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Abstract 
Currently multiple linear regression is usually taught in ways that limit students’ 
understanding and lead to mistakes in applications. The most important shortcoming 
involves the interpretation of regression coefficients, specifically the contribution of the 
other explanatory variables. Also, when the definitions of the regression coefficients are 
presented, the role of those other variables is often overlooked. The workings of least-
squares regression are straightforward to understand, and students can be given adequate 
explanations without technical details. The benefits extend to other regression methods, 
including logistic regression and survival analysis. 
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1. Introduction 
 
In some ways we statisticians have been doing a poor job of teaching regression. It’s a 
problem that we, as a profession, should be embarrassed about. But, once we recognize it, 
the problem is not hard to fix. 
 
In this paper I focus mainly on two aspects of regression. One, the definition of 
regression coefficients, is fairly minor. The other, interpreting coefficients in multiple 
regression, is a big deal. 
 
Nothing is new, but the title implies that something is wrong. The problem is that many 
textbooks give students incomplete and flawed information on multiple regression. 
 
In the sections that follow, I set up notation for multiple regression models, discuss the 
definition of coefficients and a notation for them, introduce a flawed interpretation of 
coefficients in multiple regression, explain the proper interpretation, comment on the 
connection with output from fitting a multiple regression model, draw support for the 
proper interpretation from the geometry of least squares, look closer at the flawed 
interpretation and its “proof,” and discuss implications. 
 
Hoaglin (2015) discusses most of these topics in greater detail. 
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2. Notation for Multiple Regression Models 
 
In a discussion of multiple regression, we need notation for models. One common way of 
writing the relation between the response (or dependent variable) Y and the predictors X1, 
…, XK (and the constant, !!X0 =1 ) in multiple regression is 
 
  !!Y = β0 +β1X1 ++βK XK + ε . 
 
After estimating the coefficients, we have 
 
 Data = Fit + Residual 
 
  !!Y = b0 +b1X1 ++bK XK +e . 
 

3. Definition of the Coefficients 
 
Before we turn to interpreting regression coefficients, we should give careful attention to 
how they are defined. The key idea is that all the predictors are in the model together. 
 
When we focus on a particular regression coefficient, we think mainly about the relation 
between Y and that predictor. An essential part of the definition of the coefficient is the 
set of other predictors in the model. The notation introduced by Yule (1907) makes it 
explicit: 
 

  !!β y1•02K !!and!!!by1•02K   
 
In the subscripts of these coefficients for !!X1  the first character (y) denotes the response 
variable, the second character (1) denotes the predictor to which the coefficient is 
attached, and the characters after the • ( !!02K ) denote the other predictors. 
 
In explaining the role of the other predictors in the definition of each coefficient, it is 
easy to start with the simple regression line: 
 
 !!Y = β0 +β1X + ε !!!becomes!!!Y = β y1•x +β yx•1X + ε   

 
(the subscripts show the names of the predictors, and I have taken a relaxed attitude 
toward lower-case versus upper-case letters). The line through the origin 
 
 !!Y = βX + ε !!!becomes!!!Y = β yx X + ε , 

 
and the subscripts emphasize the difference in definition between the two coefficients of 
X. 
 
An aside: It is traditional to write the simple regression line as 
 
 !!Y = β0 +β1X + ε  
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(or in an equivalent form). Everyone does it, but placing the intercept at X = 0 makes 
little sense in most applications, and we have to give excuses when !β0  has no useful 
interpretation. When I have taught regression in recent years, I have taken the following 
approach to any numerical variable: After examining the behavior of the variable, and 
before using it as a predictor in a regression model, ask where it should be centered. That 
is, the predictor should be !X − c  for some appropriate c, not X (the mean of the data on X 
may be suitable, but it is not an automatic choice for c). Each numerical predictor 
deserves some thought, and the result will be many fewer nonsensical intercepts. For 
example, what use is an intercept at Age = 0 when the data contain no observations with 
Age < 65?! 
 
