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Abstract
This paper defines a new measure of examinees abilities using additivity, one of the fundamental

properties of a measure. By employing mathematical proofs, other fundamental properties of the
new measure are demonstrated. This paper also shows that shared ability and unique ability can be
measured with additivity. Finally, the paper looks at ability measure associated with subscales and
ability measure with partial credits of items is also discussed.
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1. Introduction

Before we define an ability measure, we need to make clear about the concept of measure.
In this section, we look into several well defined measures from which we try to find the
property in common across these measures. We believe that the ability measure, which is
the topic of this paper, should also be defined on the basis of this common property.

It is well known that the area of a rectangle is measured by the product of its length
and width. For example, for a rectangle with length of 2 and width of 1, the area can be
directly measured with 2 = 2× 1. Actually, this rectangle can also be measured indirectly:
(i) split this rectangle into two unit squares with both length and width equal to 1; (ii) the
areas of these two unit squares are measured with 1 = 1×1; (iii) make summation of these
two area measures in (ii) with 2 = 1 + 1. The summation in (iii) is the “indirect” measure
of the area of the rectangle with length of 2 and width of 1. As we can see, both “direct”
and “indirect” area measures on this rectangle produce the same value which is 2 in this
example. The relation between “direct” and “indirect” area measures is mathematically
expressed by 2×1 = 1 × 1 + 1 × 1. The left hand side of this equation corresponds to
“direct” measure while the right hand side corresponds to “indirect” measure. Generally,
for the same area, both “direct” and “indirect” measures must produce the same value – this
is called additivity according to the measure theory (Halmos, 1974). In the same example, if
we measure the area of the rectangle by summation of length and width, instead of product
of its length and width, with the steps in (i), (ii) and (iii), we will receive two different
values for the “direct” measure, which is 3 = 1 + 2, and the “indirect” measures which
is 4 = (1 + 1) + (1 + 1). Obviously, with summation of length and width, the area of
the rectangle is measured in a wrong way - the way that has no additivity. Any measure
without additivity is similar to measuring area of rectangle by summation of its length and
width.

In measure theory (Halmos, 1974), a set function is a function whose domain of def-
inition is a class of sets. An extended real valued set function µ(.) defined on a class S
of sets is additive if, whenever E ∈ S , F ∈ S , E ∪ F ∈ S , and E ∩ F = ∅,then
µ(E ∪ F ) = µ(E) + µ(F ). For the measure of the rectangle area, the class S contains all
rectangles (each rectangle is a set of points) and µ(.) is defined by the product of its length
and width.
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The next well defined measure is called probability which measures randomness (Hays,
1970). If two events A and B are exclusive, we have

Prob(A ∪B) = Prob(A) + Prob(B). (1)

The equation 1 is called additivity.
In information theory, the entropy (Shannon, 1948; Wiener, 1948) is defined to measure

the uncertainty in the random variables. One of the entropy fundamental properties is the
following equation:

H(X,Y ) = H(X) + H(Y )− I(X, Y ). (2)

where X and Y are two categorical random variables; H(X) and H(Y ) are the entropies
for X and Y respectively; H(X, Y ) is the entropy of X and Y ; I(X, Y ) is the mutual
information among X and Y .

If X and Y are independent from each other, which implies I(X, Y ) = 0, the equation
2 becomes

H(X, Y ) = H(X) + H(Y ). (3)

The equation 3 is called additivity.
Unlike Shannon’s entropy, Fisher information (Fisher, 1925) is defined to measure the

parameter(s)’ information given random variable(s). If random variables X and Y are inde-
pendent, we have

IX,Y (θ) = IX(θ) + IY (θ). (4)

where IX,Y (θ) is the Fisher information given X and Y; IX(θ) and IY (θ) are the Fisher
information given X and Y respectively. θ is the parameter(s).

The equation 4 is called additivity.

In 2009, Kong and Lewis (Kong and Lewis, 2009) mathematically proved the following
equation for the K-dependence coefficient (Kong and Lewis, 2009).

K(X : Y,Z) = K(X : Y ) + K(X : Z)−K(X : Y ∧ Z). (5)

where X, Y and Z are three categorical random variables; K(X:Y,Z) is the K-Dependence
coefficient of X dependence on X and Y; K(X:Y) and K(X:Z) are the K-Dependence co-
efficients of X dependence on X and Y respectively; K(X:Y ∧ Z) is the K-Dependence
coefficients of X dependence on the interaction among X, Y and Z.

If there is no interaction among X, Y and Z, which implies K(X:Y∧ Z) = 0, the equation
(5) becomes:

K(X : Y, Z) = K(X : Y ) + K(X : Z). (6)

The equation (6) is called additivity.

