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Abstract 
El Paso Electric Company (EPEC) is the sole commercial electricity provider for two 

metropolitan economies in the southwestern desert region of the United States: El Paso, 

Texas and Las Cruces, New Mexico. A publicly traded corporation, EPEC employs a 

structural econometric system of equations model to forecast energy sales for various 

customer classes. Although the modeling system has provided reliable inputs to annual 

corporate planning efforts at EPEC, its historical track record has not previously been 

formally assessed for forecast accuracy. Both descriptive and inferential statistics are 

used to evaluate the EPEC model’s forecasting performance. Results indicate that 

accurate prediction of electricity usage in this service area is an elusive target. Those 

results are similar to what has been documented for other regional economic variables. 

 

Key Words: Energy forecasting, Regional forecasting, Disaggregation, Statistical tests, 

Forecast accuracy evaluation 

 

1. Introduction 

 
Electricity sales forecasts are typically utilized for planning of generation 

capacity as well as for revenue and expenditure planning at electric utility companies.  It 

has long been recognized that sales volumes are affected by numerous factors such as 

income growth, prices, and weather (Taylor, 1975; Lee and Chiu, 2011).  For border 

economies, currency market fluctuations plus international, regional, and local business 

cycles also influence the demand for electricity (Fullerton, 1998).  The service territory of 

EPEC, the Rio Grande Valley of far west Texas and southern New Mexico, is affected by 

all of these factors.  Weather often affects energy sales in this region during summer 

months when maximum daily temperatures can exceed 100 degrees Fahrenheit (37.8 

degrees Celsius) for multiple consecutive days throughout the EPEC service area. 

 

 Similar to many public utilities, EPEC has long utilized econometric models to 

forecast its customer base and energy sales.  Those forecasts are employed in annual 

corporate budgeting exercises as well as medium- and long-term generation, 

transmission, and distribution network capacity planning efforts.  Separate models and 

forecasts are developed for each of the metropolitan economies in the EPEC service area: 

El Paso, Texas and Las Cruces, New Mexico.  Although econometric forecasts have been 

prepared by corporate economists at EPEC for more than 35 consecutive years, the 

historical track record of this ongoing enterprise has not previously been formally 

assessed.  EPEC and other electric utilities are not unique in this regard and a similar 
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paucity of empirical evidence also exists for natural gas companies and municipal water 

utilities (one recent attempt to address this issue for water is Fullerton and Molina, 2010). 

 

This paper attempts to partially fill this gap in the applied economics literature by 

analyzing the predictive accuracy associated with the annual econometric forecasts 

developed by the corporate planning department at El Paso Electric Company.  EPEC is 

an investor-owned private utility whose service area covers parts of Texas and New 

Mexico with a long history of econometric forecasting analysis.  Because of its multi-

state service area, the data set analyzed is a fairly broad one.  It includes residential, small 

commercial and industrial, large commercial and industrial, and non-profit categories.  

That results in eight different sets of megawatt hour (MWH) electricity usage forecasts, 

one for each customer category in each of the two states.  These forecasts can then be 

combined to estimate aggregate regional electricity demand.  The sample is also 

interesting because it encompasses both a large metropolitan economy (El Paso, Texas) 

and a small metropolitan economy (Las Cruces, New Mexico).  The latter is potentially 

useful because prior studies have shown that regional differences in electricity 

consumption patterns within countries and among sectors may be substantial (Chern and 

Just, 1980; Badri, 1992; Winebrake and Sakva, 2006; Contreras et al., 2009). 

 

Subsequent sections of the study are organized as follows.  The next section 

provides an overview of prior electricity demand and regional econometric studies.  Data 

and methodology are discussed next.  Empirical results are summarized in the fourth 

section.  Concluding observations and suggestions for future research make up the final 

part of the paper. 

 

2. Literature Review 

 
Research on the demand for electricity occurs in a wide variety of contexts.  

Businesses rely on the accuracy of these models to help improve planning efforts while 

public institutions use both estimation and simulation results from these models to help 

design more effective policies (Brown and Koomey, 2003).  Many research efforts 

support generation, transmission, and distribution grid investment decisions and 

management efforts (Fatai et al., 2003; Mohamed and Bodger, 2005; Bogetic and 

Fedderke, 2006).  Much of this research has been conducted using national data 

aggregates (Contreras et al., 2009; Athukorala and Wilson, 2010), but a fair amount has 

also been directed toward regional and metropolitan electricity markets, as well (Roth, 

1981; Fullerton et al., 2012). 

