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Abstract
Spatial data have become increasingly common in epidemiology and public health research

thanks to rapid advances in GIS (Geographic Information Systems) technology. In health
research, for example, it is common for epidemiologists to incorporate geographically in-
dexed data into their studies. In practice, however, the spatially-defined covariates are often
measured with error. Naive estimators of regression coefficients are attenuated if measure-
ment error is ignored. Moreover, the classical measurement error theory is inapplicable in
the context of spatial modelling because of the presence of spatial correlation among the
observations. We propose a semi-parametric regression approach to obtain bias corrected
estimates of regression parameters and derive their large sample properties. We evaluate
the performance of the proposed method through simulation studies and illustrate using
data on Ischemic Heart Disease (IHD). Both simulation and practical application of the
proposed method demonstrate that the proposed method can be effective in practice.

Key Words: Attenuation, B-splines, Geostatistics, Measurement error, Penalized least
squares, Profile likelihood, SEIFA, Smoothing, Spatial linear model, Spatial regression.

1. Introduction

Rapid growth of high quality Geographic Information Systems (GIS), together with
advances in high performance computing environments present a unique opportu-
nity to examine the relationship between risk factors and outcome that vary across
time and space. Careful analysis of spatial data can lead to useful explanation
of the exposure and disease relationship through natural experimentation (Snow,
1855; Rothman et al., 2008). Spatial analysis of such data helps in understanding
the spatial variation of disease, disease clustering, distribution of socio-demographic
structure, environmental exposure distribution and its impact on health outcomes.

Analysis of such geo-coded data is complicated by the correlation among neigh-
bouring observations. Regression analysis ignoring this spatial correlation leads to
incorrect inference of the estimated regression coefficients by narrowing of associ-
ated confidence intervals (Waller and Gotway, 2004). Mixed effect models provide a
convenient way of modelling spatial correlations by incorporating spatially defined
random effects (Breslow and Clayton, 1993). However, this approach is fully para-
metric and may be sensitive to model misspecification. Kammann and Wand (2003)
studied a semi-parametric formulation of spatial mixed models as a unification of
kriging and additive models. Their approach accounts for linear or non-linear co-
variate effects under the additivity assumption and adjust for spatial correlation by
expressing kriging as a linear mixed model.
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However, these advances in statistical methodologies for spatial data analysis
are challenged by the presence of measurement error in the covariates as reflected
in many epidemiological and socio behavioural studies. For example, in the study of
geographical variation of bladder cancer, lung cancer risk might be included in the
model as a proxy for smoking exposure (Clayton et al., 1993). In practice, important
covariates are often difficult to measure directly from each area or might not present
in the original data collection, sample averages of similar covariates from other
survey might use as a surrogate measure for the true covariates (Xia and Carlin,
1998). In environmental epidemiology, air pollution level might be approximated by
the distance from polluted sites or using the measures available at a few monitoring
sites (Carrol et al., l1997). Further examples include geographical mortality studies
relating cancer to dietary intakes (Cook and Pocock, 1983; Prentice and Sheppard,
1990).

Many papers have appeared in the literature over the years on covariate mea-
surement error in the context of independent data (Carroll et al., 2006; Fuller, 2009;
Ruppert et al., 2009). However, relatively few have addressed the specific context
of spatial modelling. Various approaches to adjusting for measurement error bias
differ according to the underlying assumptions of the measurement error process,
availability of the additional data on the unobserved covariates and theoretical back-
ground of the approach, which may be parametric or non-parametric (Guolo, 2008).
Bernadinelli et al., (1997) and Xia and Carlin (1998) presented a spatio-temporal
analysis of spatially correlated data with errors in the covariates, in the context of
disease mapping. They empirically studied several alternative measurement error
models using a Gibbs algorithm.

Li et al. (2009) derived asymptotic bias expressions for estimated regression
coefficients in the context of a spatial linear mixed model. They showed that the
regression estimates obtained from naive use of an error prone covariate attenuates
the estimated regression coefficient while variance component estimates are inflated.
They proposed the use of a maximum likelihood approach based on the EM algo-
rithm to adjust for measurement error under the assumed error structure. However,
their approach is subject to a high computational burden and may lead to spurious
results in the presence of outliers or model misspecification (Gryparis et al., 2009;
Szpiro et al., 2011). Furthermore, Szpiro et al. (2011) argued that in the presence
of spatial correlation, joint modelling becomes challenging as it is very difficult to
separate out the spatial correlation between exposure and outcome.