So far, we have looked into the theoretical structures for several well defined measures.
All of these structures reveals the same property – additivity as shown in (1), (3), (4) and
(6). We believe that the additivity is the general property for a measure. The purpose of
this paper is to study a new ability measure and, therefore, it is requested that this ability
measure be of the property of the additivity. In next section, an ability measure is defined
and studied according to the additivity.
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2. Ability Measure Defined with Dichotomous Items

In this section, the examinee’s ability will be measured on the basis of a set of item re-
sponses given a test. Here, the items are the questions in the given test that have right
(R) or wrong (W) responses. For a test consisting of I items, let Xi be the item-score
variable for the item i (i = 1, . . . , I), with realization Xi ∈ {W,R}. Also, we suppose
that a respondent answers L(0 ≤ L ≤ I ) items correctly, then these correctly answered
items are indicated by i1, . . . , il, . . . , iL. For example, suppose an item-response vector of
RRWWWR, then I = 6,L = 3, i1 = 1, i2 = 2 and i3 = 6. The probability of right
response for i1 is denoted by P (Xi1 = R) and, the probability of right responses for both
i1 and i2 is denoted by P (Xil = R,Xi2 = R) etc.

Definition 1. The ability with right (R) response(s) for items il (l = 1 , ...,L;L ≥ 1 ) is
defined as

θ(i1, . . . , il, . . . , iL) = −ln(P (Xi1 = R, . . . ,Xil = R, . . . , XiL = R)). (7)

In (7), θ(i1, . . . , il, . . . , iL) is called the measure of the ability with right (R) response(s)
for the items il (l = 1 , ...,L). We also request that the examinee’s ability be measured as
zero if this examinee does not respond any item correctly, i.e L = 0 in (7).

In Definition 1, only the probabilities on correctly-responded items are used for mea-
suring abilities, some probabilities such as those for incorrectly-responded items are not
shown up in (7). Because the probabilities on any combinations of the correctly-responded
items and the incorrectly-responded items can be fully expressed by the probabilities on
those correctly-responded items, the probabilities on correctly-responded items have fully
represented all of the information associated with the joint probabilities. Therefore, the
ability measure in Definition 1 has lost nothing in terms of the information associated with
the joint probabilities.

If items i1, . . . , iL are (jointly) independent, the following equation can be obtained
directly from Definition 1 and shows that the ability measure in Definition 1 is additive

θ(i1, · · · , iL) = θ(i1) + . . . + θ(iL). (8)

As we can see in equation 25 that, if the items are jointly independent, the measure
of examinee’s total ability with right responses on all these items is the summation of the
measures of the examinee’s abilities with right responses on each of these items. The
additivity in equation 25 implies that the summation of the ability measures on subscales
can be the total ability measure if and only if these subscales are jointly independent. For
the case that the items are not jointly independent, not only the ability measure on each
subscale but also the interactions among the items play the roles in total ability measure.

Corollary 1.
0 ≤ θ(i1, · · · , iL) ≤ +∞. (9)

Proof: This is obvious from the Definition 1.

Corollary 2.

θ(i1, · · · , iL) = 0 ⇐⇒ P (Xi1 = R, · · · ,XiL = R) = 1 (10)

Proof: This is obvious from the Definition 1.
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Corollary 3.

θ(i1, · · · , iL) = +∞ ⇐⇒ P (Xi1 = R, · · · ,XiL = R) = 0 (11)

Proof: This is obvious from the Definition 1.

As shown in Corollary 1, the ability measure defined in (7) is nonnegative which implies
the total ability measure is always greater than or equal to the ability measure on each
subscale according to the additivity. Because the minus sign has no meaning in the ability
measure, the additivity requests that the ability measure be nonnegative (generally, the
measure theory always requests that a measure be nonnegative).

Now, assume that 0 < M ≤ L, there is

θ(i1, · · · , iM ) = −ln(P (Xil = R, · · · ,XiM = R))
≤ −ln(P (Xil = R, · · · ,XiM = R)× P (XiM+1 = R, · · · ,XiL = R|Xil = R, · · · ,XiM = R))

= −ln(P (Xil = R, · · · ,XiL = R)) = θ(i1, · · · , iL)

Therefore, the following theorem is obtained:

Theorem 1. For 0 < M ≤ L,

θ(i1, · · · , iM ) ≤ θ(i1, · · · iL) (12)

Theorem 1 is another fundamental property of the ability measure: the measure of the
ability associated with subset of all correctly-responded items is no greater than the mea-
sure of the ability associated with all correctly-responded items, i.e., the measure of the
abilty associated with subscale can not be greater than the measure of its total ability.

