.912 (0.676)* 

    

 y3 y4 
  MPR model  MNBR model  MPR model  MNBR model 
Constant (x0) 
Gender (x 1) 
Age (x 2) 
Agesq (x 3) 

Income (x 4) 
Levyplus (x 5) 
Freepoor (x 6) 
Freerepa (x 7) 
Illness (x 8) 
Actdays (x 9) 
Hscore (x 10) 
Chcon1 (x 11) 
Chcon2 (x 12) 

–2.651 (0.125)* 
0.482 (0.036)* 
2.232 (0.579)* 

–0.426 (0.597) 
0.006 (0.055) 
0.278 (0.051)* 

–0.019 (0.124) 
0.280 (0.058)* 
0.198 (0.010)* 
0.036 (0.004)* 
0.025 (0.006)* 
0.774 (0.046)* 
0.986 (0.053)* 

–2.668 (.145)* 
0.548 (0.042)* 
1.806 (0.705)* 
0.039 (0.745) 
0.045 (0.064) 

0.257 (0.057)* 
–0.024 (0.136) 
0.271 (0.067)* 
0.210 (0.013)* 
0.035 (0.005)* 
0.024 (0.008)* 
0.768 (0.050)* 
0.991 (0.061)* 

–2.283 (0.168)* 
0.270 (0.051)* 
4.438 (0.943)* 

–5.700 (1.067)* 
0.130 (0.075) 

–0.028 (0.057) 
–0.027 (0.124) 
–0.269 (0.092)* 
0.201 (0.018)* 
0.005 (0.008) 
0.028 (0.010)* 
0.157 (0.056)* 
0.018 (0.082) 

–2.315 (.193)* 
0.282 (0.058)* 
4.556 (1.079)* 
–5.81 (1.216)* 
0.120 (0.085) 

–0.037 (0.066) 
–0.037 (0.141) 
–0.269 (.104)* 
0.210 (0.021)* 
0.005 (0.009) 

0.029 (0.012)* 
0.153 (0.063)* 
–0.003 (0.094) 

ˆ tm  0.307 (0.031)* 0.742 (0.083)* 

ˆtνρ  for MPR 12ρ̂  = .0453 (.0123)*; 13ρ̂  = 0.1473 (.0086)*; 14ρ̂  = –.0316 (.0116)* 

23ρ̂  = .0788 (.0122)*; 24ρ̂  = 0.0362 (.0140)*; 34ρ̂  = –.0712 (.0104)* 
ˆtνρ  for 

MNBR 
12ρ̂  = .0141 (.0106); 13ρ̂  = 0.1587 (.0090)*; 14ρ̂  = –0.0421 (.0107)* 

23ρ̂  = .0412 (.0111)*; 24ρ̂  = 0.0171 (.0117); 34ρ̂  = –0.0818 (.0105)* 
Log-
likelihood 

 
For MPR: –15843.56 For MNBR: –14584.67 

AIC For MPR: 31803.12 For MNBR: 29293.34 
* significant at 5% level 
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6.  Concluding Remarks 
 
The univariate negative binomial regression model has been used to model over-dispersed 
count data. Famoye (2010a) defined and studied a bivariate negative binomial regression 
model. This regression model is extended to give the MNBR model in (3). The MNBR 
model can be used to model over-dispersed count data. The multivariate Poisson lognormal 
regression (MPLR) model is characterized by unrestricted correlation. However, the 
MPLR model can also be used to model over-dispersed count data. Another disadvantage 
of the MPLR model is that the model and the likelihood function have complicated forms. 
Famoye (2013) defined the MGPR model which can be used to model a count data with 
any type of dispersion. The MNBR, MPLR and MGPR models are competitors. However, 
only the MGPR model can be used to model under-dispersed response variables. 
 
The MNBR model overcomes several drawbacks of other multivariate count data 
regression models mentioned in section 1. The model accounts for over-dispersion in the 
response variables. It allows for correlations of any sign among counts independently of 
the dispersion parameters. This adds flexibility to the MNBR model by separating the 
effect of dispersion and correlation among counts. The estimation of MNBR model is not 
time consuming compared to the MPLR model because the likelihood function for the 
MNBR model can be written in closed form. 
 
Future research work will include the comparison of likelihood ratio test and the score test 
for the hypotheses in section 4, especially the hypotheses in (7) for testing the MPR against 
the MNBR. Another area of research is to include parameters measuring covariances of 
order 3, 4, …, d for d-variate distribution. 
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