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Abstract 
Most of the literature for analyzing time series measure dispersion using the variance. In 
this research we use an alternative but parallel framework for analyzing time-series: we 
use the Gini’s Mean Difference (GMD) as an alternative index of variability. The Gini 
methodology is a rank-based methodology, which takes into account both the variate 
values and the ranks. It relies only on first order moment assumptions hence it is valid for 
a wider range of distributions. The GMD shares many properties with the variance, but 
can be more informative about the properties of distributions that depart from normality. 
We use one advantage of the Gini: there are two Gini-autocorrelation functions for each 
pair of variables, which are not necessarily equal. The difference between them, when it 
exists, can be informative and may assist to identify models with underlying heavy tailed 
and non-normal innovations. We suggest using Gini-correlograms, a simple graphical 
tool, to check the symmetry assumption which is natural in the existing methodology. 
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1. Introduction 
Most of the literature dealing with time series measure dispersion and association using 
the variance and covariance, which are the most popular measures of variability and 
association. However, these analyses generally rely on assumptions, the validity of which 
is in question. For example, the autocovariance and autocorrelation, which are based on 
covariance and correlation of the variable against a time-shifted version of itself, assume 
symmetry in their variables as a consequence of the definition of covariance.  
Recently an alternative approach based on Gini mean difference (GMD) as a measure of 
spread was introduced in Serfling (2010), Shelef and Schechtman (2011) and Shelef 
(2013) (for example, Gini-autocovariance, Gini-autocorrelation, to be defined below). 
These equivalent Gini-based definitions extend the concepts of Gini covariance and Gini 
correlation introduced by Schechtman and Yitzhaki (1987).  
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The GMD index shares many properties of the variance, but can be more informative for 
distributions that depart from normality or symmetry. The most prevalent presentation of 
the GMD is as the expected absolute difference between two independent and identically 
distributed (i.i.d) variables 1X  and 2X . Formally, the GMD of X is defined as (Gini, 
1914) 
 21 XXEGX −= . (1) 
Another useful presentation is (Lerman & Yitzhaki, 1984) 

 ( ))(,4 XFXCOVG XX = , (2) 
where ( )XF X  is the cumulative distribution function of X. That is, the GMD is (four 
times) the covariance between a random variable (X) and its cumulative distribution 
function )(XFX .  
The GMD takes into account both the values of the random variable and its ranks, and is 
hence less sensitive to extreme observations than the variance. In addition, because Gini 
requires only first-order moment assumptions (Stuart & Ord, 1987), the GMD-based 
method is valid for a wider range of distributions and might be more appropriate for 
heavy-tailed distributions than variance-based methods. 
This paper further contributes by developing Gini-based partial autocorrelations to 
provide complementary information regarding a time series. Furthermore, we exploit the 
fact that there are two Gini autocovariances between each pair of variables, and the 
difference between them, if it exists, can be informative. This property enables a variety 
of applications that allow checking of some of the hidden assumptions imposed upon 
when using existing variance-based methods for time series analysis. Harnessing the 
Gini-based methodology provides an opportunity to identify and deal with cases where a 
symmetric correlation measure is inappropriate or conventional assumptions about the 
underlying distribution are not valid.  
The structure of the paper is as follows. The next section ( 2) reviews developments in 
autoregressive moving average (ARMA) models for non normal distributions and 
reviews concepts and methods fundamental to the Gini methodology. Section  3 presents 
the Gini-based autocovariance, autocorrelation and partial autocorrelation. Section  4 
illustrates that framework and presents its capabilities via simulations and Section  5 
concludes. 