Sometimes it is more convenient to write 
 
 !!Y = β0 +β1X1 +β2X2 + ε   
 
and 
 
 !!Y = β0 +β1X1 +β2X2 +β3X3 + ε   
 
for the same set of data, but we must keep in mind that the definition of !β0 , !β1 , and !β2  
differs between the two models. 
 

4. A Flawed Interpretation 
 
Many books interpret 

!
bj  as the (average) change in Y for an increase of 1 unit in 

!
X j  

when the other X’s are held constant. This interpretation is straightforward, but it is just 
plain wrong! As I explain in Section 7, it does not reflect the way regression works. It 
should be abandoned. 
 

5. The Proper Interpretation 
 
If the interpretation in Section 4 is incorrect, how should we interpret a coefficient in a 
multiple regression when we seek to summarize the effect of a predictor? 
 
In general, 

!
β j  and 

!
bj  tell us about the average change in Y per unit increase in 

!
X j  after 

adjusting for simultaneous linear change in the other X’s in the data at hand (Tukey 
1970, Chapter 23). That is, 

!
β j  and 

!
bj  summarize the effect of 

!
X j , adjusting for (or 

removing) the contributions of the other X’s. (Those adjustments are the ones that, 
together, can be best combined with a multiple of 

!
X j  to give a close fit.) 

 
What is the basis for this interpretation? It’s straightforward mathematics. For 
convenience I focus on the highest-numbered predictor and its coefficient in the multiple 
regression, !bK . 
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Regress Y on 1, !!X1 , …, !!XK−1 , producing residuals that we can denote by  !!Y•1K−1 . 
 
Regress !XK  on 1, !!X1 , …, !!XK−1 , producing residuals  !!XK•1K−1 . 
 
Then !bK  is the slope of the regression line through the origin for  !!Y•1K−1  versus  !!XK•1K−1  

(in Yule’s notation,  !!bYK•1K−1 ). 
 
The scatterplot of  !!Y•1K−1  versus  !!XK•1K−1  is well known. It is a partial regression plot (or 

added-variable plot). Some authors call 
!
bj  a “partial regression coefficient.” 

 
Yule (1907, Section 9) gives an elegant proof of the above result. Cook and Weisberg 
(1982, Section 2.3.2) also give a proof. 
 
In the following hypothetical example, due to Paul F. Velleman of Cornell University, the 
proper interpretation of a key regression coefficient agrees with common sense.  Suppose 
we have data on personal income and a model that relates persons’ Income to their Age 
(in years), Education (in years), and Work experience (in years) and includes the usual 
intercept term. In a simple regression of Income on Age, we would expect the coefficient 
of Age to be positive.  The three predictors, however, are positively correlated: 
 
 Age = Education + Work experience + constant . 
 
When Age is adjusted for Education and Work experience, what remains is the years that 
the person was not in school or working: 5 years (if the person took no time out); plus 
time in the military, Peace Corps, or other service organization; plus time spent raising 
children. The coefficient of Age in the multiple regression with Income as the dependent 
variable summarizes the contribution of the years that the person was not in school or 
working. We would expect the sign of that coefficient to be negative.  
 
For some audiences it will be more effective to start with simple linear regression, before 
illustrating a partial regression plot with two non-constant predictors. 
 
The Y-residuals are !Y − y . 
 
The X-residuals are !X − x . 
 
For Y-residual versus X-residual, the line through the origin has slope !!bYX•1 : 
 
 !!Y − y = bYX•1(X − x )+e . 
 
In the usual table of output from fitting a multiple regression model (estimates of the 
coefficients, standard errors, etc.), each coefficient is a partial regression coefficient.  The 
proper interpretation aids in understanding how the information in the table fits together.  
For example, the P-value from the t-test on the coefficient for a particular predictor 
reflects the significance of that predictor’s contribution to the model after accounting for 
the contributions of all the other predictors. 
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6. Geometry of Least Squares 

 
A geometric approach also leads to the proper interpretation for either b or β  in multiple 
regression. 
 