Recently, Huque et al. (2014) have shown that ignoring measurement error and
performing a naive analysis attenuates the estimated coefficient towards the null.
They showed that the amount of attenuation depends on the strength of spatial
correlation in the true covariate of interest. The authors derived expressions for
the bias when measurement error is ignored and proposed two different strategies
for obtaining consistent estimates: (i) adjusting the estimates using an estimated
attenuation factor; and (ii) using an appropriate transformation of the error prone
covariate. They showed that bias correction methods using the estimate of the
measurement error work reasonably well in obtaining consistent estimates, however,
the standard error is underestimated in the case when measurement error variances
are estimated from the data. Moreover, their approach is fully parametric. Indeed,
Ruppert et al. (2009) argued that penalized splines are the most effective methods
for correcting the covariate measurement error in case of independent data. So it
is of natural interest to extent the spatial regression model with measurement error
to a semiparametric framework.
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In this paper we propose a joint modelling approach to assess the relationship
between a covariate with measurement error and a spatially correlated outcome in
a semiparametric regression context. We estimate the measurement error process
and relationship using sub models. Specifically, we expressed the unknown mea-
surement error process as a linear combination of splines basis function, which is
then fitted using penalized least squares (Yu and Ruppert, 2002; Xun et al., 2013).
Use of penalized least squares makes the estimation of parameters and inference
straightforward. We develop an asymptotic theory for estimated parameters and
provide a model based and simulation based standard error estimates. Our simu-
lation results reveal that the proposed method works well in obtaining consistent
estimate of the true regression coefficient in the presence of measurement error.
Our approach is computationally efficient and stable and can be implemented using
standard nonlinear least squares software.

The structure of the paper is as follows: Section 2 describes the formulation
of the models, estimation and inference procedure. Section 3 presents the data
generation process and results from the simulation study. In section 4 we present
an application of the proposed method to data on Ischemic Heart Disease (IHD).
We conclude with discussion in section 5.

2. Model

Suppose that Xi represents the true covariate of interest for spatial location i,
i = 1, ..., n, and suppose that it is related to an outcome Yi, according to a spatial
linear model:

Yi = β0 + β1Xi +G1(Si) + εi, (1)

where, the residuals, ε = (ε1, ....εn)T ∼ N(0, σ2ε ) and G1(Si) is an unknown func-
tion that captures the spatial correlation, for now kept arbitrary. Furthermore, we
assume that εi and G1(Si) are independent of each other and of the covariate X
(Cressie, 1993).

In the presence of measurement error, measurements on the true covariate X
are not available directly, instead an error contaminated version is available. Let
Wi be the observed covariate for spatial location i, related to the true covariate X
according to a classical measurement error model:

Wi = Xi + Ui, (2)

where Ui ∼
(
0, σ2u

)
. Note that in the case of independent data, a consistent estimate

of the true regression coefficient β1 can be obtained if a validation data set on the
true covariate (X), without measurement error is available (Carroll et al., 2006).
However, in the spatial epidemiology such validation data are relatively rare. In-
stead, we assume that that the true covariate X is smooth and can be characterized
by another smooth function, G2(Si).

Many choices have been discussed in the literature to approximate these un-
known smooth function Gj(.), for j=1,2. These include parametric modelling using
an isotopic correlation function that decays as the distance between two individuals
increases (Huque et al., 2014). Other approaches include those of conditional auto
regressive functions (CAR) (Banerjee et al, 200) or semi-parametric geoadditive
models (Kammann and Wand, 2003) are also popular. In this paper we will adopt
techniques based on semi-parametric regression.

Within this framework, the unknown smooth functions, Gj(.), for j = 1, 2 can
be represented as a linear combination of basis function i.e., Gj(Si) = BT

j (Si)θj and
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estimated by a penalized least squares (Yu and Ruppert, 2002; Xun et al. 2013).
Here B1(Si) and B2(Si) are two sets of basis functions with dimensions (q1 + 4)× 1
and (q2 + 4)× 1, respectively, where q1 and q2 are the corresponding number of
knots and θ1 and θ2 are vectors of corresponding basis coefficients. We choose thin
plate splines because they do not require knots locations, perform reasonably well
using a basis of any given lower rank, are reasonably computationally efficient and
more importantly rotationally invariant (Wood, 2006; Ruppert et al., 2003).

Therefore, under the above specifications model (1) and (2) can be rewritten as

Yi = BT
2 (Si)θ2β1 +BT

1 (Si)θ1 + εi; (3)

Wi = BT
2 (Si)θ2 + Ui. (4)

Note that the intercept term β0 in the model (1) is set to 0, because it is not
identifiable in the presence of a nonparametric function G1(·). Since these equations
are linear with respect to a set of unknown parameters, we can use penalized least
squares techniques for estimation. However, the parameters of these models are not
completely identifiable without additional assumptions.

