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Abstract

A planar interception problem of maneuvering targets is considered. Recently, a logic-based guid-

ance algorithm (LBA) was developed, assuming that the target performs a randomly switched bang-

bang maneuver. Assuming perfect information, the differential game based guidance law, incorpo-

rated in the LBA, guarantees hit-to-kill accuracy. Since the only direct information, available to the

interceptor, is the noisy line-of-sight angle measurements, all state-variables should be estimated.

In the LBA, the estimators are tuned assuming the knowledge of the target switch moments. In this

paper, a novel switch detection algorithm, based on a sequentially tested hypothesis, is proposed.

Algorithm efficiency is demonstrated by numerical simulation.

Key Words: guidance, random switch, statistical hypothesis test, switch detection, convex opti-

mization

1. Introduction

The homing guidance of an interceptor missile can be modeled as a zero sum pursuit-
evasion differential game (Shinar, 1981; Shima and Shinar, 2002; Turetsky and Shinar,
2003), where the cost functional is the miss distance. The game solution is a triplet, namely
the optimal interceptor guidance law, the optimal evasive maneuver of the target and the
guaranteed miss distance. The solution depends on the interceptor/target maneuverability
ratio, as well as the dynamics of the interceptor missile and the target. The worst case for
the interceptor, not being able to measure the actual target acceleration, is to assume ideal
target dynamics. In this case there is no need to estimate the target acceleration, because it
is not included in the game optimal guidance law. If the guaranteed miss distance, based
on assuming perfect state information is small enough compared to the lethality radius
of the interceptor’s warhead, target destruction is robustly achieved against any feasible
target maneuver. However, if the interceptor/target maneuverability ratio is not sufficient
for such robust target destruction, another solution method, which includes the estimated
actual target acceleration, is needed.
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In realistic interception scenarios with noise-corrupted measurements, an estimator has
become an indispensable element of the guidance system and the homing performance of
the interceptor missile has been limited by the estimation accuracy. Although, for realistic
interceptor guidance scenarios with noise-corrupted measurements, bounded controls, and
saturated state variables, as well as non-Gaussian random disturbances, the validity of the
separation theorem of Wonham (1968) (stating that the estimation and control processes
can be separately optimized) has never been proved, it has been of common practice to
design the estimators and missile guidance laws independently. The estimators were simple
Wiener or Kalman filters and the guidance laws were derived using simplified (linearized
and planar) deterministic models. In most cases, such convenient design approach had been
acceptable, because it succeeded in satisfying the performance requirements, due to the
substantial maneuverability advantage of guided missiles over their manned aircraft targets.
However, applying this suboptimal approach, for example, to the interception of antisurface
missiles with high maneuverability, results in unsatisfactory homing performance (Shinar
and Shima, 2002).

In (Shinar et al., 2007), an innovative guidance strategy was introduced, based on in-
tegrating the design of a multiple model adaptive estimator and a differential game based
guidance law, leading to a potential breakthrough in the interception of randomly maneu-
vering targets in critical scenarios, such as the Ballistic Missile Defense. It was assumed
that the target performs a randomly switched bang-bang maneuver. In this, logic-based, al-
gorithm, the interception endgame was divided into two time intervals. At the first interval
(from the beginning and to some critical time), a single relatively slow estimator was used.
At the final interval, a set estimators were employed, which were tuned to the moment of
the target maneuver switch. Thus, the detection of the switch moment becomes the crucial
component of this approach, significantly affecting the interceptor’s homing performance.

In (Shinar et al., 2007), it was assumed that the maneuver is detected with a constant
delay of 0.1 s. In (Shinar and Turetsky, 2009), the logic based approach was successfully
applied in the three-dimensional interception problem. In (Shinar and Turetsky, 2014),
the logic based guidance/estimation algorithm was improved by reducing the critical time
and by more accurate parameter tuning. These improvements allowed to reduce the 95%
value of the accumulated miss distance distribution to the half as reported by Shinar et al.
(2007). However, no target maneuver detection algorithm was designed, and the results
were obtained assuming an arbitrary small constant detection delay.