In summary, the ability measure defined in (7) has the following properties: (a) Ad-
ditivity (if the items are independent) as shown in equation 25. (b) The ability measure
is nonnegative. Therefore, the total ability measure is greater than or equal to the ability
measure on each subscale. (c) The ability measures with the same response patterns are the
same (this is obvious by the Definition 1). (d) The ability measure on a response pattern is
greater than or equal to the ability measure on the subset of its response pattern (Theorem
1). (e) The ability measure is determined by the difficulties of the items and the inter-
actions among those items. The more difficult and more jointly independent items cause
higher ability measure. (f) The ability measure in Definition 1 has no specific parametric
structure. Therefore, the ability measure in Definition 1 has no those assumptions or limi-
tations associated with the specific parametric structure. (g) The ability measure is defined
with the joint probability of the items in a given test and all of the response vectors out of
these items are utlized for measureing abiliity, therefore, the ability is measured with full
information for given joint probabilities.

In the next two sections, the following properties of the ability measure defined in (7)
will be studied: (h) With the additivity, it is possible to measure the shared ability and
unique ability. Generally speaking, an examinee’s ability consists of two parts: the unique
part that belongs to the examinee and the part shared with others.

3. Shared Ability Measure and Conditional Ability Measure

Because the ability measure in Definition 1 has the property of additivity, it is possible to
measure the shared ability among the correctly-responded items and unique ability of each
correctly-responded item.
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Definition 2. The shared ability among correctly-responded items i1 and i2 is measured
with

θ(i1 ∗ i2) = θ(i1) + θ(i2)− θ(i1, i2). (13)

where θ(i1), θ(i2) and θ(i1, i2) are defined in Definition 1.
According to Definitions 1 and 2, the following equation can be obtained :

θ(i1 ∗ i2) = −ln
P (Xi1 = R)P (Xi2 = R)
P (Xi1 = R, Xi2 = R)

(14)

By (14), it is obvious that θ(i1 ∗ i2) = θ(i2 ∗ i1).

The following theorem offers a sufficient and necessary condition for no shared ability
between two items i1 and i2.

Theorem 2.

θ(i1 ∗ i2) = 0 ⇐⇒ i1 and i2 are independent.

Proof: Let Xi1 and Xi2 be the item score variables of the items i1 and i2. By Definition 1,

θ(i1) = −ln(P (Xi1 = R), (15)

θ(i2) = −ln(P (Xi2 = R), (16)

θ(i1, i2) = −ln(P (Xi1 = R, Xi2 = R)). (17)

Therefore, Xi1 and Xi2 are independent if and only if

θ(i1, i2) = θ(i1) + θ(i2)

By equation 13, we have

θ(i1 ∗ i2) = 0

This is the proof of Theorem 2.

In concept, the shared ability is closer to the concept of interaction between those items
associated with different respondents or subscales. The stronger association between those
items implies the more abilities are shared. For example, if two items are identical, the
shared ability is the same as the ability associated with each of those items. Another ex-
treme case is that, if two items are independent, the shared ability is zero. The shared ability
is also related to the redundant or overlapped information among the items, i.e. the items
could be heavily similar to each other in which the scope for those items to cover for testing
could be limited. Therefore, the shared ability among the different items should not be too
big.

Unlike the ability measure in Definition 1 which is nonnegative, the shared ability mea-
sure in Definition 2 can be negative. If an examinee with correct response on one item
tends to correctly respond another item, this examinee has positive shared ability among
these two items. If an examinee with correct response on one item tends to wrongly re-
spond another item, this examinee has negative shared ability among these two items. In
practice, for most of cases, the shared ability are positive. The negative shared ability only
happens for two items associated with the exclusive abilities.
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Definition 3. The unique or conditional ability with i1 given i2 is measured with

θ(i1|i2) = −lnP (Xi1 = R|Xi2 = R). (18)

Corollary 4.

θ(i1, i2) = θ(i2) + θ(i1|i2) (19)

Proof: The proof is obvious from Definitions 1 and 3 with noting that:

θ(i1|i2) = −ln(P (Xi1 = R|Xi2 = R)) = −ln(P (Xi1 = R, Xi2 = R)) + ln(P (Xi2 = R))

Corollary 5.

θ(i1 ∗ i2) = θ(i1)− θ(i1|i2) (20)

Proof: The proof is obvious from Definition 2 and corollary 4.