2.1 Identifiability

From the above models (3) and (4), it is evident that if B1(·) ≡ B2(·), then these
models are not identifiable because in this case (3) becomes

Yi = BT
2 (Si)(θ2β1 + θ1) + εi.

Thus, we can identify only θ2 and θ2β1 + θ1, and cannot separate out β1 and θ1. To
make these models identifiable, we assume that the asymptotic variability of two sets
of basis functions B1(.) and B2(.) will be different. i.e., Λ1 6= Λ2, where Λj for j=1,2,
is the limiting value of Λnj , defined as, Λnj = {n−1

∑n
i=1Bj(Si)B

T
j (Si) + δjDj}−1

with δj and Dj and are corresponding penalty parameters and matrices.

2.2 Parameter estimation

In addition to the assumption that Λ1 6= Λ2, we also assume that the smoothing
parameters are small relative to the sample size, i.e., n1/2δj → 0 for j = 1, 2. This
means that, with the large sample size, the estimated regression coefficient obtained
using penalized least squares will be close to the OLS estimates. Using penalization
in (4) and solving for θ2, we have

θ̂2 = Λn2n
−1∑n

i=1B2(Si)Wi, (5)

Similarly, from (3) we can estimate β1 and θ1 by minimizing the corresponding
penalized sum of squares as

θ̂1 = Vn −Rnθ̂2β1 (6)

β̂1 =
n−1

∑n
i=1Yi{BT

2 (Si)−BT
1 (Si)Rn}θ̂2

θ̂T2 (Tn −RT
nΛ−1n1Rn)θ̂2

, (7)

where

Vn = Λn1n
−1∑n

i=1B1(Si)Yi;

Rn = Λn1n
−1∑n

i=1B1(Si)B
T
2 (Si);

Tn = n−1
∑n

i=1B2(Si)B
T
2 (Si).
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Although the above estimator of β1 was estimated using pseudolikelihood, it is
consistent for β1. In the next section we will establish the asymptotic properties of
the estimator.

2.3 Asymptotic Theory

Asymptotic theory for the estimator β̂1 is based upon (3) by considering the spatial
locations Si as fixed constants. Following Yu and Ruppert (2002), if δj → 0 as n→
∞, then the bias also tends to 0 and consistency can be established. The asymptotic
normality under the assumption n1/2δj → 0 for j = 1, 2 is easily established by the
following theorem:

Theorem 1 Under the assumption that the smoothing parameters are small rela-
tive to the sample size, i.e.,n1/2δj → 0, the estimate of β1 is consistent and asymp-
totically normally distributed with

n1/2
(
β̂1 −

Anθ2
θT2 Cnθ2

)
d−→ N

(
0, n−1

∑n
i=1(σ

2
εG2ni + σ2uH2

ni)
)
, (8)

where

An = n−1
∑n

i=1{G2(Si)β1 +G1(Si)}{B2(Si)−RT
nB1(Si)}T;

Cn = Tn −RT
nΛ−1n1Rn;

Dni = {B2(Si)−RT
nB1(Si)}Tθ2;

Fni = θT2 C2Λn2B2(Si) +BT
2 (Si)Λn2Cnθ2;

Gni = Dni(θT2 Cnθ2)−1;
Hni = AnΛn2B2(Si)(θ

T
2 Cnθ2)−1 −Anθ2Fni(θT2 Cnθ2)−2.

(9)

see the Appendix A for proof.
Using this asymptotic expression we can also estimate the standard error of esti-

mated regression coefficient β̂1. The next section will discuss two different methods
of obtaining standard error.

2.4 Estimating the standard error of β̂

We first consider a model based estimate of standard error using asymptotic theorem
in the previous section and then suggest a more robust estimate of standard error
using simulation.

2.4.1 Model based standard error

The model based standard errors of β̂1 derived in the previous section can be esti-
mated by substituting the following estimates of σ2ε and σ2u into expression (8).