 

Favorable forecasting results have been documented for many of the regional 

models (Leung and Miklius, 1994; Arsenault et al., 1995; Sharma and Nair, 2002).  

Econometric evidence generally supports breaking down total electricity demand into 

residential, commercial, industrial, and non-profit or similar categories (Winebrake and 

Sakva, 2006).  As noted above, explanatory regressor variables frequently include 

population, personal income, average price of electricity, average price of natural gas as a 

substitute good, climate variables, and other economic indicators.  Predictive accuracy is 

influenced by a wide variety of factors that include technological change as well as 

reverberative simulation errors associated with regressor series forecasts (Smil, 2000; 

Craig et al., 2002; Linderoth, 2002; O’Neill and Desaib, 2005).  Industrial electricity use 

may generally be more difficult to predict than either residential or commercial demand 

(Thoma, 2004; Dilaver and Hunt, 2011). 
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El Paso Electric Company has a fairly long history of short-, medium-, and long-

range econometric forecasting analysis in support of its corporate planning efforts.  Those 

exercises involve developing load forecasts for one large metropolitan economy (El Paso, 

Texas) and one small metropolitan economy (Las Cruces, New Mexico).  To date, the 

historical accuracy of those projections has not been formally assessed.  Because both 

urban economies are characterized by relatively high unemployment rates and fairly 

substantial historical population estimate revisions, accurate econometric forecasts for 

this region may be difficult to obtain (Charney and Taylor, 1984; West, 2003; Fullerton 

and Molina, 2010).  The track record of EPEC as a privately owned electric utility is also 

of interest because most of the prior electricity forecast records analyzed have been for 

either academic research centers or public sector agencies.  It is also of interest because 

data sets of this nature are very difficult to assemble (Lady, 2010).  Although some 

internal company documentation may exist, corporate sector econometric predictive 

accuracy for electricity demand remains largely uncharted.  This paper attempts to at least 

partially fill that gap in the energy economics literature. 

 

3. Data and Methodology 
 

This study analyzes the accuracy of load forecasts produced for the 1999-2010 

period using the El Paso Electric econometric modeling system.  Each year during the 

sample period a complete set of 10-year forecasts is produced by EPEC for short- and 

medium-range planning purposes.  To provide sufficient observations for statistical 

analysis of the data, the sets of forecasts produced each year are pooled together, 

resulting in a sample of 78 previously utilized structural econometric forecast 

observations for each variable included in the empirical accuracy analysis.  The EPEC 

service area is a challenging one to model and analyze.  A key feature of the region is that 

it is geographically adjacent to an international border and measurably influenced by 

economic conditions in Mexico (Fullerton, 2001; Fullerton and Novela, 2010). 

 

Table 1 lists the variables for which the forecast accuracy assessments are carried 

out.  In all, there are nine variables included in the sample.  Four of the variables are for 

the El Paso portion of the EPEC service area, four are for the Las Cruces portion of the 

service area, and one is for both areas combined.  For each geographic segment, the usage 

data are measured in MWH for each of four customer categories.  From a utility planning 

perspective, separate examination of the out-of-sample simulation performances of the 

MWH usage projections are generally utilized for short- and medium-range budget and 

operational management exercises.  Medium- and long-term transmission and generation 

capacity planning efforts also rely upon usage forecasts.  As has been documented for 

other public utilities, the relative predictive accuracies of each modeling category may 

vary (Fullerton and Molina, 2010). 

 

Table 1. Variable Names and Units of Measure 

 
Variable Definition and Unit of Measure 

ERMWH El Paso Residential Electricity Usage in Megawatt Hours  

ESMWH El Paso Small Commercial & Industrial Elec. Usage in Megawatt Hours 

ELMWH El Paso Large Commercial & Industrial Elec. Usage in Megawatt Hours 

EGMWH El Paso Govt. & Non-Profit Electricity Usage in Megawatt Hours 

LRMWH Las Cruces Residential Electricity Usage in Megawatt Hours  

LSMWH Las Cruces Small Commercial & Ind. Elec. Usage in Megawatt Hours 

LLMWH Las Cruces Large Commercial & Ind. Elec. Usage in Megawatt Hours 
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LGMWH Las Cruces Govt. & Non-Profit Electricity Usage in Megawatt Hours 

TMWH Total Combined EPEC Electricity Usage in Megawatt Hours 

 

Table 2 summarizes the historical values for each of the variables in the sample.  