The unique or conditional ability θ(i1|i2) measures the part of the ability with i1, but
exclusive of i2, that is, θ(i1|i2) measures the unique ability associated with i1 out of the
ability associated with i1 and i2. The following equation, which can be proved with Corol-
laries 7 and 8, describes the relation among total ability, shared ability and unique ability:

θ(i1, i2) = θ(i1 ∗ i2) + θ(i1|i2) + θ(i2|i1). (21)

In (21), the θ(i1, i2) is decomposed into three parts – the shared ability associated with
i1 and i2, the unique ability associated with i1 with exclusive of the ability associated with
i2 and, the unique ability associated with i2 with exclusive of the ability associated with i1.
The equation in (21) is also available in probability and entropy:

P (A ∪B) = P (A ∩B) + P (A ∩Bc) + P (B ∩Ac),
H(X,Y ) = I(X,Y ) + H(X|Y ) + H(Y |X).

where A and B are events; Ac and Bc are the events “not A” and “not B”. X and Y are two
random variables; H(X, Y ) is the entropy of X and Y ; H(X) and H(Y ) are the entropies
for X and Y respectively; H(X|Y ) is the conditional entropy of X given Y ; I(X, Y ) is
the mutual information among X and Y .

Theorem 3.

θ(i1 ∗ i2) ≤ θ(i1) (22)

Proof:

P (XXi2
= R) ≥ P (Xi1 = R,Xi2 = R) ⇐⇒ ln

P (Xi2 = R)
P (Xi1 = R,Xi2 = R)

≥ 0 ⇐⇒

−ln
P (Xi1 = R,Xi2 = R)

P (Xi1 = R)P (Xi2 = R)
≤ −lnP (Xi1 = R) ⇐⇒ θ(i1 ∗ i2) ≤ θ(i1).

This is the proof of Theorem 3.

JSM 2014 - Section on Nonparametric Statistics

672



The measure of the shared ability associated with i1 and i2 in Definition 2 can be
extended into the measure of the shared ability associated with i1, i2, · · ·, iL which is
denoted by θ(i1 ∗ · · · ∗ iL). Without loss of generality, θ(i ∗ i2 ∗ i3) can be defined by:

θ(i1 ∗ i2 ∗ i3) = θ(i1) + θ(i2) + θ(i3)− θ(i1, i2)
−θ(i1, i3)− θ(i2, i3) + θ(i1, i2, i3). (23)

Obviously, according to (23), (joint) independence among i1, i2 and i3 implies that
θ(i1 ∗ i2 ∗ i3) = 0. Similar to θ(i1 ∗ i2), θ(i1 ∗ i2 ∗ i3) can be negative, but the interpretation
for this is more complicated. Roughly speaking, θ(i1 ∗ i2 ∗ i3) is the interactive ability
contribution by i1, i2 and i3 to the total ability θ(i1, i2, i3).

4. Ability Measure with Partial Credits

In this section, the examinee’s ability will be measured on the basis of a set of item re-
sponses from a given test. Here, the items are the questions in the given test that have
scores v1 ≺ v2 ≺ . . . ≺ vm where the ordinal symbol ≺ means less than and v1 is (fully)
wrong response while vm is (fully) correct response. Those scores between v1 and vm are
called partial credits. The number of the scores, m, could be different from item to item.
Let il (l=1,...,L) be the item response with possible scores v1 ≺ v2 ≺ . . . ≺ vml

. Similar
to the number of the scores ml, those possible scores also could be different from item to
item. In this paper, without loss of generality, the possible scores v1 ≺ v2 ≺ . . . ≺ vml

are
assumed to be the same for all items (therefore, the lowest score v1 is assumed to be the
same for all items). The probability of the event {il = sl} is denoted by P(il = sl) where
sl ∈ {v1, . . . , vml

} and, the probability of the event {il1 = sl1}
⋂{il2 = sl2} is denoted by

P(il1 = sl1 , il2 = sl2) where sl1 ∈ {v1, . . . , vml1
} and sl2 ∈ {v1, . . . , vml2

} etc.

Definition 4.

The ability for the items il with scoring il = sl (l = 1 , ...,L;L ≥ 1 ) is measured with

θ(i1 = s1, · · · , iL = sL) = −ln(P (i1 ≥ s1, · · · , iL ≥ sL)). (24)

In (24), θ(i1 = s1, · · · , iL = sL) is called the measure of the ability associated with
the items il with scoring il = sl (l=1,...,L). Obviously P (il ≥ v1, · · · , iL ≥ v1) = 1, where
v1 is the lowest score for il (l=1,...,L), implies θ(i1 = v1, · · · , iL = v1) = 0 showing the
measure of the ability associated with all items of the lowest scores is equal to zero.

The following theorem shows that the ability measure defined in (24) is additive.

Theorem 4 (Additivity).