σ̂2ε =

∑n
i=1{Yi − Ĝ2(Si)β̂1 − Ĝ1(Si)}2

n− 2trace{L1(δ1, δ2)}+ trace{L1(δ1, δ2)LT
1 (δ1, δ2)}

σ̂2u =

∑n
i=1{Wi − Ĝ2(Si)}2

n− 2trace{L2(δ2)}+ trace{L2(δ2)LT
1 (δ2)}

,

where L1(δ1, δ2) and L2(δ2) are the smoother matrix corresponding to model (3) and
model (4). DefineBj = {Bj(S1), ..., Bj(Sn)}T, for j=1,2 andDn = {Dn1, ..., Dnn)}T,
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then the smoother matrices has the following expressions (see the Appendix B)

L1(δ1, δ2) = n−1

{
DnD

T
n

θ̂T2 Cnθ̂2
+B1Λn1B

T
1

}
(10)

L2(δ2) = n−1B2Λn2B
T
2 . (11)

2.4.2 Simulated Standard error

From (7), the expression for β̂1 can be written as (see the Appendix A)

β̂1 =
Anθ2 + n−1

∑n
i=1{AnΛn2B2(Si)Ui +Dniεi}

θT2 Cnθ2 + n−1
∑n

i=1FniUi
+ op(n

−1/2),

where Ui and εi are the random errors define in model (1) and (2). While these
quantities are not directly observed we can estimate the variance of β̂1 by a boot-
strap.

LetB be a fairly large number, say 100, and for b = 1, ..., B, let εbi ∼ Normal(0, σ̂2ε )
and Ubi ∼ Normal(0, σ̂2u) for i = 1, 2,...n. Define the b’th bootstrap estimates of β1
as

β̂b1 =
Ânθ̂2 + n−1

∑n
i=1{ÂnΛn2B2(Si)Ubi + D̂niεbi}

θ̂T2 Ĉnθ̂2 + n−1
∑n

i=1F̂niUbi
,

where Ân, D̂n, Ĉn and F̂ni can be estimated by substitute the appropriate quantities
into expression (9). Then the sample variance of β̂b1 is a consistent estimate of the

variance of β̂1 (Efron and Tibshirani, 1986).

2.5 Smoothing parameter selection

Our main objective is to obtain a consistent estimate of the regression parameter β1
such that it accounts for the measurement error in the covariate. However, selecting
a suitable combination of the smoothing parameters (δ1, δ2) is a prerequisite to a
good model fit. All our discussion so far has assumed that these parameters are
fixed and known. In this section we discuss how to find suitable values of δ1 and
δ2 such that the mean square error for the model (3) is minimum along with the
unknown smooth covariate, X, should be approximate as close as possible.

To choose smoothing parameters that minimize the mean square error (predic-
tion error), three common approaches (a) Generalized cross validation (GCV); (b)
Mallow’s Cp; and (c) Akaike Information criterion (AIC) have been discussed in the
literature (Ruppert et al. 2003). Among these methods, minimization of GCV is
more attractive because of its advantages in terms of invariance and computations
(Wood, 2006).

In our simulations, we found that minimizing GCV scores for both δ1 and δ2
result in biased estimates of the regression coefficient, β̂1. Our simulation also
suggest that (see next section) estimates obtained by minimizing GCV scores for δ1
and minimizing the following criteria for δ2

H(δ2) =
n−1

∑n
i=1{Wi − Ŵi}4

{1− n−1trace{L̂2(δ2)}}2

where L2 is the smoother matrix defined in section 2.4, works quite well in estimating
the regression parameter, β̂1. That is, we first obtain an estimate of δ2 by minimizing
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H(δ2) and then substitute this value of δ2 in (5) to get an estimate of θ2. We then use
these estimates of δ̂2 and θ̂2 in (10) to obtain an expression for L1(δ1). Finally, we
minimize the standard GCV score to get an optimum value of δ1, i.e., we minimize

GCV (δ1) =
n−1

∑n
i=1{Yi − Ŷi}2

{1− n−1trace{L̂1(δ1, δ̂2)}}2
;

where L1 is defined in section 2.4. The resulting (δ1, δ2) combination appears to
work well in terms of estimating β1 as seen in the next section.

3. Simulation

In this section we will discuss a simulation study designed to evaluate the finite
sample properties of our proposed method in the presence of covariate measurement
error in spatial linear regression.

3.1 Data generation

We simulated 500 sample locations randomly within an 80 × 80 rectangular grid.
Specifically, the ith random sample location Si was generated by simulating two
coordinates (e.g., latitude and longitude) from a Uniform[0,80] distribution. Given
a set of simulated Si’s, the unobserved true covariate X was generated with mean
0 and covariance matrix ΣX , where ΣX was assumed to have an exponential cor-
relation structure with unit variance. This implies that the correlation between
two observations with distance h units apart is exp(−h/τx), where τx is the range
parameter. We considered three different range parameters (τx = 1, 5, 10) resulting
in minimal, moderate and high correlation among the values of X’s.