2. Background 
The standard approach to parameter estimation in AR models is through the Yule–Walker 
estimates (see, for example, Brockwell and Davis, 1991). Davis and Resnick (1986) 
establish a weak limit behavior for the sample autocorrelation function (ACF) with 
heavy-tailed innovations. Andrews, Calder, and Davis (2009) and Trindade, Zhu, and 
Andrews (2010) consider using maximum likelihood estimation for AR and ARMA 
processes and Andrews and Davis (2013) deal with AR process with infinite variance. 
Another method is the least absolute deviation (LAD) estimation, which is widely used 
for analyzing time series models in a non-Gaussian setting. LAD estimators for ARMA 
models were developed by Davis, Knight, and Liu (1992), Davis (1996), Davis and 
Dunsmuir (1997), Calder and Davis (1998), Ling (2005), Pan, Wang, and Yao (2007), 
Wu and Davis (2010) and others. It should be noted that although LAD requires only a 
first-order moment assumption, it does not yield closed-form expressions and the solution 
must be obtained numerically. Some researchers considered related rank-based estimation 
approaches for AR and ARMA models parameters (see, for example, Koul and Saleh 
(1993), Koul and Ossiander (1994), Terpstra and Rao (2001), Mukherjee and Bai (2002), 
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Andrews, Davis, and Breidt (2007) and Andrews (2008)). These estimation procedures 
involve not only the residuals' ranks but also the residuals' values by relying on the R-
regression suggested by Jaeckel (1972). A weighted quantile regression for AR models 
with infinite variance errors is suggested in Chen , Li, and Wu (2012). Applying LAD 
regression, quantile regression and R-regression, which are based on minimization of the 
between-group Gini, ignores some of the variability in the data (as shown in Yitzhaki and 
Lambert (2012)).  
As can be seen from the above discussion, an extensive effort has been invested in 
developing time series models that are appropriate for distributions that depart from 
normality, particularly when modeling certain types of financial and engineering data. 
One of the main purposes of the methodology suggested in this research is to offer simple 
preliminary tools which can be used to identify the need to employ such models. 
Furthermore, we offer a parallel framework which enables the user to analyze such series 
under merely first-order moment assumptions.  
Next, we briefly review part of the Gini-based methodology that is relevant for this paper. 
The interested reader is referred to Yitzhaki and Schechtman (2013) for a thorough 
review on the Gini methodology. The GMD forms two asymmetric correlation 
coefficients between two random variables (Schechtman & Yitzhaki, 1987). Let ),( YX  
be two random variables. The two Gini covariances (Gcov) between them are defined as 
 ( ))(,),cov( XFYCOVXYG X=  and ( ))(,),cov( YFXCOVYXG Y= . (3) 
The (asymmetric) Gini correlation coefficients are defined as 

 
( )
( ))(,

)(,),(
YFYCOV
XFYCOVXYGcor

Y

X=   and 

 
( )
( ).)(,

)(,),(
XFXCOV
YFXCOVYXGcor

X

Y=  (4) 

If ),( XY  has a bivariate normal distribution with (Pearson) correlation ρ , then 
ρ== ),(),( YXGcorXYGcor  (Schechtman & Yitzhaki, 1987). However, in general 

),( XYGcor  and ),( YXGcor  are not necessarily equal, and even do not necessarily 
share the same sign. The equality ),(),( YXGcorXYGcor =  holds if XY ,  is 
exchangeable up to a linear transformation (Schechtman & Yitzhaki, 1987). By 
"exchangeable up to a linear transformation" it is meant that ( , )aY b cX d+ +  and 
( , )X Y  are equally distributed for some constants a,b,c and d with a and 0c > . We note 
in passing that symmetry is a consequence of the definition of covariance, i.e., 

),(),( XYCOVYXCOV = . Hence, the advantage of the Gini is that it enables one to 
check for symmetry. In time series the autocorrelation is an even function of tY  and stY − , 
and therefore provides no relevant information with respect to looking forward and 
backward in time. However, the above-defined Gini correlation is not necessarily 
symmetric in its arguments and therefore might provide additional information and offer 
a natural alternative for checking whether looking forward and backward in time makes a 
difference. For additional properties of the Gini correlation see Schechtman and Yitzhaki 
(1987, 1999), Yitzhaki (2003), Serfling and Xiao (2007), and Yitzhaki and Schechtman 
(2013). 
The Gini covariances and correlations can be estimated using the sample covariances: 

( )ˆ cov( , ) cov , ( )G Y X Y R X= , and 
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where ( )iR X  is the rank of iX  (divided by the sample size), 
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= ∑ . The estimator of ),( XYGcor  is a ratio of two U-statistics. 

Therefore, it is a consistent estimator of ),( XYGcor  and its distribution converges, for 
large samples, to the normal distribution (Hoeffding, 1948; Schechtman & Yitzhaki, 
1987).   

3. Gini-based time series definitions and modeling 

3.1. Gini autocovariance 

Let tY  represent a general time series model at discrete time t ( 0, 1, 2,...t = ± ± ). The 

autocovariance between tY  and t sY −  is defined as , C ( , )t t s t t sOV Y Yγ − −=  for any lag s 
( 0, 1, 2,...s = ± ± ). Following Serfling (2010), Shelef and Schechtman (2011) and Shelef 
(2013), define two Gini autocovariances of lag s as ( )1

( , ) C , ( )G
t t s t t sOV Y F Yγ − −=  and 

( )2
( , ) C , ( )G
t t s t s tOV Y F Yγ − −= , which are parallel to equation (3). We will focus on the fact 

that the first and second Gini autocovariances can be viewed as the Gini autocovariances 
looking backward and forward. We assume that tY  is strictly stationary, so that the joint 
distributions of 