In this paper, the missing link of the logic based algorithm, namely, a statistical switch
detection algorithm, is presented. It is based on sequential testing of statistical hypotheses.
It is shown that the proposed detection algorithm produces a time-varying detection delay
which does deteriorate the homing performance.

2. Previous Results and Problem Statement

2.1 Engagement model

The planar engagement between two moving objects - an interceptor (pursuer) and a target
(evader) - is considered. In Fig. 1, a schematic view of the interception geometry is shown.
The x axis of the coordinate system is aligned with the initial line of sight. The origin is
collocated with the initial pursuer position. The points (xP , yP ), (xE , yE) are the current
coordinates of the objects; VP and VE are the velocities of the pursuer and evader; aP ,
aE are the lateral accelerations of the pursuer and evader, respectively; ϕP , ϕE are the
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respective angles between the velocity vectors and the reference line of sight; and y =
yE − yP is the separation normal to the initial line of sight.

Figure 1: Interception geometry

Due to the simplifying assumptions (constant velocities VP and VE , constant maxi-
mal lateral accelerations amax

P and amax
E , first-order dynamics with time constants τP and

τE , small aspect angles ϕP and ϕE of the pursuer and evader, respectively), the original
nonlinear model can be linearized and the respective final time tf can be calculated. The
linearized engagement model is described (Turetsky and Shinar, 2003) by the set of differ-
ential equations

ẋ1 = x2 , x1(0) = 0,
ẋ2 = x3 − x4 , x2(0) = x20,
ẋ3 = (amax

E v − x3)/τE , x3(0) = 0,
ẋ4 = (amax

P u− x4)/τP , x4(0) = 0,

(1)

where x1 = yE − yP is the relative separation normal to the initial line of sight; x2 is
the relative normal velocity; x3 and x4 are the lateral accelerations of the evader and the
pursuer, respectively, both normal to the initial line of sight; τE , τP are the respective time
constants; amax

E , amax
P are the respective maximal absolute values of the lateral accelera-

tions;
x20 = VEφ

0
E − VPφ

0
P , (2)

φ0
E and φ0

P are initial values of φE and φP , respectively. The state vector of the system
(1) is x = (x1, x2, x3, x4)

T . The controls u and v of the pursuer and evader are their
acceleration commands, normalized by amax

P and amax
E , and satisfying for 0 ≤ t ≤ tf the

constraints
|u(t)| ≤ 1, |v(t)| ≤ 1. (3)

The objective of the pursuer is to minimize the miss distance x1(tf ), by using a feedback
strategy u(t, x) against any admissible evader control v(t).

2.2 Differential game based strategy

The interception problem can be modeled as a zero-sum differential game for the system
(1) with the cost functional

Jx = |x1(tf )|, (4)

and the control constraints (3). The solution of this differential game (Shinar, 1981) is
obtained by scalarization. Let Φ(t, τ), 0 ≤ τ ≤ t ≤ tf , be the fundamental matrix of
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the homogeneous system corresponding to (1), d = (1, 0, 0, 0). By the terminal projective
transformation (Krasovskii and Subbotin, 1988)

z = dTΦ(tf , t)x, (5)

where T denotes the transposition, the system (1) is reduced (Turetsky and Shinar, 2003)
to the scalar equation

dz/dϑ = h1(ϑ)u− h2(ϑ)v, (6)

where the new independent variable is the time-to-go

ϑ = tf − t, (7)

the coefficient functions are

h1(ϑ) = amax
P τPψ(ϑ/τP ), h2(t) = amax

E τEψ(ϑ/τE), (8)

ψ(ξ) , exp(−ξ) + ξ − 1. (9)