Consider a multiple regression with p predictors and n observations,  

   
In the customary matrix

 
notation,  y = (y1, …, yn)T is the vector of data on Y , and the 

columns of the n × p matrix X contain the data on the predictors (considered to be 
known): 

   
If y contains the true values of Y (i.e.,

 
), then it lies in the subspace spanned by the 

columns of X (assumed to have dimension p) and is the linear combination of those 
columns with coefficients !β1 ,…,

!
βp .  The customary way to recover one of those 

coefficients, say , is to change the basis for the subspace, subtracting from  the 

component in the subspace spanned by !!X1 ,…,!!Xp−1  and thus replacing  as a basis 

vector by its component orthogonal to that subspace (suitably scaled).  Then  is the 

projection of y on that new basis vector.  In the language of multiple regression  is the 

slope from the regression (through the origin) of y on the residuals from the regression of 
 on !!X1 ,…,!!Xp−1  (i.e., after adjusting for simultaneous linear change in those other 

predictors).  We get the same  by replacing y with the residuals from the regression of 

y on !!X1 ,…,!!Xp−1 , so it is appropriate to state the interpretation of  in terms of adjusting 

both y and . 

 
In practice , and y no longer lies in the subspace spanned by the columns of X.

 
 The 

least-squares
 
estimates, b, of the regression coefficients, β , minimize 

   
the Euclidean distance from y to that subspace, yielding 

  
. 

To see that the interpretation of  applies also to 
!
bp , we can obtain

 
 by applying the 

“hat matrix,” H = X(XTX)−1XT to y: .  We can then obtain 
!
bp  from  in the same 

way as we obtained  above. 

 
7. The Flaws in the Flawed Interpretation 

 

 !!Y = β1X1 ++βpXp + ε

!y = Xβ + ε
!ε =0

!
βp !

Xp

!
Xp

!
βp

!
βp

!
Xp

!
βp

!
βp

!
Xp

!ε ≠0

!!
( yi − ŷi )2

i=1

n

∑

!! ŷ = Xb

!
βp !! ŷ

!! ŷ =Hy !! ŷ

!
βp
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What’s wrong with the flawed interpretation (Section 4)?  It gives the impression that one 
can hold all the other X’s constant for any desired value of 

!
X j . What one can actually do 

depends on the data. In some situations it may be possible to hold the other X’s constant 
at certain (perhaps many) combinations of values of those predictors. (I have assumed 
that I have a good model.) But “many combinations in some situations” is appropriately 
restrictive; we have to study the data. Among other concerns, we don’t want to stray into 
a region of “predictor space” where we have little or no data. 
 
A common “proof” of the flawed interpretation starts with the model 
 
  !!Y = β0 +β1X1 ++βK XK + ε  
 
and takes the partial derivative with respect to 

!
X j : 

!
∂Y ∂X j = β j . The problem is that this 

is faux mathematics. It assumes what is to be proved: the definition of the partial 
derivative explicitly holds the other variables constant.  And, importantly, the actual data 
are nowhere in sight.  Thus, taking a partial derivative (or difference) cannot yield an 
interpretation of 

!
β j . 

 
What’s going on?  The model uses all the predictors together to produce a good fit to the 
data on Y. The contribution (coefficient) of each predictor already takes into account the 
contributions of the other predictors. The most that taking a partial derivative can do is 
indicate how the predicted value of Y would change if one could increase

!
X j  without 

changing the other predictors. 
 

8. Implications 
 
The points about the definition and interpretation of regression coefficients apply to 
multivariable models generally: logistic regression and other generalized linear models, 
survival regressions, longitudinal regressions, hierarchical regressions. 
 
A key message is that students should be able to trust that the authors of their textbooks 
understand the methods they are writing about.  When an instructor shows students that 
the textbook’s interpretation of regression coefficients is incorrect, it undermines their 
confidence in the book: What else do the authors have wrong?  Thus, many authors have 
some revising to do!  Instructors should push to make sure that those changes happen. 
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