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Abstract

Quantile regression has wide applications in many fields. Especially for extreme events,

estimating of conditional quantiles at very high or low tails is an interesting and difficult problem.

Quantile regression uses an 1- loss function, and the optimal solution of linear programming

for estimating coefficients of regression. This paper proposes a weighted quantile regression

method on high quantile regression for certain extreme value sets. The Monte Carlo simulations

show good results of the proposed weighted method. Comparisons of the proposed method and

existing methods are given. The paper also investigates a real-world example of application on

extreme events by using the proposed eighted method.
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1. Motivation and An Example

Extreme value events are present in many areas of real world, such as stock market, extreme

weather, gas dispersion and so on, i.e. high winds, heavy rains and large fires cause damages

to people or environment. The value, , of an extreme event or its damage usually is heavy

tailed distributed. And also  often related to another variable . To estimate of high condi-

tional quantiles of  for given  is an important task. In this paper we use quantile regression

(Koenker, 2005) to estimate extreme value events. Quantile regression obtains the results which

the tradition mean regression method can not provide.

The traditional mean regression is to estimate conditional mean response |x for given

variables x = (1 1 2 )
 . The model assume that

|x = (|1 2  ) = xβ = 0 + 11 + 22 + +  (1.1 )
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We estimate β = (0 1 · · ·  ) where β ∈  and  = +1. In general, A least-square (LS)

estimator bβ is a solution to the following problem
bβ = arg min

∈

X
=1

( − x β)2 (1.2 )

where bβ is obtained by minimizing the 2−squared distance, and b = x bβ 
Example. Rainfall of Alberta (1999 - 2013) (Canada’s National Climate Archives)

Heavy rainfall will cause serious damages such as flash flood, severe erosion or landslide

triggering which can intrigue a severe hazard to lives and property. The date were obtained

from Canada’s National Climate Archives. 5 297 recorded data in millimeter from 1999-2013.

(Full data is available at http://www.climate.weatheroffice.gc.ca/). For example, flooding swept

over Southern Alberta in July 2013 caused historical water level to reach in Medicine Hat and

downtown Calgary was emptied and under water and towns; like High River were completely

evacuated for days, and thousands of people were obliged to leave their home. The Alberta

flooding is one of the many climate change impacts already being felt around the world, but it

also foreshadows the rise in the extreme events that is on the way.

We use 3 millimeter as threshold, since the precipitation under 3 millimeter is unable to

cause extreme damage usually. There are  = 548 data left.

Figure 1. The rainfall (mm) from Alberta between January, 1999 and July, 2013

In Figure 1 -axis is the precipitation in the order of occurrence, the -axis is the total

precipitation (mm). The average precipitation is 126, while the maximum precipitation

occurred in September 16, 2006, over 626 raining fell to the ground.

The Scatter diagram in Figure 2 seems to be a quandratic tendency of precipitation with the

change of maximum temperature and shows that when the temperature is too high or too low,

it’s unlikely to have heavy rainfall in Alberta. We can use least square method on a polynomial

mean regression model

(| 2) = 0 + 1+ 2
2 (1.3 )

where  represents the precipitation (mm), and  represents the maximum temperature ().
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Figure 2. The Scatter diagram and least square mean regression  of Alberta rainfall related

to the max temperature between January 1999 and July 2013.

The red curve in Figure 2 is the least square (LS) curve by using (1.2) to estimate the

mean of the rainfall  for given the maximum temperature . We have bβ by minimizing
(y − x bβ) (y − x bβ) , where y = (1 2  )

  β = (0 1 2)
  x = (1  

2
 )
   =

1   But this estimated mean curve only estimate the average rainfalls for given the maximum

temperature. We are interested in extreme heavy rainfalls which may do damages. How do we

estimate high quantile curve of rainfalls? i.e., estimate 95% conditional quantile curve. The

quantile regression method will estimate the high conditional quantiles.

Quantile regression was first introduced by Koenker and Bassett in 1978 (Koenker and Bas-

sett, 1978), but it didn’t receive a proper attention until recent years. Quantile regression is an

important subject of study and research, it has various applications in different fields (Koenker

and Geling, 2001; Wang and Li, 2013). This method is capable of modeling conditional quan-

tiles of a response distribution, which helps to reveal relationships between model variables that

are hard to capture by a traditional mean regression. Section 2 introduces extreme value theo-

rem and quantile regression. We proposed a weighted quantile regression method in Section 3.