The controls u(ϑ) and v(ϑ), denoting in fact u(tf−ϑ) and v(tf−ϑ), satisfy the constraints

|u(ϑ)| ≤ 1, |v(ϑ)| ≤ 1, tf ≥ ϑ ≥ 0. (10)

Since x1(tf ) = 0 is equivalent to z(0) = 0, the original differential game is equivalent to
the scalar differential game for the system (6), the cost functional

Jz = |z(0)|, (11)

and the control constraints (10).
If the strategy u0(ϑ, z) is optimal in the scalar differential game, then the strategy

u(t, x) = u0(tf − t, dΦ(tf , t)x) is optimal in the original game.
The solution of the game (6), (11) – (10) is based (Shinar, 1981) on the decomposition

of the game space (ϑ, z) into two regions of different strategies. In the first (singular)
region D0 the optimal control strategies u0(ϑ, z) and v0(ϑ, z) are arbitrary subject to (10),
and the value of the game is constant (zero or positive). In the second (regular) region
D1 = R2\D0 the optimal strategies have a ”bang-bang” structure:

u0(ϑ, z) = v0(ϑ, z) =
arbitrary s.t. (10), (ϑ, z) ∈ D0,

sign z(ϑ), (ϑ, z) ∈ D1.
(12)

and the value of the game is non-zero, depending on the initial conditions. In the case,
where the pursuer has advantage both in maneuverability

amax
p > amax

e , (13)

and advantage in agility, defined as

amax
p

τp
≥ amax

e

τe
, (14)

the singular region is
D0 = {(ϑ, z) : ϑ > 0, |z| < z∗(ϑ)}, (15)
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where

z∗(ϑ) =

ϑ∫
ϑ̄

[h1(ξ)− h2(ξ)])dξ. (16)

For any initial position (ϑ0, z0) the value of the perfect information game is given by

J∗ = J∗(ϑ0, z0) =


0, (ϑ0, z0) ∈ D0,

|z0| − z∗(ϑ0), (ϑ0, z0) /∈ D0.
(17)

Thus, in this case, the closure clo(D0) of the singular region becomes the robust cap-
ture zone, i.e. the set of all initial positions, from which the pursuer can guarantee zero
miss distance against any admissible evader strategy. The optimal strategy (guidance law)
u0(ϑ, z) is known in the literature as DGL/1 (Shima and Shinar, 2002).

2.3 Practical implementation of optimal strategy

By (5), the scalar state variable z is given explicitly as

z(ϑ) = x1 + θx2 + τ2Eψ(θ/τE)x4 − τ2Pψ(θ/τP )x3, (18)

i.e. in order to implement the optimal strategy u0(ϑ, z), given in (12), one needs to know
all the components of the state vector x. In real-life scenario, the exact values of x1, x2
and x4 are not available and should be reconstructed by an estimator, incorporated into the
control loop, based on the noisy measurements of the line-of-sight angle

λ̂(ϑ) = λ(ϑ) + η(ϑ), (19)

where η(ϑ) is a measurement error. Thus, the ”practical” optimal pursuer strategy becomes

û = u0(ϑ, ẑ), (20)

where
ẑ = x̂1 + θx̂2 + τ2Eψ(θ/τE)x̂4 − τ2Pψ(θ/τP )x3, (21)

and x̂1, x̂2 and x̂4 being the estimator outputs.

2.4 Logic based guidance

The logic based approach is based on the following observation (Shinar et al., 2007) de-
rived from the results of a very large set of Monte Carlo simulations of a planar interception
endgame scenario. The estimator in these simulations was a Kalman filter augmented with
a shaping filter using an exponentially correlated acceleration (ECA) model (Singer, 1970).
Such a shaping filter has first order dynamics with two tuning parameters, the correlation
time of the maneuver τs and the (assumed) level of the process noise, expressed by its stan-
dard deviation σs = amax