Period coverage is from 1980 through 2010.  Good variability is observed among the 

different variables comprising the sample.  The greatest annual average MWH 

consumption category in El Paso is small commercial and industrial.  The fastest growing 

MWH categories in that urban economy are residential consumption and government and 

non-profit consumption.  In Las Cruces, the largest annual average MWH consumption 

category is residential.  It is also the most rapidly growing consumption category in that 

metropolitan economy. 

 

Table 2. Historical Usage Data Descriptive Statistics 

 
Series Mean Std. Dev. a Maximum Minimum CV b CAGR c 

ERMWH 1,179,799 775,688 1,853,887 752,005 0.657 0.0293 

ESMWH 1,367,694 690,513 1,795,593 819,059 0.505 0.0256 

ELMWH 919,334 295,142 1,267,038 604,047 0.321 0.0171 

EGMWH 715,921 468,819 1,119,842 456,246 0.655 0.0293 

       

LRMWH 385,098 310,968 654,947 214,482 0.808 0.0366 

LSMWH 328,998 236,068 499,944 166,094 0.718 0.0362 

LLMWH 52,674 34,042 108,685 16,043 0.646 0.0431 

LGMWH 348,327 140,406 427,755 223,983 0.403 0.0207 

       

TMWH 5,297,845 2,951,647 7,434,173 3,259,915 0.557 0.0269 

Notes:  
a Std. Dev.is the standard deviation of the variable. 
b CV is the coefficient of variation calculated as the ratio of the standard deviation to the mean. 
c CAGR is the 1980-2010 compound annual growth rate of the variable. 

  

 The accuracy performances of the nine different sets of MWH econometric 

forecasts recorded by El Paso Electric are assessed relative to random walk and random 

walk with drift forecasts for each variable in the sample.  Random walk forecasts have 

frequently been shown to provide stiff competition for structural econometric model 

projections of regional variables.  The latter circumstance has also been documented for 

the Borderplex region that comprises the EPEC service area (Fullerton and Molina, 2010; 

Fullerton and Novela, 2010).  Given the high rates of joblessness in El Paso and Las 

Cruces, plus the degree to which preliminary population data are revised, it is very 

possible that the random walk forecasts may outperform the annual econometric forecasts 

generated by the utility (Charney and Taylor, 1984; West, 2003). 

 

The descriptive metrics utilized to assess the accuracy of the EPEC econometric 

forecasts relative to the random walk benchmarks are root mean square error (RMSE) 

statistics and Theil inequality coefficients.  RMSE provides a measure of the deviation of 

forecasted values from the actual values for a particular variable (Pindyck and Rubinfeld, 

1998).  RMSE can be hard to interpret because it is unbounded from above.  Given that, 

the Theil inequality coefficient and its three second moment proportions are also 

employed due to ease of interpretation (Stekler, 1968).  Based on RMSE calculations, the 

Theil inequality coefficient ranges in value from zero to one.  Zero indicates absolute 

forecast accuracy (Leuthold, 1975).  The calculation of RMSEs is shown in Equation (1).  

In Equation (1), 𝑌𝑛
𝑠 represents the out-of-sample forecast value of a variable Y in period 
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n and 𝑌𝑛
𝑎  represents its actual value.  N is the number of forecast observations in the 

sample.  For purposes of this study, Y is MWH consumption for a given rate class. 

 

RMSE = √1/𝑁∑ (𝑌𝑛
𝑠 − 𝑌𝑛

𝑎)2𝑁
𝑛=1               (1) 

 

Theil inequality coefficients are also known as U-statistics.  The manner in which 

they are calculated forces them to range from zero to one.  The closer U is to zero, the 

better the predictive accuracy of the model, while the closer it is to one, the worse its 

predictive performance (Leuthold, 1975).  Equation (2) shows how to calculate a U-

statistic. 