In Section 4, simulations by using both regular and weighted quantile regression methods are

performed. In Section 5, we will use three regression methods: mean regression, regular and

weighted quantile regression to Example 1.1. Finally, our conclusions are in Section 6.

2. Notation

2.1. Extreme Value Distribution

Let 12 be independent continues random variables with common distribution function

(c.d.f.)  (). We concern the limit behavior of the sample maxima or minima which is

max(12 ) or min(12 ) as  → ∞. The interest of extreme value theory
(EVT) is in finding possible limit distributions of the sample maxima of independent and iden-

tically distributed random variables.

For every continuity point , let  a nondegenerate distribution function that can occur as

a limit are called extreme value distribution (Haan and Ferriera, 2006).

Theorem 1. (Fisher and Tipper,1928, Gnedenko, 1943) The class of extreme value distribution
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is (+ ) with   0,  real, where

() =

½
exp(−(1 + )−1), 1 +   0 and  6= 0;
exp(−−),  = 0

(2.1 )

where the parameter  is called the extreme value index.

The generalize Pareto distribution (GPD) is an example of extreme value distribution.

Definition 2.1. (Haan and Ferriera, 2006).The conditional distribution of ( − )() ()

is a positive nondecreasing function, given    has the limit distribution as  ↑ ∗,

() =

½
1− (1 + )−1 if  6= 0
1− − if  = 0

 

½
 ≥ 0   ≥ 0
0 ≤  ≤ −1    0

(2.2 )

This class of distribution function is called the class of generalized Pareto distribution.

Heavy-tailed distribution means having a density function that goes to zero less rapidly

than an exponential function, that is heavy-tailed distributions whose tails are heavier than the

exponential distributions. Extreme value distribution and the GPD n (2.1) and (2.2) when

  0 are heavy tailed distributions. Extreme value events need to use heavy-tailed distribution

to build a good-fit model.

2.2. Quantile Regression

Definition 2.2. The th quantile of a continuous random variable  with c.d.f.  is defined

as

() = −1() = inf{ :  () ≥ }, 0    1 (2.3 )

where  () is right continuous distribution function of variable 

Definition 2.3. The th conditional quantile regression of  for given x = (1 1 2  )
 is

defined as

( |x) =  (|1 2  ) = −1( |x) = xβ = 0 + 11 + · · ·+  0    1 (2.4 )

where 0    1 β = (0 1 2  )
 

Koenker and Bassett (1978) proposed a 1−loss function to obtain estimator β̂() by solving

β̂() = arg min
∈

X
=1

 ( − x β()) 0    1 (2.5 )

where  is a loss function

 () = ( − (  0)) =

½
( − 1)   0;

  ≥ 0 (2.6 )

Quantile regression problem can be formulated as a linear program problem

min
(uv)∈×2

+

{1u+ (1− )1v|1β() + u− v = y} (2.7 )

where  denotes the ×  design matrix (Koenker 2005).
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3. The Proposed Weighted Quantile Regression

3.1. Weighted Quantile Regression

We propose a new weighted quantile regression (WQR) method

β̂()= arg min
∈

X
=1

( ) ( − x β) 0    1 (3.1 )

where (x ) ∈ [0 1] and
X
=1

(x ) = 1  = 1   for x = (1 1 2  )



In this paper, we propose the following weights

(1)  (x ) =
| |x| |
X
=1

| |x| |
 0    1; (3.2 )

(2)  (x ) =
1 + | |x| |−1

X
=1

(1 + | |x| |−1)
 0    1 (3.3 )

where ||x|| =
p
21 + 22 + · · ·+ 2  is the number of regressors

Weighting scheme (3.3) is used in simulations in Section 4 to improve accuracy when esti-

mating conditional quantiles of a bivariate Pareto distribution. Weighting scheme (3.2) also is

used in example in Section 5. Many different weights were tested, and out of all tested weights,

the weighting schemes (3.2) and (3.3) applied into (3.1) is the most accurate ones.

3.2. Comparison of quantile regression models

In order to compare the regular and weighted quantile regression models in (2.5) and (3.1). We

extend the idea of measure goodness of fit by Koenker and Machado (1999), and suggest to use

a Relative () which is defined as

 () = 1− ()

()
 −1 ≤ () ≤ 1 (3.4 )

where

() =

X
=1

 ( ̂)

=
X

≥x ̂
()





¯̄̄
 − x β̂()

¯̄̄
+

X
x


 ̂

()

(1− )



¯̄̄
 − x β̂()

¯̄̄
 (3.5)
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where β̂() is obtained by (2.5).