E /Cs. The simulations used a differential game based guidance
law DGL/1 and a set of parameters that guarantee, in the ideal case of perfect information
and without an estimator in the guidance loop, zero miss distances against all admissible
bounded target maneuvers. However, the simulation results for a large set of intercep-
tions, where the target performs in a short duration (4 sec) interception endgame randomly
changing bang-bang type evasive maneuvers, demonstrate a very different outcome.
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Figure 2: Average miss distance vs. switch moment

In Fig. 2, the homing performance, expressed by the average miss distance of a large
number of Monte Carlo simulations, is depicted as the function of the moment ϑsw of
the target maneuver direction change. In this example, tf = 4 s, τP = τE = 0.2 s,
amax
P = 200 m/s2, amax

E = 100 m/s2, τs = 0.4 s, Cs = 3. This figure shows that the
interception endgame can be divided into two regions of different homing performance by
a critical time-to-go ϑcr that serves as the boundary between the regions of small and large
miss distances. In this example, ϑcr = 1.4 s. It is seen that that small miss distances can
be achieved only if the direction change of the target acceleration occurs in the early part
of the endgame (for ϑsw > ϑcr). In this case, sufficient time remains for the estimated
acceleration to converge to its true quasi-steady value. The Kalman filter design minimizes
the variance of the converged estimation error and the guidance law receives soon enough
almost correct values of the zero-effort miss distance for achieving good homing precision.
If the target acceleration change occurs later, the combination of the same estimator with
the same guidance law fails to provide satisfactory results because of the estimation delay.

This observation suggests the following estimation scheme which (i) assumes that the
direction switch in the target maneuver can be detected sufficiently fast and (ii) utilizes
the idea of a ”tuned” estimator Shinar et al. (2007), expecting that the switch occurs at
some prescribed moment. The bank of the estimators, working in parallel, consists of an
untuned filter F0 and a set of filters F1, ...,Fk, tuned to the moments ϑ1, ..., ϑk ∈ [0, ϑcr],
respectively. If the direction switch in the target maneuver was detected on at ϑd ∈ [ϑcr, tf ],
then the estimates x̂1, x̂2 and x̂4 in (20) – (21) are obtained from F0. If the switch was
detected at ϑd ∈ [0, ϑcr], these estimates are taken from the estimator Fi for i = min{m :
ϑm ≥ ϑd}.

For the sake of completeness, we reproduce the results, obtained by using the logic
based algorithm, which were reported by Shinar et al. (2007) and by Shinar and Turetsky
(2014). The best results (the 95% value of the accumulated miss distance distribution
equals 35.5 cm (Shinar and Turetsky, 2014)) were obtained for the system parameters of
Fig. 2 and for ϑcr = 1.1 s, one (k = 1) filter, tuned for ϑ1 = 0.8 s, τs = 0.4 s, Cs = 0.5
for both untuned and tuned filters F0 and F1.

In conclusion of this section, we need to emphasize that the successful performance
of the logic based algorithm, reported previously, is subject to a sufficiently fast switch
detection. The objective of this paper is to present a novel statistical switch detection
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Figure 3: Miss distance cumulative distribution

algorithm.

3. Switch detection algorithm

3.1 Discrete time model

We consider a discrete analog of the engagement model described in Section 2.1. Let
us divide the interval [0, tf ] into N equal subintervals by the points t0, t1, . . . , tN , where
tn = n∆t, n = 0, . . . , N . Consider the discrete-time dynamical system

Xn+1 = AXn + bun + cvn (22)

yn = DnXn + σξn, (23)

where Xn = (x1(tn), . . . , x4(tn))
T is the state vector, un = u(tn) ∈ R and vn = v(tn) ∈

R are the pursuer and evader controls, yn = λ(tn) ∈ R is the observed output, σ is
a standard deviation of the line-of-sight angle measurement error. We assume that ξn,
n = 1, 2, . . . , N , is a sequence of independent standard normal random variables. Due to
the small angles assumption,

x1(t) ≈ λ(t)r(t), (24)

where r(t) is the current distance between the pursuer and the evader. Thus, by using the
Euler discretization of (1) and due to (19) and (24), the matrices and vectors in (22) – (23)
are