 

U = √1/𝑁∑ (𝑌𝑛
𝑠 − 𝑌𝑛

𝑎)2𝑁
𝑛=1 / (√1/𝑁∑ (𝑌𝑛

𝑠)2𝑁
𝑛=1 +√1/𝑁∑ (𝑌𝑛

𝑎)2𝑁
𝑛=1 )                 (2) 

 

Theil U statistic second moments can be decomposed into 3 separate proportions 

of inequality: UM, US, and UC.  They, respectively, represent bias, variance, and 

covariance proportions.  As indicated in Equation (3), the inequality coefficient 

proportions sum to one.  

 

UM   +   US   +   UC   =   1               (3) 

 

The bias proportion, UM, measures systematic error based on the difference 

between the average forecast values from the model and the actual values for the 

dependent variable.  The optimal value of UM is zero, in which case no bias is present in 

the out-of-sample simulations for the variable of interest.  Equation (4) summarizes the 

formula for the bias proportion of the U-statistic. 

 

UM = (𝑌𝑠̅̅ ̅ − 𝑌𝑎̅̅̅̅ )2/(1/𝑁∑ (𝑌𝑛
𝑠 − 𝑌𝑛

𝑎)2𝑁
𝑛=1 )             (4) 

 

The variance proportion, US, shown in Equation (5) measures the ability of the 

projections to mimic the variability of the actual values.  The standard deviations of 𝑌𝑛
𝑠 

and 𝑌𝑛
𝑎 are represented by σs and σa respectively.  The optimal value of US is zero, in 

which case the fluctuations of the simulated values are identical to those of the actual 

value.  The covariance proportion, UC, shown in Equation (6), measures unsystematic 

forecast errors.  The correlation coefficient between 𝑌𝑛
𝑠 and 𝑌𝑛

𝑎 is represented by ρ.  UC is 

rarely expected to be zero since out-of-sample simulations will probably never be perfect.  

Given that, the optimal value for UC is one so that UM and US can equal zero.  Thus, the 

preferred values of the proportions are: UM = US = 0 and UC = 1 (Pindyck and Rubinfeld, 

1998).  

 

US = (𝜎𝑠 − 𝜎𝑎)
2/(1/𝑁∑ (𝑌𝑛

𝑠 − 𝑌𝑛
𝑎)2𝑁

𝑛=1 )             (5) 

 

UC = (2(1 − 𝜌)𝜎𝑠𝜎𝑎)/(1/𝑁∑ (𝑌𝑛
𝑠 − 𝑌𝑛

𝑎)2𝑁
𝑛=1 )                    (6) 

 

Theil inequality statistics are useful, but are descriptive, only.  In general, error 

structures associated with forecasting make statistical inference difficult, so descriptive 

measures are frequently utilized.  When degree of freedom constraints are not binding, 

some formal tests can be employed (Ashley et al., 1980; Diebold and Mariano, 1995).  

The error differential regression is designed to test a null hypothesis of mean square error 

(MSE) equality between competing sets of forecasts (Ashley et al., 1980).  This test helps 
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further assess the accuracy performance of the structural forecasts relative to the random 

walk benchmark.  The null hypothesis tested is shown in Equation (7). 

 

H0: MSE(e1) = MSE(e2),               (7) 

 

where MSE refers to the respective mean-squared error of two competing forecast errors, 

e1, e2.  In this regard, MSE(e1) represents the mean square error for a random-walk 

benchmark and MSE(e2) represents the mean square error for the EPEC electricity usage 

and customer forecasts. 

 

By defining  

 

Δt =  e1t – e2t  and   ∑ t =  e1t + e2t,              (8) 

 

Equation (7) can be re-expressed in the following manner, 

 

MSE(e1) – MSE(e2) = [cov (Δ,∑)] + [m(e1)2 - m(e2)2],                   (9) 

 

where cov denotes sample covariance for the simulation period and m denotes sample 

mean.  Forecasts from the EPEC econometric model will be judged as superior if the joint 

null hypothesis that μ(Δ) = 0 and cov (Δ,∑) = 0 can be rejected in favor of the alternative 

hypotheses discussed below. 

 

Two regression equations can be extracted from (7) to test if the MSEs differ 

significantly in value.  The structure of the regression equation used to test the null 

hypothesis depends on the signs of the error means.  When the error means have the same 

sign, the following regression equation is used to test the joint null hypothesis: 

 

Δt   =   β1 + β2[∑ t – m(∑ t)] + ut,             (10) 

 

where ut is a randomly distributed error term. The test for μ(Δ) = 0 depends on the 

interpretation of  β1, while the test for cov (Δ,∑) = 0 is determined by the interpretation of 

β2. 