1
( ,..., )

kt tY Y  and 
1

( ,..., )
kt s t sY Y+ +  are the same for all positive integers k and 

for all ),...,( 1 ktt , Z∈s  (Brockwell & Davis, 1991). Hence the conditions below hold for 

all ,t s :  ( ) ( ) 1
( )C , ( ) C , ( ) G

t t s t j t j s sOV Y F Y OV Y F Y γ− − − −= =  and 

( ) ( ) 2
( )C , ( ) C , ( ) G

t s t t j s t j sOV Y F Y OV Y F Y γ− − − −= = , where all 1
( )
G
sγ ’s and 2

( )
G
sγ ’s are time-

independent.  
Unlike the existing autocovariance which is symmetric in its variables, the Gini method 
does not impose that the two Gini autocovariances between tY  and stY −  are equal. They 
will be equal under exchangeability up to a linear transformation (see Section  2 above). 
For example, consider the AR(1) model, ttt YY εφφ ++= −110 . Here, 

 ( ) ( )1 1
( ) 0 1 1 1 1 1 ( 0)C , ( ) C , ( )G Gs
s t t t s t t s sOV Y F Y OV Y F Yγ φ φ ε φ φ γ− − − − == + + = = ,  (6) 

but ( )2
( ) 0 1 1C , ( )G
s t s t tOV Y F Yγ φ φ ε− −= + + , which is not necessarily equal to 1

( )
G
sγ .  

3.2. Autocorrelation (ACF) and Gini autocorrelation function (GACF) 

The autocorrelation function (ACF) between tY  and t sY −  is defined (under strict 
stationarity) as 

 ( )
0

,
γ
γρ s

sstt YYACF ==− . (7) 
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The most commonly used sample ACF is defined as 
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where T is the length of the series and TYY
T

t
t /

1
∑
=

=  (Box, Jenkins, & Reinsel, 1994). 

The estimated autocorrelation function is often plotted versus the lag. This plot is called a 
correlogram and is used as a visual tool to identify a model for a set of data. A different 
version of ACF was suggested by Davis and Resnick (1985) for the case of heavy tailed 
data. Feigin and Resnick (1999) discuss the pitfalls of fitting an autoregressive model 
with heavy-tailed innovations by standard methods. They comment that caution should be 
taken when fitting models for heavy-tailed data where variances and even means may not 
exist. 
Similar to equation (7) the two Gini autocorrelation functions (GACFs) of order s under 
strict stationarity are: 

 G
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Following equation (6), )(1)(
1

s
sG

s ρφρ == , which indicates that the first GACF is equal to 
the existing ACF. Therefore, the estimator for the first GACF (to be defined below) can 
be used to measure the autocorrelation when the second moment does not exist. 
Furthermore, the two GACFs (and Gini Partial ACFs, to be defined in Section  3.3) can be 
plotted to result in two Gini-based correlograms. Similarly to the common usage of 
correlograms to identify the order of ARMA processes, these Gini-based correlograms 
enable us to graphically check whether the structural symmetry assumption behind the 
existing ACF, i.e., ( ) ( ), ,t t s t s tACF Y Y ACF Y Y− −= , is supported by the data or not. A 
difference between the two GACFs, if it exists, implies that an asymmetric measure such 
as the GACFs might be more appropriate and will offer more information about the 
underlying distribution. Note that if tε  are multivariate normally distributed random 

variables, then both tY  and t sY −  are linear combinations of multivariate normal variables. 
Therefore they are exchangeable up to a linear transformation and hence 

( , ) ( , )t t s t s tGACF Y Y GACF Y Y− −= . On the other hand, if the GACFs differ, it indicates 

that tY  and t sY −  are not exchangeable and therefore looking forward and backward at the 
series is different.  
In order to be consistent with the existing sample autocorrelation (equation (8)), we 
suggest the following GACFs estimates:  
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and 
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Similar to equation (8), here we use Y  which is calculated over all observations as the 
estimator of the process mean. In addition, both denominator and numerator are divided 
by T, so that as s  increases the numerator has fewer components and it converges to 
zero, as expected under strict stationarity. Note that there exist several alternative GACF 
estimates (see Shelef (2013) for details) and that the differences between the estimates 
decrease as the length of the sequence increases.  

3.3. Gini partial autocorrelation function (Gini-PACF) 
Following the Yule-Walker equation in the variance-based method, we have the 
following system of equations (see, for example, Brockwell and Davis (1991)): 
 ( ) 1 ( 1) ( )...j s j ss j sρ φ ρ φ ρ− −= + + , for all 1,2,...,j s= . (12) 

The partial autocorrelation is defined as the last coefficient ssφ , which is the 

autocorrelation between tY  and t sY −  after adjusting for the effect of the intermediate 

variables 1 2 1, , ,t t t sY Y Y− − − + , namely: 1 1( , , , )ss t t s t t scor Y Y Y Yφ − − − +=  . 
Similarly, the Gini partial autocorrelation function (Gini-PACF) 
is 1