The observed error-prone versions, W , of the true covariate were generated by
adding independent Gaussian noise with variance σ2U to X. Outcome data, Y ,
were then generated according to equation (1), the slope and intercept parameter
are taken as (β0, β1)

T = (1, 2)T and the variance component was generated using a
similar exponential correlation structure as ΣX , but with different range parameters.
We also add a random Gaussian noise to the residual error variance ( a so called
nugget effect, Clark 2009). The variance parameter for this independent residual
error was taken as 0.5.

We incorporate spatial correlation in the residual error by using a similar range
parameters as of covariate X. Thus, we have 9 different combination of range pa-
rameters (τX , τε) allowing for variation in the degree of spatial correlation in the
covariates and in the error of the model Y on X. To generate exponential spatial
correlation for our simulated data and in model fitting, we used the nlme package
(Pinheiro et al., 2013). To extract the covariate matrices from the object corre-
sponding to each lme fit we used the mgcv package (Wood, 2006) in R.

3.2 Generating bi-variate splines basis function

We now describe the steps used to fit our proposed semi-parametric model. We gen-
erated two sets of basis function B1(·) and B2(·) using bivariate thin plate spline re-
gression basis with 125 and 150 knots for response and covariate model, respectively.
In particular, we used the ”tps.cov” function (Ngo and Wand, 2004) inR to generate
a bivariate thin plate splines regression basis. The number of knots were different to
make the model identifiable, see Section 2.1. The number of knots for the response
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model were analogous to the default number of knots [max{20,min(n/4,150)}] sug-
gested by Ruppert et al. (2003). For the covariate model we increased the deafult
number of knots by 20%. Given a fixed value of the number of knots, knot positions
were automatically selected using the cluster separation method ”clara” (Kaufman
and Rousseeuw, 2005) in R (R Core Team, 2013). Specifically, this method selects k
representative objects in the data set, where k is the number of knots. The remain-
ing objects are then assigned to the nearest representative object to form a cluster.
The representative objects are selected in such a way that the average distance of
the representative objects to all other objects in the same cluster is minimized.
These optimal representative objects are also known as ”medoid”, which serve as
knots for the splines basis functions.

3.3 Performance of the proposed method

The average of the regression parameter estimates along with estimated standard
errors from the 1000 replication are presented in Table 1, assuming a sample size of
500 and measurement error variance σ2U=0.2.

Table 1: Simulation results using different combinations of range parameters. Re-
ported numbers are averaged over 1000 simulations with 500 observations per sim-
ulation and measurement error variance 0.2.

Naive analysis Estimated standard error
Range* LME GAM Proposed Empirical† Model based Simulated

(τX , τε) β̂ β̂ β̂ se(β̂) se(β̂) se(β̂)

(1,1) 1.654 1.666 2.067 0.109 0.214 0.229
(1,5) 1.647 1.662 2.069 0.121 0.212 0.227
(1,10) 1.651 1.661 2.067 0.114 0.210 0.225
(5,1) 1.580 1.608 2.026 0.077 0.111 0.110
(5,5) 1.483 1.584 2.028 0.104 0.110 0.110
(5,10) 1.484 1.580 2.028 0.112 0.109 0.109
(10,1) 1.422 1.462 1.971 0.072 0.091 0.090
(10,5) 1.263 1.437 1.973 0.105 0.090 0.089
(10,10) 1.263 1.432 1.973 0.119 0.089 0.088

Range*- (τX , τε)values of the range parameter following exponential
correlation in X and the error term in the model on Y respectively

Empirical† - Standard deviation of the 1000 simulated β̂1’s.

Three different standard error estimates along with the average of estimated
regression coefficients based on 1000 simulations are presented in Table 1. These
include, empirical standard errors i.e., taking the sample standard deviation of the
1000 simulated regression coefficient estimates, average of the estimated standard
errors and average of the simulated standard errors defined in section (2.4). The
first column of table 1 specifies the combination of range parameters (τX , τε) to
characterize the 9 different combinations of spatial correlation in the covariate X
and in the error for the model Y given X. The 2nd and 3rd columns list the naive
estimates (i.e., ignoring measurement error) fitted with linear mixed models and
generalized additive model, respectively. The fourth column presents the estimated
regression parameters based on proposed method. The last three columns of this
table presents the estimated standard error based on empirical calculation, model
based and average of the simulated standard error. The simulated standard errors
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were obtained by taking 100 bootstrap samples. The standard errors were then
averaged over 1000 replications.