 

A positive value for β2 will always indicate that the variance of the random walk 

forecast errors (e1) is larger than the variance of the EPEC structural equation model 

forecast errors (e2).  Given that, a significantly positive β2 will indicate EPEC structural 

equation model superiority.  The interpretation of β1 will depend on the signs of the error 

means.  When both error means are positive, EPEC econometric forecast superiority 

results when the joint null hypothesis that β1 = β2 = 0 is rejected in favor of the alternative 

hypothesis that both are non-negative and at least one is positive.  If either β1 or β2 are 

significantly negative, the EPEC econometric forecast cannot be considered more 

accurate than its random walk benchmark.  If one of the estimates is insignificantly 

negative and the other is positive, a one tailed t-test can be performed to test for 

significance.  Lastly, if both estimates are positive, an F-test can be used to test if they are 

jointly different from zero.  However, because the F-test does not take sign into account 

on 4-pronged test results, the true significance that both estimates are positive will not be 

more than half the probability obtained from the F distribution (Ashley et al., 1980). 

 

When both error means are negative, (10) is still used to test (7) but the 

interpretation of β1 changes.   In this case, if β1 is found to be significantly negative, and 
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β2 is either insignificant or significantly positive, the EPEC structural equation forecasts 

are most accurate.  Conversely, a significantly positive β1 will indicate random walk 

superiority. 

 

If the error means of the forecasts have opposite signs, a different regression 

equation must be employed to test (7).  For such a case, the dependent variable becomes 

the sum of the forecast errors and the regression equation is: 

 

∑t   =   β1 + β2[Δt – m(Δt)] + ut             (11) 

 

Once again, if β1 = β2 = 0, the test fails to reject (7).  As before, interpretation of the β2 

coefficient is the same, but interpretation of the β1 depends on which of the error means is 

positive and which is negative.  One possibility is that the random walk counterpart has a 

negative error mean and the EPEC forecast has a positive error mean.  In this case, β1 

significantly negative, with β2 insignificant or significantly positive, points to superior 

EPEC structural equation model forecast accuracy.  Further, if β1 is insignificant while β2 

is significantly positive, the EPEC structural model is still deemed superior.  Lastly, if β1 

is significantly positive, or β2 is significantly negative, the random walk forecasts are 

most accurate.  The final case is when the random walk extrapolation has a positive error 

mean and the EPEC forecast has a negative error mean.  Under these circumstances, a 

significantly positive β1 with a significantly positive or insignificant β2 points to EPEC 

accuracy.  Alternatively, if either of the equation parameters is significantly negative, the 

random walk predictions are favored (Ashley et al., 1980; Kolb and Stekler, 1993).   

 

Tables 3 and 4 can be used to determine which, if either, of two sets of forecasts 

is more accurate based on error differential regression results.  To make a determination, 

it is necessary to know the algebraic sign of the mean of the random walk (RW) forecast 

errors.  If the mean is positive, then Table 3 should be used; if it is negative then Table 4 

is applicable.  The block of cells on the lower right-hand side of the tables indicates 

which forecasting model dominates given the signs and statistical significance of both 

estimated parameters. 
 

Table 3. Decision Rules when the Random Walk Error Mean is Positive 

m(e1) > 0 

β1 > 0 β1 < 0 

β1 

significant 
β1 insignificant 

β1 

significant 
β1 insignificant 

β2 > 0 

β2 

significant 
EPEC EPEC Indeterminate EPEC 

β2 insignificant EPEC Indeterminate RW Indeterminate 

β2 < 0 

β2 

significant 
Indeterminate RW RW RW 

β2 insignificant EPEC Indeterminate RW Indeterminate 
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Table 4. Decision Rules when the Random Walk Error Mean is Negative 

 

m(e1) < 0 

β1 > 0 β1 < 0 

β1 

significant 
β1 insignificant 

β1 

significant 
β1 insignificant 

β2 > 0 

β2 

significant 
Indeterminate EPEC EPEC EPEC 

β2 insignificant RW Indeterminate EPEC Indeterminate 

β2 < 0 

β2 

significant 
RW RW Indeterminate RW 

β2 insignificant RW Indeterminate EPEC Indeterminate 

 

4. Empirical Results 

 
As shown in Table 5, only one of the eight customer category econometric 

forecasts is judged as superior using the descriptive statistics described above.  In four 

cases, the random walk with drift forecasts are most accurate.   In the remaining three 

categories, the random walk extrapolations have the lowest RMSE and U-statistics.  