1 1( , , , )G
ss t t s t t sGcor Y Y Y Yφ − − − +=  . The Gini-PACF is defined as the last coefficient of 

a partial Gini autoregression equation of order s, 
1 1 1 1

1 1 2 2 ( 1) 1
G G G G

t s t s t s s t s ss t s tY Y Y Y Yφ φ φ φ ε− − − − + −= + + + + +  (assuming, without loss of 

generality, that tY  is a mean zero process). The Gini covariance between tY  and jtY −  is 
11111

)()1(1)( ...))(,(),cov( G
sj

G
ss

G
j

G
s

G
jjttjtt YFYCOVYYG −−−− ++=== γφγφγ . Hence,  

 1 1 1 1 1
( ) 1 ( 1) ( )...G G G G G

j s j ss j sρ φ ρ φ ρ− −= + +  . (13) 

As can be seen from the equation above, each ACF ( ( )sρ ) (in equation (12)) is replaced 

by the relevant first GACF ( 1
( )
G
sρ ). A natural alternative is to plug-in the second GACF 

( 2
( )
G
sρ ) instead of the first GACF ( 1

( )
G
sρ ). As a result, an additional version of the Gini-

PACF is formed, which we call the second Gini-PACF. The PACF can be estimated by 
approximating the Yule-Walker estimates of the successive AR processes using ˆsρ  as 
estimates of the theoretical autocorrelations (see Wei, 1993; Box et al., 1994). 
Accordingly, we suggest estimating the two Gini-PACFs using the following two systems 
of equations: 
 1 1 1 1 1 1 1 1 1

( ) 1 ( 1) 2 ( 2) ( 1) ( 1) ( )
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ...G G G G G G G G G

j s j s j s s j s ss j sρ φ ρ φ ρ φ ρ φ ρ− − − − + −= + + + +  (14) 
and 
 2 2 2 2 2 2 2 2 2

( ) 1 ( 1) 2 ( 2) ( 1) ( 1) ( )
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ...G G G G G G G G G

j s j s j s s j s ss j sρ φ ρ φ ρ φ ρ φ ρ− − − − + −= + + + + , (15) 

which are to be solved for the two last coefficients 1ˆG
ssφ  and 2ˆG

ssφ  for 1,2,...s = . 
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4. Simulation results 
This section illustrates the method by graphically examining Gini-correlograms. First, we 
use the AR(1) model, 0 1 1t t tY Yφ φ ε−= + + , with independent and normally distributed 
innovations as a benchmark. Theoretically, the two GACFs and the existing ACF are 
equal. Therefore, we expect that in the simulation (due to random errors) their values will 
be close to one another. In addition, the two Gini regression coefficients should be close 
to the OLS regression coefficient. The parameters in our simulation are: 0 00; 0yφ = = ; 

=1φ 0.5, 0.7 or 0.9 and T=100 and 200. For each set of parameters we generated 
R=10,000 original series and calculated the means and standard errors of the ACF, PACF, 
GACFs and Gini-PACFs for each lag. It is expected that because the model is AR(1), the 
ACF will decay to 0 and the PACF will cut-off after the first lag. Figure 1 presents the 
correlograms and the Gini-correlograms for the means of ACF, PACF, GACFs and Gini-
PACFs for each lag, for 1φ = 0.7 and T=200. Detailed results for different values of 1φ  
and T are given in Table 1 in the Appendix. From Figure 1 it can be seen that because the 
model is AR(1), the ACF decays to 0 and the PACF cuts-off after the first lag. 
Furthermore, as expected, the two GACFs are close to one another and to the existing 
ACF. The standard errors of the differences between the estimators are at most 0.002. 
(The standard errors are naturally very small because the number of replications is large 
(10,000)).  
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Figure 1. AR(1) model with normally distributed innovations, T=200, =1φ 0.7 - 

correlograms and Gini-correlograms 

Next, we concentrate on two non-normal distributions for the innovations: Pareto, which 
is asymmetric, and t(2) which is symmetric and heavy-tailed. Note that for these 
distributions only the first-order moment is finite. Hence, theoretically, OLS cannot be 
used but Gini regression can. In this simulation T=200, 500 and 1000; tε  are i.i.d. 
innovations drawn from a centered Pareto distribution. The Pareto distribution used here 
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is with a shape parameter of 1.5 and a scale of 1 (the resulting cdf is 1.5( ) 1F x x−= − ). In 
order to get the centered distribution, we subtract the mean 3. Figure 2 presents the 
correlograms and the Gini-correlograms for the means of ACF, PACF, GACF and Gini-
PACF for each lag, for T=500 and 1φ = 0.7. Detailed results for different values of 1φ  are 
given in Table 2 in the Appendix. Similar patterns occur for the different sample sizes, 
not presented here. 
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Figure 2. AR(1) model with Pareto innovations, T=500, 1φ = 0.7 - correlograms 
and Gini-correlograms. 