A =


1 ∆t 0 0
0 1 ∆t −∆t
0 0 1−∆t/τe 0
0 0 0 1−∆t/τp

 , (25)

b = (0, 0, 0,∆tamax
p /τp)

T , (26)

c = (0, 0,∆tamax
e /τe, 0)

T , (27)

Dn = (1/r(tn), 0, 0, 0). (28)
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Our goal is to detect the presence of a switch in the evader control sequence vn as
quickly as possible. More formally, if the evader control is given by the bang-bang single
switch function

vn =


1, n ≤ nsw,

−1, n > nsw,
(29)

for some unknown switch moment nsw ∈ {1, 2, . . . , N} then we want to detect the switch
nsw as quickly as possible on the basis of observations y1, y2, . . . , yN from (23), where N
is a fixed observation horizon.

3.2 Detection problem statement

We rewrite the model in the following equivalent form. Iterating (22) – (23) we have for
any n = 1, . . . , N

yn = DnA
nX0 +Dn

n−1∑
m=0

An−m−1cvm

+Dn

n−1∑
m=0

An−m−1bum + σξn. (30)

Denote

ζn , yn −DnA
nX0 −Dn

n−1∑
m=0

An−m−1bum

hm,n , DnA
n−m−1c;

then (30) takes form

ζn =

n−1∑
m=0

hm,nvm + σξn, n = 1, . . . , N. (31)

Since pursuer control un and all parameters involved are known, ζn can be computed from
the observations y1, . . . , yn.

Let us define ζ = (ζ1, . . . , ζN )T , v = (v0, . . . , vN−1)
T , ξ = (ξ1, . . . , ξN )T and

H =


h0,1 0 0 · · · 0
h0,2 h1,2 0 · · · 0

...
...

...
...

...
h0,N h1,N h2,N · · · hN−1,N

 .
With this notation (31) takes the form

ζ = Hv + σξ, ξ ∼ NN (0, I), (32)

where Nk(µ,Σ) denotes a multivariate normal distribution with k-dimensional mean vec-
tor and k × k covariance matrix Σ. For any n ∈ {1, . . . , N}, let us denote ζ(n) =
(ζ1, . . . , ζn)

T , ξ(n) = (ξ1, . . . , ξn)
T ∼ Nn(0, I), v(n) , (v0, . . . , vn−1)

T , and let H(n)
be the n×N matrix comprised of the first n rows of matrix H . Then, due to (32), at time
instance n we observe

ζ(n) = H(n)v + σξ(n), n = 1, . . . , N. (33)
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Note that by definition of H , at time instance n only n first coordinates of v affect the
output even though vector v is N–dimensional.

From now on we focus on the model (33). In terms of this model, we observe sequen-
tially vectors ζ(n) ∈ Rn, n = 1, . . . , N . For k = 1, . . . , N denote

g(k) , (1, . . . , 1︸ ︷︷ ︸
k

,−1, . . . ,−1) ∈ RN . (34)

Then the absence of the switch corresponds to v = g(N) while the presence of the switch at
time instance k means that v = g(k). Thus, the switch detection problem can be formulated
as the problem of sequential testing the hypotheses

Π0 : v = g(N) against Π1 : v = g(k), k ∈ {1, . . . , N − 1}

using observations ζ(1), ζ(2), . . . , ζ(n) from (33).
By a sequential switch detector we mean a pair (ψ, ν) consisting of

• a sequence of decision functions ψ = {ψn}, where ψn ∈ {0, 1} is a random variable
depending on {ζ(1), . . . , ζ(n)} only, n = 1, . . . , N ;

• the corresponding stopping time

ν = min{n ∈ (1, . . . , N) : ψn = 1}, (35)

where the event {ν = n} = {ψ1 = 0, . . . , ψn−1 = 0, ψn = 1} corresponds to
detection of the switch after observing ζ(1), . . . , ζ(n).