However, when electricity consumption is aggregated across customer categories and 

states, the EPEC forecasts outperform the random walk benchmarks.  The relative 

accuracy of the aggregate, region-wide econometric forecasts of electricity demand likely 

constitutes an important consideration for EPEC corporate planners in assessing the 

overall performance of the forecasting model.  While electricity demand must be 

disaggregated into jurisdictional components for reasons related to regulatory oversight, 

EPEC administrators also evaluate system-wide demand when making decisions about 

expanding generation capacity and purchasing inputs. 

 

In all nine cases, the U-statistics for the EPEC econometric forecasts are fairly 

low, less than 0.3.  Bias is not found to be a problem, with UM statistics greater than 0.5 

occurring in only three instances.  Beyond that, the EPEC forecasts do a very good job of 

replicating cyclical upswings and downswings in electricity usage in both metropolitan 

economies, never exceeding 0.3 for any of the variables in the sample.  The majority of 

the EPEC structural econometric forecast errors are, thus, attributable to unpredictable 

sources of variation in the two service areas.  The relatively good performance of the 

random walk benchmarks is similar to what has been previously documented for other 

regional econometric forecasts (Fullerton et al., 2001; Fullerton and Molina, 2010; 

Fullerton and Novela, 2010).  The lesson for EPEC economists, and analysts at other 

utilities, is that recent trends are important to monitor both quantitatively and 

qualitatively.  Reliance on random walk forecasting is probably not a viable strategy 

because scenario analyses are not really feasible and no single random walk procedure is 

dominant. 
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RMSE and U-statistics are also calculated for a reduced sample of forecasts that 

includes only periods of pronounced business cycle fluctuations marked by distinct 

turning points in United States economic activity.  During the sample period, 

macroeconomic activity peaked twice, first in March 2001 and again in December 2007.  

Troughs occurred in November 2001 and June 2009.  Because some of these turning 

points occurred during the first or last quarter of a particular year, the reduced sample 

includes the contiguous years of 2000, 2002, and 2008 in addition to those years that 

include at least one peak or trough.  The results are largely similar to those reported in 

Table 5.  The only noteworthy difference is that the EPEC forecasts become slightly 

more accurate than the random walk alternatives in the case of El Paso area electricity 

sales to governmental and non-profit entities. 

 

Table 5. Theil Inequality Coefficient Accuracy Comparisons a 

 
Variable Model RMSE U UM US  UC 
       

ERMWH EPEC 108,789 0.035 0.504 0.049 0.447 

 RW 282,922 0.095 0.698 0.006 0.296 

 RW Drift 59,801 0.019 0.159 0.091 0.750 

       

ESMWH EPEC 130,566 0.037 0.574 0.212 0.215 

 RW 113,355 0.034 0.672 0.004 0.324 

 RW Drift 139,865 0.040 0.463 0.296 0.241 

       

ELMWH EPEC 109,909 0.051 0.281 0.022 0.697 

 RW 103,145 0.047 0.402 0.018 0.580 

 RW Drift 197,615 0.087 0.687 0.031 0.282 

       

EGMWH EPEC 71,717 0.037 0.000 0.053 0.947 

 RW 162,630 0.090 0.660 0.065 0.275 

 RW Drift 64,555 0.034 0.125 0.113 0.762 

       

LRMWH EPEC 45,988 0.042 0.544 0.002 0.455 

 RW 116,743 0.112 0.711 0.003 0.286 

 RW Drift 40,775 0.035 0.896 0.010 0.094 

       

LSMWH EPEC 23,316 0.025 0.105 0.300 0.596 

 RW 65,087 0.074 0.696 0.013 0.290 

 RW Drift 39,950 0.042 0.116 0.386 0.498 

       

LLMWH EPEC 40,775 0.222 0.008 0.218 0.774 

 RW 36,931 0.209 0.188 0.082 0.731 

 RW Drift 37,414 0.219 0.024 0.138 0.838 

       

LGMWH EPEC 25,872 0.031 0.145 0.192 0.664 

 RW 37,542 0.048 0.653 0.001 0.347 

 RW Drift 18,119 0.022 0.060 0.116 0.824 

       