Because the model is AR(1), the ACF should decay to 0 and the PACF should cut-off 
after the first lag. From Figure 2, we see that the ACF and PACF as well as both GACF 
and both Gini-PACF correlograms follow these patterns. However, the correlogram for 

2
( )ˆ( )G
smean ρ  decays slower than that of 1

( )ˆ( )G
smean ρ  (even at lag=10, where the ACF and 

the first GACF are close to zero ( 1
( 10)ˆ( ) 0.011G
smean ρ = = ), the second GACF is still high 

( 2
( 10)ˆ( ) 0.156G
smean ρ = = )). The standard errors of the differences between the estimators 

are at most 0.002. The two GACFs are different for each lag, indicating the asymmetric 
nature of the autocorrelation. Similar patterns occur for different sample sizes (not 
presented here). The variance-based method imposes a symmetric covariance structure as 
a consequence of the definition of covariance. Therefore, the method assumes one ACF 
and one PACF for each lag. However, such a symmetric measure seems inadequate for 
the data set simulated here. Furthermore, the importance of this finding is that the 
difference between the two GACFs indicates the non-normality of the innovations (as 
opposed to the case of normally distributed innovations, where the GACFs were equal).  
Simulation results for the AR(1) model with t(2), for T=500 and 1φ = 0.7 are given in 
Table 3 in the Appendix. As in the case of Pareto innovations, there appears to be a 
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difference between the Gini-correlograms which indicates the non-normality of the 
innovations. Similar patterns were observed with innovations from a Log-normal (0,1) 
distribution (not shown here).  
The use of the two GACFs and the two Gini-PACFs is applicable also in MA(1) models, 
where 0 1 1t t tY θ ε θ ε −= + + , in that the Gini-correlograms can assist to identify that the 
MA(1) model has non-normally distributed innovations. In the case of MA(1) model, it is 
expected that the PACF will decay and the ACF will cut-off (see, for example, Brockwell 
and Davis (1991)). As an example, Figure 3 presents the correlograms and the Gini-
correlograms for the means of ACF, PACF, GACFs and Gini-PACFs, for T=500 for 
Pareto innovations (detailed results are reported in Table 4 in the Appendix).  
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Figure 3. MA(1) model with Pareto innovations, T=500, 1θ = 0.4 - correlograms 
and Gini-correlograms. 

As the figure shows, the simulation results verify that for MA(1) models with Pareto 
innovations the PACF (and two Gini-PACFs) decay and the ACF (and two GACFs) cut-
off. However, the second Gini-PACF decays slower than the first one, indicating that the 
innovations are non-normally distributed. Similar patterns of large differences between 
the two GACFs and between the two Gini-PACFs when looking backward and forward 
were also observed in AR(2), MA(2) and ARMA(1,1) models (results are not shown 
here). 

5. Discussion and conclusions 
The proposed Gini-based framework makes several contributions to the field of time 
series analysis. First, the Gini-based measures are valid under only first-order moment 
assumptions. Therefore, the suggested framework establishes an approach which is valid 
regardless of the underlying distribution, whether the distribution is heavy-tailed or not, 
as well as if it has infinite variance or not, as long as it has a first-order moment. Second, 
the GMD takes into account both the values and the ranks of the variables, thereby 
reflecting sensitivity to the values themselves and, hence, no information is lost as occurs 
with other estimators which are based only on ranks. The GMD is a variability measure 
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which is between the variance (which is sensitive to extreme values) and measures that 
are based only on ranks (which ignore the variable values). Third, the Gini-based 
methodology provides a more informative approach because the two bi-directional 
(forward and backward) Gini autocorrelations between each pair of variables are not 
necessarily equal, as is the case by definition in the variance-based method. As a result, it 
offers a built-in capability to discriminate forward and backward directions.  
Another contribution is that the suggested Gini-based framework facilitates Gini-based 
correlograms for examining assumptions hidden behind existing methodology. The 
common usage of correlograms and partial correlograms in time series analysis is to 
identify a model for the data. This paper further contributes to this field by offering a 
process of plotting and comparing two Gini-based correlograms and two Gini-based 
partial correlograms. The comparison equips the user with a simple graphical tool which 
enables checking whether the use of a symmetric correlation measure is adequate for the 
data set. Simulations were used to illustrate the added value which can be gained by 
applying the suggested Gini-based measures and Gini-correlograms for identifying 
departures from normality. The simulations show that both the two Gini autocorrelations 
and the two Gini partial autocorrelations are close to one another for AR(1) models with 
normally distributed innovations. When using AR(1) and MA(1) models with non-
normally distributed innovations (Pareto, t(2) or Log-normal), however, the two Gini 
autocorrelations and the two Gini partial autocorrelations depart from one another. Such 
differences imply that the variance-based symmetric measures might be inadequate under 
non-normality of the innovations. Similar results were found also for ARMA processes of 
different orders. 
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Appendix: Simulation results for quantitative comparison 

Table 1 presents the means of 1 2

1 2( ) ( ) ( )
ˆ ˆ ˆˆ ˆ ˆ, , , , ,G G

s ss G s G s ss ssρ φ ρ ρ φ φ , for AR(1) models with 

Normal innovations, where R=10,000, T=100 and 200; 1φ = 0.5, 0.7 and 0.9. 