If items i1,..., iL are (jointly) independent, then

θ(i1 = s1, · · · , iL = sL) = θ(i1 = s1) + . . . + θ(iL = sL) (25)

Proof: This is obvious from Definition 4.

In Theorem 4, the measure on left hand side of the equation 25 is based on i1 =
s1, · · · , iL = sL which are all the items in a given test. Therefore, this measure on left
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hand side of the equation 25 is thought as the measure of examinee’s total ability. If each
item defines a subscale, the measure based on an individual item can be thought as the
measure of examinee’s ability associated with the subscale defined by that individual item.
Therefore, those measures on the right hand side of the equation 25 are the measures of
examinees’ abilities associated with the subscales defined by the items i1, · · · , iL respec-
tively. The equation 25 in Theorem 4 shows that summation of the measures of the abilities
associated with all the subscales is equal to the total ability measure if and only if these
subscales are jointly independent. Therefore, the equation 25 is called additivity. For the
case that the subscales are not jointly independent, not only the ability measure on each
subscale but also the interactions among the subscales play the roles in the total ability
measure. The general theory to measure the total ability associated with several subscales
will be studied in the section The Total Ability and the Abilities Associated with Subscales.

Theorem 5.

0 ≤ θ(i1 = s1, · · · , iL = sL) ≤ +∞. (26)

Proof: This is obvious from Definition 4.

Theorem 6.

θ(i1 = s1, · · · , iL = sL) = 0 ⇐⇒ P (il = s1, · · · , iL = sL) = 1 (27)

θ(i1 = s1, · · · , iL = sL) = +∞ ⇐⇒ P (il = s1, · · · , iL = sL) = 0 (28)

Proof: These are obvious from Definition 4.

First, Theorem 5 shows that the ability measure defined in (24) is nonnegative. This
conclusion is also implied by the following facts: the measure of the ability for all the items
with the lowest scores (fully wrong) is zero and this zero should be lower than or equal to
the measure of ability for any other response pattern. More generally, the non-negativity is
a fundamental property required by measure theory. Theorem 5 also shows that the ability
measure can be any values greater than or equal to zero, but no one could reach plus infinite
because probability of that situation is zero (Theorem 5).

Similarly, the (partially-credited) shared ability measure and the (partially-credited)
conditional ability measure can also be defined in the same way as the (dichotomously-
credited) ability measure discussed in the section 3. It should be pointed out that Definition
4 is an extension of Definition 1, i.e., in case that the number of the scores, which is m, is
equal to 2 for all of the items, Definition 4 is reduced to Definition 1.

The properties of the ability measure with the partial credits are the same as those dis-
cussed in the section 2. Readers are encouraged to verify the properties (a) - (h) with the
ability measure in Definition 4.

5. Discussion

In this paper, the measure of the ability defined in (7) and (24) shows (i) additivity; (ii) non-
negativity; (iii) the measure of the ability with incorrect responses for all items is equal to
zero. Therefore, the definition in (7) and (24) conceptually can be called the measure of the
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ability according to Measure Theory (Halmos, 1974). Here, we place emphasis on the con-
cept of measure because, without additivity, an ”ability measure” can cause unexpected re-
sults. For example, without additivity, the directly-measured value and indirectly-measured
value for the same total ability are not the same for most of cases. This is similar to mea-
suring the area of a rectangle by summation of its length and width (see Introduction of this
paper).

In the section 3, the measure of the shared abilities is defined. We point out that the
measure of the shared abilities does not make sense without additivity. Unlike the ability
measure in Definition 7 which is nonnegative, measure of the shared abilities can be nega-
tive. The negative value of the measure of the shared abilities is interpreted as the conflicted
or exclusive interaction among these two abilities. For two exclusive abilities, the higher
for one ability, the lower will be for another ability. The positive value of the measure of the
shared abilities implies these two abilities are not conflicted which means that, the higher
for one ability, the higher will be also for another ability. In practice, it is very rare for the
measure of the shared ability to be negative although it is possible.

In the section 4, the ability measure for the items of partial credits is defined in (24).
The shared ability and conditional ability can also be defined based on the definition in
(24) in the same way as those defined in (13) and (18). Under the case of partial credits, the
additivity and non-negativity still hold that makes it possible to decompose the total ability
measure into the shared ability measures and the unique ability measures.

Finally, in this paper, most conclusions can be extended to more general form in the
same way. Also, the ability measures defined in this paper may be parameterized with
some reasonable constraints such as the log-linear model etc. In practice, the parameterized
measures is possible to handle the datasets of small size. How to parameterize the ability
measures defined in this paper could be the topic for the future work.
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