The performance of a detection procedure is determined by the detection delay subject
to a constraint on the probability of false alarm. In particular, we require that for every n
the probability that decision function ψn raises false alarm is less than α, i.e.

max
n=1,...,N

P0{ψ̂n = 1} ≤ α, (36)

where P0 stands for the probability measure of the observations ζ(1), ζ(2), . . . under the
hypothesis that there is no switch. In the area of sequential change–point detection the
constraint (36) was advocated by Brodsky and Darkhovsky (1993). This is also closely
related to the probability of “false alarm per time unit” considered in Lai (1995) and Lai
(1998). If the switch occurs at time instance k, the detection delay of procedure (ψ, ν) is
(ν−k)+. We will be interested in distribution of this random variable under the probability
measure Pk of observations when the switch occurs at k.

3.3 Detection procedure and its properties

The switch detection algorithm, developed in this section, is based on the idea of combin-
ing pairwise tests of hypothesis Π0 : v = g(N) (absence of switch) against alternatives
Π1,k : v = g(k), k = 1, . . . , N − 1 (switch occurs at time instance k). We refer to Gold-
enshluger et al. (2013) for a general convex–optimization–based framework for solution of
such testing problems.

Note that for any n = 1, . . . , N the observation vector ζ(n) is multivariate normal
with mean z0(n) := H(n)g(N) and covariance matrix σ2In under Π0, and multivariate
normal with mean z1,k(n) = H(n)g(k) and covariance matrix σ2In under the alternative
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hypothesis Π1,k. The likelihood ratio test of Π0 against Π1,k on the basis of observation
ζ(n) rejects Π0 for large values of statistic

Tk(n) =
[z0(n)− z1,k(n)]

T [z0(n)− ζ(n)]

ρk(n)
,

where ρk(n) = ∥z0(n)−z1,k(n)∥. Specifically, according to the Neyman–Pearson lemma,
the test of size α ∈ (0, 1) with the minimal second type error probability rejects Π0 if

Tk(n) ≥ σQ(α), (37)

where Q(·) is the Gaussian quantile function defined by relation

1√
2π

∫
Q(α)

e−t2/2dt = α, α ∈ (0, 1).

In our detection procedure, we combine tests of type (37) for possible switch locations,
which results in the sequence of the decision functions

ψ̂n =


1, max

k=1,...,n
Tk(n) ≥ σQ(α/N),

0, otherwise

(38)

together with the associated stopping time

ν̂ = min{n ∈ (1, . . . , N) : ψ̂n = 1}. (39)

The choice of the threshold σQ(α/N) in (38) guarantees that the procedure (ψ̂, ν̂)
satisfies (36). In addition, the following “oracle” property on the detection delay of (ψ̂, ν̂)
holds. Let β ∈ (0, 1) be fixed and consider all detectors with the probability of the false
alarm per time unit ≤ α, see (36). If the switch occurs at time instance k then in order
to detect this change with the second type error probability ≤ β any procedure (ψ, n̂sw)
requires at least

n∗k(σ, β) , min
{
n : ρk(n) ≥ σ[Q(α) +Q(β)]

}
, (40)

observations, yielding the oracle detection delay n∗k(σ, β). In other words, for any detection
procedure (ψ, ν) satisfying (36)

Pk

{
(ν − k)+ ≥ n∗k(σ, β)

}
≥ β, ∀k, (41)

where Pk stands for the probability measure of observations when the switch occurs at k.
On the other hand, for the detection procedure (38)–(39), it is shown in Goldenshluger

et al. (2013) that
Pk

{
(ν̂ − k)+ ≥ n∗k(γNσ, β)

}
≤ β, ∀k, (42)

where γN , Q(α/N)/Q(α).