() =

X
=1

 ( ̂)

=
X

≥x ̂
()


¯̄̄
 − x β̂()

¯̄̄
+

X
x


 ̂

()

(1− )
¯̄̄
 − x β̂()

¯̄̄
 (3.6)

where  can be given in (3.2), 0   ≤ 1
P

=1 = 1 β̂() is obtained by (3.1).

4. Simulations

In this Section, Monte Carlo simulations are performed. We generate  random samples with

size  for each from the bivariate Pareto distribution in Figure 3 with c.d.f.

 ( ) = 1− − − − − (+  + 1)−   1   1   0 (4.1 )

and the th conditional quantile function of y for given  is

( |) = 1− 

µ
1− 1

(1− )−1(+1)

¶
 0    1 (4.2 )

Figure 3. Bivariate Pareto distribution function with  = 3

Assume that the true conditional quantile is ( |) = 0 + 1. We use two quantile

regression methods:

1. The regular quantile regression (QR)  estimation based on (2.5),

( |) = ̂0() + ̂1() (4.3 )

2. The weighted quantile regression (WQR)  estimation based on (3.1)

 ( |) = ̂0() + ̂1() (4.4 )

with weight and the weight  =
1+||||−1X



(1+||||−1)
in (3.3).

For each method, we generate size  = 200  = 1 000 samples. which can be estimated for

each simulated sample. For th sample, we have ( |) and ( |)  = 1 
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We use  = 3, we compare the two estimates: ( |) in (4.3) and  ( |) in (4.4), with
the true quantile function in (4.2). Figure 4 shows that  ( |) is closer to the true conditional
distribution function when  = 095, let’s say  behaves more efficient than .

Figure 4. Simulation for  = 095 −green solid; −blue solid; ture −red dash.

We design the simulation MSE (SMSE) of the estimators by (4.3) and (4.4):

(( |)) = 1



X
=1

Z
1

(( |)−( |))2 ; (4.5 )

( ( |)) = 1



X
=1

Z
1

(( |)−( |))2  (4.6 )

where the true th conditional quantile of bivaraite Pareto distribution ( |) is in (4.2), 
is a finite  value such that the c.d.f in (4.1)  () ≈ 1. The simulation efficiencies (SEFF)
are given by

 ( ( |)) = (( |))
( ( |))  (4.7 )

where (( |)) and ( ( |)) are given in (4.5) and (4.6).
Table 1. shows the simulation SMSE-, SMSE- and SEFF for different  values.

Table 1. Simulation Mean Squared Errors (SMSE) of Estimating ( |x)  = 200  = 1000

τ 095 096 097 098 099

SMSE- 2264 2737 6005 10406 22800

SMSE- 2076 2680 4287 9939 23474

SEFF- 109 102 140 105 097

Figure 5 shows most of the EFFs are larger than 1, so  is more efficient than  when

 = 095 096 and up to 099
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Figure 5. (a) SMSE of −red solid and −green solid; (b) Simulation efficiency of the 

relative to the 

From over all results of simulations, we conclude that:

(1) Figures 5(a) and 5(b) show that for almost every value of  when using  , with the

proposed weight (3.2) are more efficient relative to the classical quantile estimator .

(2) Figure 4 presents the weighted 0.95th quantile regression  is closer to the true 0.95th

quantile , than the classical 0.95th quantile regression line , for   25.

5. Example of Applications

Quantile regression is used in many application areas: medical diagnosis, survival analysis, social

science, environmental studies, hydrology, market return, forecasting. In this sction, we apply

the following three regression models to Example 1.1 the Rainfall Example in Section 1:

1. The traditional mean linear regression (LS) bβ in (1.2);
2. The regular quantile regression  estimator bβ() in (2.5);
3. The proposed weighted quantile regression  estimator bβ() in (3.1) with weight (3.2).

5.1. Goodness-of-Fit Tests

To fit the data to GPD in (2.2), we transform the data ∗ = ( − ) where  = 3 and

obtained maximum likelihood estimator (MLE) b = 58061 and b = 01781 Figure 6

is a log-log plot. We can see that the data fit the GPD in (2.2) well.