Our results confirm that as expected, both the linear mixed model and gen-
eralized additive model attenuate the estimated regression coefficient towards the
null hypothesis of no effect when an error prone covariate is used. Instead, the
proposed bias correction method performs well even if the degree of bias for linear
mixed model or generalized additive model with error prone covariate varies (range:
1.65-1.26 and 1.67-1.43, respectively) with the strength of the spatial correlation
structure. Both model based and simulated estimates of the standard error are
consistent when there is moderate to high correlation in the covariates. However,
both of these standard error are over estimated when there is low correlation in
the covariate X. This makes sense because the smooth spatial surface in X is
non-identifiable in that setting.

To evaluate the performance of the proposed method under small samples, we
also conducted simulations with sample size of 250 and 100. The results are given
in Table 2.

Table 2: Simulation results using different combinations of range parameters and
sample sizes. Reported numbers are averaged over 1000 simulations with measure-
ment error variance 0.2.

Sample size 250 Sample Size 100
Estimated standard error Estimated standard error

Range* Coef. I II III Coef. I II III

(τX , τε) β̂ se(β̂) se(β̂) se(β̂) β̂ se(β̂) se(β̂) se(β̂)

(1,1) 1.944 0.17 0.309 0.404 1.712 0.208 0.454 3.679
(1,5) 1.946 0.197 0.309 0.402 1.714 0.234 0.453 3.671
(1,10) 1.947 0.202 0.307 0.401 1.715 0.242 0.452 3.671
(5,1) 1.998 0.116 0.185 0.194 1.822 0.172 0.317 0.585
(5,5) 2.000 0.145 0.184 0.194 1.824 0.197 0.316 0.588
(5,10) 2.000 0.155 0.183 0.192 1.824 0.207 0.315 0.588
(10,1) 1.959 0.105 0.148 0.152 1.833 0.165 0.258 0.327
(10,5) 1.962 0.138 0.147 0.152 1.834 0.192 0.257 0.326
(10,10) 1.963 0.153 0.146 0.15 1.835 0.206 0.255 0.324

Range*- (τX , τε)values of the range parameter following exponential
correlation in X and the error term in the model on Y respectively.
Estimated standard errors: I= Empirical, II= Model Based, III= Simulated.

With the size of 250 samples our proposed methods still provides very consistent
estimates of the true regression coefficient. However, with small sample cases (say,
n=100) the estimates are attenuated and variance becomes inflated.

4. Application

4.1 Analysis of Ischemic Heart Disease Data

We applied our proposed methodology to re-analyse data on Ischemic Heart Disease
(IHD). One of the key objectives of the analysis is to ascertain whether there is any
relationship between IHD rates with socio-economic status of the patient population.
These data were collected from all hospitals in New South Wales (NSW), Australia
between July 1, 1994 to June 30, 2002. A detailed description of the data has been
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given elsewhere (Burden et al., 2005). Briefly, patients who were admitted to the
hospitals via the emergency room and discharged with IHD were defined as acute
IHD cases. Data also includes patient age, gender and geographic location reported
via postcode of residence. Data from 579 postcodes were included in the analysis.
IHD event data were linked with the Census data which contains age and gender-
specific population counts. SEIFA (Socio-Economic Indexes For Areas) scores and
centroid co-ordinates (latitude and longitude) for each postcode were obtained from
Australian Bureau of Statistics (ABS). We calculated age-sex adjusted standardized
incidence ratios (SIR) by dividing the observed number of IHD cases by the age-sex
adjusted expected IHD cases (Breslow and Day, 1987). Since SEIFA indexes are
calculated using the principal component analysis which only accounts for about
30 percent of the total variation, it is likely that the SEIFA score is subject to
substantial measurement error (Huque et al., 2014).

The results of our analysis are given in Table 3.

Table 3: Analysis of Ischemic Heart Disease Data in NSW, Australia under different
specification of measurement error

Methods Estimates for SEIFA
model based simulated

β̂ se(β̂) se(β̂)
Ordinary Least Squares -0.062 0.014 —
Generalized additive model -0.145 0.014 —

Proposed semiparametric approach -0.281 0.045 0.047

Huque et al. (2014) approach
Method I: Method of Moments -0.377 0.041 —
Method II: Transformation of covariate -0.278 0.015 —

The naive analysis ignoring spatial correlation, suggests a significant protec-
tive effect associated with higher SEIFA values (β̂SEIFA=-0.062, SE=0.014). Our
proposed semi-parametric approach that account for measurement error in the co-
variates result in an estimated slope parameter β1 of -0.281. The model based and
simulated standard errors were estimated as 0.045 and 0.047, respectively. Thus,
accounting for the measurement error in the covariate results in a very strong pro-
tective effect of higher SEIFA scores on Ischemic Heart Disease rates.

