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Abstract
Count response data situations arise often in practice, and are typically modeled using a generalized
linear model with a Poisson response distribution. A Poisson distribution imposes the assumption
that the data are observed on the interval of all non-negative integers. However, practical applica-
tions often involve restrictions that reduce the domain of possible response values. Such data are
referred to as “truncated” count responses. While zero-truncated data are well-recognized and often
accounted for, little attention has been paid to general left-truncation, right-truncation, or double-
truncation of counts. It is useful to be aware of the consequences of misspecification of a model
such that truncation of any type is ignored. In this paper we compare model performance when
truncation is not accounted for, when truncation is partially accounted for, and when truncation is
completely accounted for. All three cases of left-truncation, right-truncation, and double-truncation
are investigated.
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1. INTRODUCTION

Count response data are commonly encountered in statistical applications (Cameron
and Trivedi, 2001), and consequently have received a significant amount of attention in
the generalized linear model literature (Cameron and Sohansson, 1997), (Cameron and
Trivredi, 1998) and (Cameron and Trivedi, 2001). Many practical applications involving
count data have restricted domains of observable counts. For example, studies of hospital
length of stay typically sample current or recent hospital patients, eliminating the possibility
of an observation of zero days. Studies of the number of occurrences of some event per
month or per year, for example usage of public transportation, exclude the possibility of
more events than days considered. In both cases the count data are said to be truncated.

Left-truncated count data occur when all counts must be greater than a given value,
or Yi ≥ l for some count response variables Yi and lower-bound l. Right-truncated data
occur when all counts must be less than a given value, or Yi ≤ r for some upper bound
r. Double-truncated count data occur when all counts are restricted to a given interval, or
l ≤ Yi ≤ r (Moore, 1954), (Creel and Loomis, 1990), (Brannas, 1992) and (Cameron and
Trivedi, 2001). The case of left-truncated count data has received considerable attention in
the literature, specifically with respect to the special case of zero-truncated counts (Grogger
and Carson, 1991) and (Winkelmann, 2008). It is well documented that applying a model
that does not account for zero-truncation can lead to the effects of overdispersion (Gurmu,
1991). Left-truncation at zero has been known as the most common form of truncation
(Winkelmann, 2008).

There has been less attention paid to the cases of right-truncation (Cameron and Trivedi,
2001) and double-truncation (Cohen, 1954) for count responses. One possible explanation
is that left-truncation is simply more common than right-truncation. In this paper we thor-
oughly characterize the effects of ignoring truncation of any type within a count regression
model. In section 2 we describe the models and estimation methods of all three types of
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truncation. In section 3 we provide a simulation study to empirically evaluate the effects
of ignoring each type of truncation or of partially ignoring double-truncation within count
regression models, considering parameter estimate bias, standard errors, and hypothesis
testing power and type I error rates. Some concluding remarks are made in section 4.

2. POISSON REGRESSION MODELS

2.1 Ordinary Poisson Regression Models

The Poisson regression model is the standard approach to count data analysis. The
Poisson regression model is derived from the Poisson distribution by parameterizing the
relation between the mean parameter λ and covariates x (Cameron and Trivedi, 2001).
Consider a sample of n responses which can be treated as realizations of independent Pois-
son random variables, Y1, ..., Yn, with Yi ∼ Poi(λi), and suppose that the mean λi depends
on a vector of explanatory variables xi. The standard assumption is to use the exponential
mean parametrization,

λi = exp(xT
i β),

where i = 1, 2, ..., n. The distribution of Yi will be conditional on the regressors x, so
the conditional distribution is Yi|xi ∼iid Poi(λi), and the probability mass function is

f(Yi|λi) =
e−λiλyi

i

yi!
, (1)

where yi = 0, 1, 2, . . .. The conditional mean and variance of the distribution are given
by

λ(Xi) = E[Yi|Xi] = V ar(Yi|Xi) = exp(xT
i β).

The coefficients β can be interpreted as average proportionate change in E[Yi|xi] for
a unit change in xi, (Grogger and Carson, 1991). Using Equation (1) and the assumption
that the responses (Yi|xi) are independent, the likelihood function is

L(β; yi) =
n∏

i=1

eλiλyi
i

yi!
.