Table 1. Means of 1 2 1
( ) ( ) ( )

ˆ ˆˆ ˆ ˆ, , , ,G G G
s ss s s ssρ φ ρ ρ φ  and 2ˆG

ssφ  in AR(1) models with Normal 

innovations, T=100 and 200; 1φ = 0.5, 0.7 and 0.9. 

T=100 
1φ = 0.5  

( )lag s  ( )ˆ( )smean ρ  1
( )ˆ( )G
smean ρ  2

( )ˆ( )G
smean ρ  ˆ( )ssmean φ  1ˆ( )G

ssmean φ  2ˆ( )G
ssmean φ  

1 0.4697 0.4710 0.4703 0.4697 0.4710 0.4703 
2 0.2132 0.2144 0.2143 -0.0196 -0.0202 -0.0196 
3 0.0875 0.0887 0.0884 -0.0120 -0.0111 -0.0116 
4 0.0271 0.0282 0.0277 -0.0204 -0.0210 -0.0212 
5 -0.0005 0.0002 <0.0001 -0.0097 -0.0092 -0.0091 
6 -0.0136 -0.0131 -0.0131 -0.0197 -0.0204 -0.0204 
7 -0.0216 -0.0214 -0.0211 -0.0118 -0.0116 -0.0112 
8 -0.0249 -0.0249 -0.0247 -0.0199 -0.0206 -0.0208 
9 -0.0265 -0.0265 -0.0257 -0.0114 -0.0109 -0.0100 
10 -0.0277 -0.0277 -0.0271 -0.0210 -0.0216 -0.0220 

1φ = 0.7 
1 0.6608 0.6614 0.6599 0.6608 0.6614 0.6599 
2 0.4311 0.4328 0.4314 -0.0203 -0.0193 -0.0183 
3 0.2746 0.2770 0.2759 -0.0126 -0.0110 -0.0108 
4 0.1691 0.1717 0.1707 -0.0204 -0.0209 -0.0209 
5 0.0986 0.1010 0.1004 -0.0101 -0.0096 -0.0095 
6 0.0508 0.0527 0.0525 -0.0206 -0.0219 -0.0214 
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( )lag s  ( )ˆ( )smean ρ  1
( )ˆ( )G
smean ρ  2

( )ˆ( )G
smean ρ  ˆ( )ssmean φ  1ˆ( )G

ssmean φ  2ˆ( )G
ssmean φ  

7 0.0173 0.0186 0.0187 -0.0125 -0.0120 -0.0118 
8 -0.0051 -0.0041 -0.0040 -0.0203 -0.0211 -0.0213 
9 -0.0202 -0.0195 -0.0189 -0.0121 -0.0115 -0.0108 
10 -0.0306 -0.0300 -0.0291 -0.0214 -0.0221 -0.0222 

1φ = 0.9 
1 0.8477 0.8471 0.8436 0.8477 0.8471 0.8436 
2 0.7158 0.7166 0.7112 -0.0226 -0.0154 -0.0132 
3 0.6010 0.6035 0.5972 -0.0149 -0.0105 -0.0094 
4 0.5018 0.5058 0.4992 -0.0222 -0.0207 -0.0199 
5 0.4162 0.4214 0.4149 -0.0127 -0.0112 -0.0105 
6 0.3419 0.3477 0.3418 -0.0231 -0.0235 -0.0227 
7 0.2769 0.2831 0.2778 -0.0148 -0.0130 -0.0137 
8 0.2208 0.2271 0.2226 -0.0218 -0.0226 -0.0217 
9 0.1721 0.1786 0.1749 -0.0143 -0.0126 -0.0128 
10 0.1300 0.1365 0.1335 -0.0225 -0.0237 -0.0236 
T=200 