5. Discussion

In this paper, we develop a semi-parametric framework to obtain an unbiased es-
timate of the true regression coefficients when covariates are measured with error
in spatial modelling settings. We develop an asymptotic theory for the model fit
and provide a model based and simulation based standard error estimates. We
show that our biased corrected estimate of the regression coefficient is consistent
and asymptotically normal. Our empirical simulation results confirm that ignoring
measurement error and conducting naive analysis using both generalized additive
model and linear mixed model attenuates the estimated regression coefficient to-
wards the null hypothesis of no effect. Our results concur with the results of Huque
et al. (2014) who showed that the attenuation depends on the degree of spatial
correlation in both X and the assumed random error from the regression model.
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Our proposed semi-parametric bias correction method performs very well in obtain-
ing consistent estimates. Our proposed method provides comparable estimates of
the regression parameters to the transformation of covariate methods described by
Huque et al. (2014) when applied to Ischemic Heart Disease (IHD) data. Our ap-
proach is computationally efficient and stable because it involves direct estimation
using least squares and can be implemented using standard nonlinear least squares
software.

Although Huque et al. (2014) and Li et al. (2009) reported similar results for
the bias associated with regression analysis involving covariate measurement error,
their approaches largely depends on the knowledge of the true covariate measure-
ment error variance. Even though these authors proposed a sensitivity analysis to
be carried out in practice, Huque et al. (2014) reported under estimation of stan-
dard error when measmeasurement error variances are estimated from the data.
Additionally, the method proposed by Li et al. (2009) are based on E-M algorithm
and difficult to apply, especially in situations involving large data sets. Moreover,
both of these methods are based on linear mixed model formulation with no direct
account to the generalized additive model settings.

Our proposed method is an important addition to the existing literature that
addresses the issue of covariate measurement error in an additive model framework.
This approach is also robust because it neither assumes that the covariate mea-
surement error is known nor depends on any particular kind of spatial correlation
structure. Our proposed method requires large samples (n ≈ 250 or more) to yield
reliable results. In many applications, for examples, in air pollution data set, often
sample size is quite large to effectively address the issues of measurement error with
mixed model softwares due to the computational burden. In such situation, our
proposed methods would be helpful for practitioners to obtain unbiased estimates
and valid inferences.

Our heart disease example demonstrated a substantial increase in the rates of
IHD as the level of SEIFA measured at the postcode level decreased. The magni-
tude of the effect increased after adjusting for measurement error. Our results are
consistent with the result using similar analysis of Huque et al. (2014). The rela-
tionship between low socio-economic status and increased health outcome has also
been observed in various social epidemiological research domains (see systematic
review by Pickett and Pearl 2001). However, interpreting these results as applying
at the individual level may result in ecological bias (Sheppard, 2003). Eventhough,
caution is needed when interpreting group level covariates to the individuals level
outcomes, in many research areas, group-level data are the only available source for
analysis. Air pollution epidemiology provides a classic example, because individual
measurements of air pollution studies are rarely collected and instead are estimated
based on neighbourhood monitoring and other sources (Sheppard et al., 2012). Con-
sequently, air pollution exposures are typically measured with error, and it would
be useful to consider the impact of this error on subsequent effect size estimates.

In our simulation, we have considered only a single covariate measured with
error in a spatial linear mixed model with Gaussian error. It would be of interest
to explore the effect of covariate measurement error in the presence of multiple
covariates and also omitted covariates. Future work should also consider extensions
of our formulation to the setting of spatial generalized linear mixed model with
non-Gaussian outcomes. However, such explorations are beyond the scope of this
present paper.

In correlated data settings, for examples, in environmental epidemiology, with
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the increasing popularity of the semi parametric models/multilevel model to account
for the observed data correlations, it is important that practitioners be aware of the
consequences of measurement error. Furthermore, it is useful to quantify its effect on
the exposure-outcome relationship prior to drawing potentially spurious conclusions
regarding the relationship between the exposure of interest and outcome.
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Appendix

Appendix A
Consider that Si’s as fixed constants and recall that, Yi = G2(Si)β1 + G1(Si) + εi.
Substituting the expression for Yi into the numerator of (7) and simplifying using
the expression from (9), we have

n−1
∑n

i=1Yi{B
T
2 (Si)−BT

1 (Si)Rn}θ̂2
= n−1

∑n
i=1(B

T
2 (Si)θ2β1 +BT

1 (Si)θ1 + εi){BT
2 (Si)−BT

1 (Si)Rn}θ̂2
= n−1

∑n
i=1(B

T
2 (Si)θ2β1 +BT

1 (Si)θ1){BT
2 (Si)−BT

1 (Si)Rn}θ̂2 +

n−1
∑n

i=1εi{B
T
2 (Si)−BT

1 (Si)Rn}θ̂2
= Anθ̂2 + n−1

∑n
i=1Dniεi

= Anθ2 +An(θ̂2 − θ2) + n−1
∑n

i=1Dniεi.