TMWH EPEC 211,220 0.015 0.084 0.167 0.749 

 RW 710,680 0.054 0.701 0.002 0.297 

 RW Drift 332,497 0.024 0.626 0.097 0.277 
a Boldface type indicates best predictive accuracy. 
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Of course, the accuracy results in Table 5 are descriptive.  Estimation results for 

the error differential regression analyses for the random walk (without drift) comparative 

forecasts are summarized in Table 6.  A 5-percent significance criterion is used to 

classify the regression results as favoring either the random walk (RW) or the EPEC 

forecasts.  The statistical test results favor the EPEC forecasts in six of the nine categories 

for which the MWH projections are analyzed.  In two categories the analysis yields 

indeterminate results and in only one is the random walk judged to be more accurate by a 

statistically significant margin.  For total MWH forecast accuracy, the EPEC econometric 

forecasts are also found to be most accurate by a statistically significant margin. 

 
Table 6. Structural Econometric vs. Random Walk Forecasts  

Mean Square Error differential regression results a, b, c, d 

 
 β1 β2 F-statistic Most 

accurate Variable (t-statistic) (t-statistic) (prob.) 
     

ERMWH -159,138.5 0.367 144.995 EPEC 

(Both error means negative) (-23.370) (12.041) (0.000)  

     

ESMWH 5,945.2 -0.176 8.099 RW 

(EPEC error mean positive; (0.729) (-2.846) (0.006)  

RW error mean negative)     

     

ELMWH 7,108.2 -0.109 2.249 Indeterminate 

(Both error means positive) (0.670) (-1.500) (0.138)  

     

EGMWH -130,740.7 0.478 7.605 EPEC 

(EPEC error mean positive; (-8.410) (2.758) (0.007)  

RW error mean negative)     

     

LRMWH -64,569.4 0.365 140.534 EPEC 

(Both error means negative) (-23.260) (11.855) (0.000)  

     

LSMWH -46,774.7 0.462 19.405 EPEC 

(EPEC error mean positive; (-10.725) (4.405) (0.000)  

RW error mean negative)     

     

LLMWH -12,390.3 -0.104 17.635 Indeterminate 

(Both error means negative) (-6.939) (4.199) (0.000)  

     

LGMWH -20,499.4 -0.139 0.582 EPEC 

(EPEC error mean positive; (-4.599) (-0.763) (0.448)  

RW error mean negative)     

     

TMWH -533,917.8 0.769 41.264 EPEC 

(EPEC error mean positive; (-11.791) (6.424) (0.000)  

RW error mean negative)     

Notes: 
a Ordinary least squares is utilized for parameter estimation. 
b The sample includes 78 observations. 
c Dependent variable is Δt = e1t – e2t when the signs of the forecast error means are the same. 
d Dependent variable is ∑ t = e1t + e2t when the signs of the forecast error means are opposite. 
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Table 7. Structural econometric vs. random walk with drift forecasts 

Mean Square Error differential regression results a, b, c, d 

 

 β1 β2 F-statistic Most 

accurate Variable (t-statistic) (t-statistic) (prob.) 

     

ERMWH 53,346.4 -0.223 11.355 RW with 

Drift 

(Both error means negative) (7.102) (-3.370) (0.001)  

     

ESMWH -3,742.9 0.122 3.478 EPEC 

(Both error means positive) (-0.351) (1.865) (0.066)  

     

ELMWH 105,456.8 0.121 2.719 EPEC 

(Both error means positive) (8.380) (1.649) (0.103)  

     

EGMWH -21,471.6 -0.195 2.309 RW w/ Drift 

(Both error means positive) (-1.912) (-1.519) (0.133)  

     

LRMWH 4,682.8 -0.804 73.665 RW w/ Drift 

(EPEC error mean negative; (1.593) (-8.583) (0.000)  

RW Drift error mean positive)     

     

LSMWH 6,077.6 0.333 32.709 EPEC 

(Both error means positive) (1.981) (5.719) (0.000)  

     

LLMWH 330,413.9 0.748 335.115 EPEC 

(EPEC error mean negative; (47.737) (18.306) (0.000)  

RW Drift error mean positive)     

     

LGMWH -5,404.5 -0.214 9.112 RW w/ Drift 

(EPEC error mean negative; (-2.173) (-3.019) (0.003)  

RW Drift error mean positive)     

     

TMWH 201,809.0 0.005 0.003 EPEC 

(Both error means positive) (7.008) (0.054) (0.957)  

Notes: 
a Ordinary least squares is utilized for parameter estimation. 
b The sample includes 78 observations. 
c Dependent variable is Δt =  e1t – e2t  when the signs of the forecast error means are the same. 
d Dependent variable is ∑ t =  e1t + e2t when the signs of the forecast error means are opposite. 