1φ = 0.5  
1 0.4840 0.4847 0.4845 0.4840 0.4847 0.4845 
2 0.2313 0.2320 0.2318 -0.0090 -0.0092 -0.0093 
3 0.1062 0.1068 0.1067 -0.0058 -0.0056 -0.0055 
4 0.0450 0.0453 0.0453 -0.0097 -0.0102 -0.0100 
5 0.0151 0.0153 0.0154 -0.0047 -0.0043 -0.0042 
6 0.0003 0.0003 0.0004 -0.0099 -0.0104 -0.0105 
7 -0.0071 -0.0069 -0.0070 -0.0051 -0.0047 -0.0049 
8 -0.0104 -0.0101 -0.0101 -0.0098 -0.0098 -0.0098 
9 -0.0124 -0.0123 -0.0121 -0.0054 -0.0055 -0.0052 
10 -0.0146 -0.0145 -0.0141 -0.0116 -0.0120 -0.0117 

1φ = 0.7 
1 0.6811 0.6812 0.6802 0.6811 0.6812 0.6802 
2 0.4613 0.4621 0.4613 -0.0099 -0.0093 -0.0083 
3 0.3100 0.3110 0.3106 -0.0048 -0.0044 -0.0038 
4 0.2060 0.2070 0.2069 -0.0097 -0.0099 -0.0098 
5 0.1343 0.1353 0.1354 -0.0049 -0.0046 -0.0045 
6 0.0846 0.0856 0.0855 -0.0101 -0.0104 -0.0108 
7 0.0506 0.0514 0.0514 -0.0043 -0.0041 -0.0038 
8 0.0274 0.0280 0.0280 -0.0096 -0.0099 -0.0104 
9 0.0109 0.0116 0.0114 -0.0056 -0.0049 -0.0053 
10 -0.0009 -0.0003 -0.0006 -0.0108 -0.0114 -0.0111 

1φ = 0.9 
1 0.8749 0.8742 0.8722 0.8749 0.8742 0.8722 
2 0.7642 0.7641 0.7610 -0.0104 -0.0061 -0.0046 
3 0.6665 0.6672 0.6635 -0.0058 -0.0033 -0.0020 
4 0.5801 0.5816 0.5777 -0.0108 -0.0101 -0.0095 
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( )lag s  ( )ˆ( )smean ρ  1
( )ˆ( )G
smean ρ  2

( )ˆ( )G
smean ρ  ˆ( )ssmean φ  1ˆ( )G

ssmean φ  2ˆ( )G
ssmean φ  

5 0.5038 0.5060 0.5021 -0.0052 -0.0040 -0.0037 
6 0.4362 0.4391 0.4353 -0.0111 -0.0112 -0.0107 
7 0.3766 0.3798 0.3763 -0.0058 -0.0055 -0.0051 
8 0.3241 0.3277 0.3243 -0.0098 -0.0095 -0.0098 
9 0.2777 0.2814 0.2783 -0.0052 -0.0054 -0.0050 
10 0.2366 0.2404 0.2375 -0.0109 -0.0111 -0.0113 

Table 2 presents the means of 1 2

1 2( ) ( ) ( )
ˆ ˆ ˆˆ ˆ ˆ, , , , ,G G

s ss G s G s ss ssρ φ ρ ρ φ φ  for AR(1) models with 

Pareto innovations, R=10,000, T=500, 1φ = 0.5, 0.7 and 0.9. 

Table 2. Means of 1 2 1 2
( ) ( ) ( )

ˆ ˆ ˆˆ ˆ ˆ, , , , ,G G G G
s ss s s ss ssρ φ ρ ρ φ φ  in AR(1) models with Pareto 

innovations, T=500, 1φ = 0.5, 0.7 and 0.9. 

1φ = 0.5 
( )lag s  ( )ˆ( )smean ρ  1

( )ˆ( )G
smean ρ  2

( )ˆ( )G
smean ρ  ˆ( )ssmean φ  1ˆ( )G

ssmean φ  2ˆ( )G
ssmean φ  

1 0.495 0.493 0.811 0.495 0.493 0.811 
2 0.243 0.242 0.631 -0.003 -0.012 -0.084 
3 0.118 0.116 0.469 -0.002 -0.012 -0.063 
4 0.056 0.053 0.332 -0.003 -0.020 -0.044 
5 0.024 0.022 0.223 -0.002 -0.103 -0.030 
6 0.010 0.006 0.142 -0.002 -0.007 -0.013 
7 0.002 -0.002 0.085 -0.002 -0.106 -0.009 
8 -0.002 -0.006 0.047 -0.003 -0.219 -0.011 
9 -0.004 -0.008 0.023 -0.002 0.016 0.021 
10 -0.004 -0.009 0.010 -0.003 -0.005 0.014 