Remark 1 The inequalities (41) and (42) can be interpreted as follows: if the noise level

σ were inflated by the factor γN = Q(α/N)/Q(α) ≍
√
lnN then there would be no pro-

cedure with better detection abilities than those of (38)–(39). The factor γN characterizes

non–optimality of this detection procedure.
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Remark 2 The inequalities (41) and (42) provide upper and lower bounds on the (1−β)–

quantile of the distribution of the detection delay. Specifically, let qk(1 − β) stand for the

(1− β)–quantile of the distribution of (ν̂ − k)+ under Pk; then (41) and (42) imply that

n∗k(σ, β) ≤ qk(1− β) ≤ n∗k(γNσ, β), ∀k. (43)

3.4 Numerical example

In this example, the system parameters are as in Fig. 3; in the detection algorithm, N =
500. In the inverse time, we denote ∆ϑ = ∆t = tf/N , the actual switch moment
ϑsw = tf − nsw∆t. In the simulation, for each switch moment ϑisw = i∆ϑ (i = 0, . . . , N ,
∆ϑ = tf/N = 0.04 s), NMC = 100 Monte Carlo runs are carried out for different re-
alizations of the measurement noise ξ. The pursuer’s control is u = sign(z). For each
ϑisw in each simulation run j = 1, . . . , NMC we apply the detection procedure described
in Sections 3.1–3.3. If a run does not result in false alarm we record the stopping times
(switch moment estimates) ϑ̂jisw, and compute corresponding detection delays

∆td(ϑ̂
ji
sw) = (ϑ̂jisw − ϑisw)+.

In Fig. 4, the empirical 80%–percentile ∆t80d of ∆td(ϑ̂sw) for α = 0.01, β = 0.2,
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Figure 4: Detection delay

along with its lower bounds ∆t∗d(ϑ
i
sw) , n∗i (σ, β)∆t and upper bounds ∆t∗d(ϑ

i
sw) ,

n∗i (γNσ, β)∆t, are shown as functions of an actual switch moment ϑisw. This figure il-
lustrates the inequality (43). In Fig. 5, the detection delay, averaged over all runs with no
false alarm, is shown as a function of an actual switch moment ϑsw for two values of α.
It is seen that five times decreasing α does not lead to a dramatic growth of the average
detection delay.

The actual false alarms rate, found in Monte Carlo simulations, i.e. the percentage of
the cases where ϑ̂jisw < ϑisw, is shown in Fig. 6. It is seen that the actual false alarms
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rate decreases by decreasing false alarm probability α per time unit, used in the algorithm,
while the average detection delay increases slightly (see Fig. 5).

The varying detection delay was approximated by a smooth curve and used in the sim-
ulation in order to obtain the miss distance distribution. In Fig. 7, this distribution is
compared with that shown in Fig. 3 in dashed line. It is seen that using the varying de-
tection delay, corresponding to the proposed detection algorithm, does not deteriorate the
results, in comparison with a small constant detection delay, which is not feasible by any
detection procedure.
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4. Conclusions

In the paper, a novel switch detection algorithm is presented. In general, this algorithm,
constructed for a linear dynamics/measurement model, is based on a statistical hypothesis
test and can be transformed to a convex optimization problem. The algorithm guarantees
that the false alarm probability per time unit is not larger than a given parameter α. Sim-
ulations show the actual false alarm rate (the probability of ”detecting” the switch before
the actual switch moment) is proportional to α. The average detection delay increases for
decreasing α.

In this paper, this statistical algorithm is applied to detecting the moment of a target
maneuver direction change. It is shown that the proposed algorithm can be successfully
incorporated into the logic based guidance scheme, where the control input is obtained as
the output of the estimator, chosen based on the target switch moment. Previously, the
advantage of the logic based approach was demonstrated by assuming a constant detection
delay which is not feasible by any detection procedure. The simulation shows that by ap-
proximating the actual delay of the algorithm, the interception results are not deteriorated.
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