Applying (5) to the above equation, we have

Anθ2 + n−1
∑n

i=1{AnΛn2B2(Si)Ui +Dniεi}+ op(n
−1/2).

Again, the denominator of (7) is

θ̂T2 (Tn −RT
nΛ−1n1Rn)θ̂2 = θ̂T2 Cnθ̂2

Now applying (5), the denominator becomes,

(θ2 + n−1
∑n

i=1Λn2B2(Si)Ui) + op(n
−1/2)TCn(θ2 + n−1

∑n
i=1Λn2B2(Si)Ui) + op(n

−1/2)

= θT2 Cnθ2 + n−1
∑n

i=1θ
T
2 CnΛn2B2(Si)Ui + n−1

∑n
i=1U

T
i B2(Si)

TΛn2Cnθ2
+(n−1

∑n
i=1Λn2B2(Si)Ui)

T(n−1
∑n

i=1Λn2B2(Si)Ui) + op(n
−1/2)

= θT2 Cnθ2 + n−1
∑n

i=1FniUi + op(n
−1/2).

Then, by a Taylor series expansion,

β̂1 =
Anθ2 + n−1

∑n
i=1{AnΛn2B2(Si)Ui +Dniεi}

θT2 Cnθ2 + n−1
∑n

i=1FniUi
+ op(n

−1/2)

=
Anθ2
θT2 Cnθ2

+
n−1

∑n
i=1{AnΛn2B2(Si)Ui +Dniεi}

θT2 Cnθ2

− Anθ2
(θT2 Cnθ2)2

n−1
∑n

i=1FniUi + op(n
−1/2).

Thus

β̂1 −
Anθ2
θT2 Cnθ2

= n−1
∑n

i=1(Gniεi +HniUi) + op(n
−1/2).

Now considering the fact from (5) that n−1
∑n

i=1B2(Si)B
T
2 (Si) = Λ−1n2 + o(n−1/2)

and using this in the expression for Anθ2, we have

Anθ2 = n−1
∑n

i=1β1θ
T
2 B2(Si){BT

2 (Si)−BT
1 (Si)Rn}θ2

+θT1 n
−1∑n

i=1B1(Si){BT
2 (Si)−BT

1 (Si)Rn}θ2
= β1θ

T
2 Cnθ2 + θT1 {Λ−1n1 − n

−1∑n
i=1B1(Si)B

T
1 (Si)}Rnθ2

= β1θ
T
2 Cnθ2 + op(n

−1/2).
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Therefore,

Anθ2
θT2 Cnθ2

= β1 + op(n
−1/2)

Hence,

n1/2(β̂1 −
Anθ2
θT2 Cnθ2

) ∼ Normal(0, σ2),

where σ2 = n−1
∑n

i=1(σ
2
εG2ni + σ2uH2

ni).

Thus, β̂1 is a consistent estimate for β1.

Appendix B
From equation 3, we have

Ŷi = BT
2 (Si)θ̂2β̂1 +BT

1 (Si)θ̂1

= BT
2 (Si)θ̂2β̂1 +BT

1 (Si)[Vn −Rnθ̂2β̂1]
= [B2(Si)−BT

1 (Si)Rn]Tθ̂2β̂2 +BT
1 (Si)Vn

= [B2(Si)−BT
1 (Si)Rn]Tθ̂2

(
n−1

∑n
i=1Yi{BT

2 (Si)−BT
1 (Si)Rn}θ̂2

θ̂T2 Cnθ̂2

)
+BT

1 (Si)Λn1n
−1∑n

i=1B1(Si)Yi

=
Dnin

−1∑n
i=1DniYi

θ̂T2 Cnθ̂2
+BT

1 (Si)Λn1n
−1∑n

i=1B1(Si)Yi.

Similarly from equation 4, we have

Ŵi = BT
2 (Si)θ̂2

= BT
2 (Si)Λn2n

−1∑n
i=1B2(Si)Wi.
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