1φ = 0.7 
1 0.693 0.692 0.882 0.693 0.692 0.882 
2 0.480 0.477 0.768 -0.004 -0.009 -0.044 
3 0.331 0.328 0.661 -0.001 -0.006 -0.037 
4 0.228 0.224 0.562 -0.003 -0.008 -0.035 
5 0.156 0.151 0.471 -0.002 -0.006 -0.028 
6 0.105 0.100 0.390 -0.003 -0.006 -0.025 
7 0.070 0.065 0.318 -0.002 -0.070 -0.021 
8 0.046 0.041 0.255 -0.003 -0.012 -0.018 
9 0.029 0.023 0.201 -0.002 -0.024 -0.012 
10 0.016 0.011 0.156 -0.004 -0.034 -0.019 

1φ = 0.9 
1 0.891 0.890 0.947 0.891 0.890 0.947 
2 0.794 0.791 0.896 -0.004 -0.006 -0.013 
3 0.708 0.703 0.847 -0.002 -0.002 -0.013 
4 0.630 0.624 0.799 -0.004 -0.006 -0.013 
5 0.560 0.553 0.753 -0.003 0.001 -0.012 
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( )lag s  ( )ˆ( )smean ρ  1
( )ˆ( )G
smean ρ  2

( )ˆ( )G
smean ρ  ˆ( )ssmean φ  1ˆ( )G

ssmean φ  2ˆ( )G
ssmean φ  

6 0.498 0.490 0.709 -0.003 -0.006 -0.011 
7 0.442 0.433 0.666 -0.002 -0.001 -0.011 
8 0.392 0.383 0.625 -0.004 -0.015 -0.012 
9 0.347 0.337 0.585 -0.002 0.019 -0.011 
10 0.307 0.297 0.547 -0.004 -0.040 -0.011 

Table 3 presents the means of 1 2

1 2( ) ( ) ( )
ˆ ˆ ˆˆ ˆ ˆ, , , , ,G G

s ss G s G s ss ssρ φ ρ ρ φ φ  for AR(1) models with t(2) 

innovations, R=10,000, T=500 and 1φ = 0.7. 

Table 3. Means of 1 2 1 2
( ) ( ) ( )

ˆ ˆ ˆˆ ˆ ˆ, , , , ,G G G G
s ss s s ss ssρ φ ρ ρ φ φ  in AR(1) models with t(2) innovations, 

T=500 and 1φ = 0.7. 

( )lag s  ( )ˆ( )smean ρ  1
( )ˆ( )G
smean ρ  2

( )ˆ( )G
smean ρ  ˆ( )ssmean φ  1ˆ( )G

ssmean φ  2ˆ( )G
ssmean φ  

1 0.692 0.692 0.788 0.692 0.692 0.788 
2 0.478 0.478 0.612 -0.004 -0.006 -0.021 
3 0.329 0.329 0.470 -0.002 -0.001 -0.015 
4 0.226 0.226 0.355 -0.003 -0.007 -0.013 
5 0.154 0.153 0.265 -0.002 -0.001 -0.009 
6 0.104 0.103 0.195 -0.004 -0.008 -0.009 
7 0.069 0.068 0.141 -0.002 -0.002 -0.005 
8 0.044 0.043 0.100 -0.004 -0.012 -0.007 
9 0.027 0.025 0.069 -0.002 -0.004 -0.003 
10 0.015 0.013 0.046 -0.004 -0.006 -0.005 

Table 4 presents the means of 1 2

1 2( ) ( ) ( )
ˆ ˆ ˆˆ ˆ ˆ, , , , ,G G

s ss G s G s ss ssρ φ ρ ρ φ φ  for MA(1) models with 

Pareto innovations, R=10,000, T=500, 0θ = 0 and 1θ = 0.4. 

Table 4. Means of 1 2 1 2
( ) ( ) ( )

ˆ ˆ ˆˆ ˆ ˆ, , , , ,G G G G
s ss s s ss ssρ φ ρ ρ φ φ  in MA(1) models with Pareto 

innovations, T=500, 0θ = 0 and 1θ = 0.4. 

( )lag s  ( )ˆ( )smean ρ  1
( )ˆ( )G
smean ρ  2

( )ˆ( )G
smean ρ  ˆ( )ssmean φ  1ˆ( )G

ssmean φ  2ˆ( )G
ssmean φ  

1 0.342 0.300 0.607 0.342 0.300 0.607 
2 -0.003 -0.004 -0.003 -0.137 -0.130 -0.461 
3 -0.003 -0.002 -0.002 0.052 0.070 0.402 
4 -0.003 -0.002 -0.001 -0.025 -0.043 -0.306 
5 -0.003 -0.002 -0.005 0.007 0.086 0.350 
6 -0.003 -0.005 -0.006 -0.007 -0.017 -0.222 
7 -0.003 -0.004 -0.004 -0.001 0.030 0.169 
8 -0.003 -0.004 -0.003 -0.004 -0.026 -0.134 
9 -0.003 -0.004 -0.004 -0.002 0.009 0.312 
10 -0.003 -0.002 -0.004 -0.003 0.071 0.152 
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