 
The estimation results for the error differential regression equations using 

random walk with drift benchmarks are shown in Table 7.  In four of the categories, the 

random walk with drift prediction errors are found to be smaller than those of the EPEC 

econometric forecasts.  In the remaining five categories, the EPEC econometric forecasts 

exhibit statistically superior track records over the course of the sample period.  The latter 

include total MWH sales forecasts for the EPEC system as a whole. 

 

Taken together, the results in Tables 6 and 7 indicate that there are only two 

individual categories, Las Cruces small commercial and industrial demand and total 

aggregate electricity consumption, for which EPEC forecast accuracy is statistically 

superior to that of both random walk benchmarks.  This is not an uncommon outcome for 
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other types of regional econometric forecasts, but is one of the first times it has been 

documented for metropolitan electricity usage customer class projections.  While that 

raises a cautionary flag for utilities employing econometric models for planning purposes, 

the error differential regression outcomes also document overall statistical superiority by 

the EPEC structural forecasts relative to both benchmarks.  While any given rate class 

may be difficult to model and simulate, the aggregate econometric track record at EPEC 

compares favorably to those of the selected benchmarks. 

 

Results for the EPEC econometric forecasts among customer classes for El Paso 

and Las Cruces indicate that this utility faces many of the same regional and sectoral 

forecast difficulties that confront analysts shouldering similar planning challenges.  

Although there are some areas in regional forecasting in which econometric models do 

comparatively well (employment and income), metropolitan electricity projections seem 

to be an area in which relative accuracy for individual customer categories is somewhat 

elusive.  In the case of EPEC, however, total MWH sales forecasts have been anticipated 

with a fair amount of relative accuracy.  Whether the results reported above are 

representative of other electric utilities is not known at this juncture, but this is a question 

that probably merits more scrutiny.  Long standing regulatory and utility planning 

requirements effectively mean that econometric and other statistical means of forecasting 

electricity usage will be employed for many years (Gloze, 1973).  Additional assessment 

of the historical track records for these efforts, including those for utilities whose services 

areas are not located along international borders, would be useful. 

 

5. Conclusion 

 
Electricity sales forecasts are commonly utilized for generation planning and 

budget year planning activities.  While many utility companies have formal forecasting 

programs that date back several years or more, very few of these efforts have been 

assessed for historical accuracy relative to competitive benchmarks.  This study attempts 

to partially fill that gap in the energy economics literature by taking advantage of well-

documented forecast records across multiple customer categories in two service areas 

where El Paso Electric Company operates. 

 

 The service areas are the metropolitan economies of El Paso, Texas and Las 

Cruces, New Mexico.  The customer classes for which historical forecast data are 

assembled are residential, small commercial and industrial, large commercial and 

industrial, and government and non-profit.  Benchmarks utilized are random walks and 

random walks with drift.  The latter are selected because they have generally been found 

to provide exacting competition to regional forecasts and are not difficult to generate. 

 

 Two methods are employed to assess the El Paso Electric track record.  One is 

descriptive and the other has formal hypothesis tests associated with it.  In both cases, 

random walk benchmarks are found to be more accurate than structural econometric 

forecasts for many of the customer categories in El Paso and Las Cruces.  The strong 

performance of random walk forecasts suggests the importance of closely monitoring 

recent trends when developing corporate outlooks.  From an overall system planning 

perspective, it is also important to note that the EPEC structural econometric projections 

are found to be more accurate than those of the benchmarks for aggregate electricity 

demand in the entire service region. 
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Given the accuracy patterns documented for other categories of regional 

economic forecasts, the results obtained in this effort are in agreement with what is 

indicated by prior research.  There have been, to date, however, relatively few accuracy 

assessments such as this one conducted for specific electric utilities.  It is not known, 

therefore, whether the results discussed above are representative of the industry at large.  

Additional research regarding historical forecasting efforts at other electric companies 

will prove helpful in examining this topic. 
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