We also perform three goodness-of-fit test including Kolmogorov test ( −) (Kolmogorov,

1933), Anderson-Darling test ( −) and Cramer-von-Mises test ( −  −) (see Anderson

and Darling, 1952). The Hypothesis for all the three tests is

0 :  () =  ∗() for all value of x
1 :  () 6=  ∗ ()  for at least one value of x



where  () is the true but unknown distribution function of the sample and  ∗() is the
theoretical distribution function, GPD in (2.2).
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Figure 6. Log-log plot of Alberta Precipitation example, data are in dots, the estimated GPD

is in red line.

Table 2. The p-value of all the three tests using MLE for Alberta Rainfall Example

 −  −  −  −

Test Statistics -value Test Statistics -value Test Statistics -value

004289 02507 11732 02780 01594 03623

Table 2 shows that, by  −  test, our transformed data fit GPD with probability 251%,

while by − and −− , the data fit GPD with probability 278% and 362% respectively.

Figure 7. (a) Histogram of Rainfall in Alberta from January 1999 to July 2013. Frequency V.S

Rainfall (mm); (b) Histogram and GPD model.

Figure 7(a) shows the frequency of precipitation. Most precipitations are between 0 and

20 millimeter, while there are still some days that have heavy precipitation. The data below

3 millimeter are removed and a new histogram is created. Figure 7(b) indicates that a GPD

seems to model the Alberta Rainfall data.
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5.2. Quantile regression method

Figure 8(a) shows there is a quadratic relationship between the maximum temperature and

rainfall, so we use polynomial modelb ( |) = b0 + b1+ b22
where  is rainfall and  is the maximum temperatureThen we have two regressor, one is  and

the other is 2 and we use the weigh in (3.2), which is | ||| /
P

 | ||| . Figure 8(a) gives the
scatter plot, and the fitted    and  curves at two high 0.95th and 0.99th quantiles.

We note that the  and  curves appears a decent fit of data at  = 095 and 099 And

 have a heavier rainfall than  in general when quantile is high, these also show in Table

3.

Figure 8. (a) Quantile Regression of Alberta Rainfall data at  = 095 in blue and  = 099 in

green using −solid and −dash; −red solid; (b) 3D view of −red; −green at
 = 095

Table 3 Alberta Rainfall (mm) at high quantile using  and 

 = 095  = 099

Temperature ()    

−20 1022 1257 1132 1152

−15 1582 1836 2075 2160

−10 2044 2305 2850 2982

−5 2406 2663 3458 3620

0 2670 2911 3899 4073

5 2835 3050 4173 4341

10 2901 3077 4280 4424

15 2868 2995 4220 4323

20 2736 2802 3993 4036

25 2505 2499 3599 3565

30 2176 2086 3038 2908
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5.3. Compare two estimation methods

Figure 9. (a) Relative  (); (b) Comparison of 1 () ; (c) Comparison of 2 () ; −red solid
and −green solid.
Figure 9(a) shows ()  0 which means ()  () when   095 thus

the  curve fits data better than the  curve does when  ≥ 095 Figures 9(b) and 9(c)
show that the values of b1() and b1() which are consistent with Figure 8 and Table 3 which
shows  have a heavier rainfall than  in general when quantile is high.

From the estimation of quantile regression, we concludes that when the temperature is mod-

erate, it’s more likely to have extreme rainfall. When the weather is too hot or too cold, the

rainfall seems to be normal. Thus the government need to pay more attention to the rain fore-

cast when the weather is moderate and maybe use the proposed weighted quantile regression to

forecast for extreme heavy rainfall. Moreover, Quantile regression of precipitation, in general,

can be useful to predict the rainfall and as a part of decision support systems, especially in the

fields of regional planning and environment management.

6. Conclusions

Overall we conclude that:

(1) Least square estimator is for estimating conditional mean, by using 2−loss function.
But in many situation, we need to estimate high conditional quantile for extreme events. The

traditional conditional mean regression models are unable to deal with heavy-tailed distributions,
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since the measurement of central location can be significantly affected by outliers. Quantile

regression proposed an efficient way to estimate high quantiles with a 1− loss function, and
overcomes the limitation of conditional mean models, especially the application in the extreme

events. Quantile regression is a new powerful method with a lot of potential.

(2) In this paper, the proposed weighted quantile Regression  with proposed weight

scheme perform better goodness-of fit data than the regular Quantile regression  in the

computer simulations and the rainfall example. The results show that the  behaves better

than the .

(3) Search for optimal weight with better efficiency of the  relative to the  is a difficult

task. Further study on optimal weight is suggested.
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