Thus, the log-likelihood function is

l(β;yi) =
n∑

i=1

(yi lnλi − λi − ln(yi!))

=
n∑

i=1

(
yix

T
i β − exp(xT

i β)− ln(yi)!
)
. (2)

To estimate the parameters using the maximum likelihood estimation (MLE) method,
we take derivatives of Equation (2) with respect to β. Setting the derivatives to zero, the
first order maximum likelihood condition is

n∑
i=1

(
yi − exp(xT

i β)
)
xi = 0.

The advantages of using MLE are that maximum likelihood provides consistent esti-
mators, are asymptotically normally distributed, and are asymptotically minimum variance
unbiased estimators as the sample size increases. The most common hypothesis testing
follows by using Wald tests Greene (2010).
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2.2 Truncated Poisson Regression Models

When count data are observed over only part of the range of the response variable,
then the data are called truncated count data (Cameron and Trivedi, 2001). Examples of
truncated data arise in many contexts. The length of stay at a hospital is an example of
zero-truncated data or generally left-truncated data, as all patients included will necessarily
stay at the hospital for at least one day. Modeling the time between events reported through
follow-back are right-truncated by the amount of time requested in the follow-back pro-
cess. Double-truncation would occur when modeling monthly hospital length of stay, as
the number of days per month provides an upper limit on counts. As another example of
double-truncated data, observations on the number of items purchased when there is a limit
per customer would exclude the zero class (since customers who do not buy the item will
not be identified), and would exclude observations above the limit.

2.3 Left-Truncated Poisson Model at k = l

Count data for which Yi < l counts cannot be observed are called left-truncated count
data at k = l. For the Poisson probability function, a model for counts truncated on the left
at the value k = l can be posited as

Pr(Yi = yi|Yi ≥ l) =
λyi
i[

eλi −
∑l−1

k=0
λk
i
k!

]
yi!

.

In the case of the left-truncated Poisson model, the mean and variance of the distribution
are readily shown to be

E[Yi|xi, Yi ≥ l] =
λie

−λi

1−
∑l−1

k=0 e
−λi

λk
i
k!

∞∑
yi=l

λyi−1
i

(yi − 1)!
, (3)

and

V ar(Yi|Xi, Yi ≥ l) =
λie

−λi

1− Fp(l− 1)

[
λi

∞∑
yi=l+1

λ
yi−2
i

(yi − 2)!
+

∞∑
yi=l

λ
yi−1
i

(yi − 1)!

]
−

[
λie

−λi

[1− Fp(l− 1)]

∞∑
yi=l

λ
yi−1
i

(yi − 1)

]2

, (4)

where Fp(l− 1) indicates the CDF of the ordinary Poisson distribution, evaluated from
0 to l − 1. Equations (3) and (4) show that the mean of the left-truncated random variable
exceeds the corresponding mean of the untruncated distribution model, whereas the vari-
ance of left-truncated random variable is smaller than the corresponding variance of the
untruncated distribution model. (Cameron and Trivredi, 1998) expressed the relationship
between the truncated mean and untruncated distribution mean as

E[yi|yi ≥ l] = E[yi] + δi,

where δi > 0 is the difference between the truncated and untruncated means. The joint
likelihood and log-likelihood functions for the left-truncated Poisson model parameters are

L(β; yi) =
m∏
i=1

λyi
i

yi!

[
1

eλi −
∑l−1

k=0 λ
k
i

]
,

and

l(β; yi) =
m∑
i=1

[
yix

T
i β − ln(yi!)− ln

(
eλi −

l−1∑
k=0

λk
i

k!

)]
. (5)
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The left-truncated Poisson maximum likelihood estimators (LTMLE’s) can be obtained
from solving the first order condition of maximum likelihood, obtained from Equation (5),

m∑
i=1

xih

yi − ex
T
i βee

xT
i

β

−
∑l−1

k=0
ke

xT
i

βk

k!

ee
xT
i

β

−
∑l−1

k=0
e
xT
i

βk

k!

 = 0,

with solutions obtained through nonlinear optimization.

2.3.1 Right-Truncated Poisson Model at k = r

Count data for which Yi > r counts cannot be observed are called right-truncated count
data at k = r. Estimating a Poisson regression model without considering this truncation
will cause biased estimates of the parameter vector β and erroneous inferences will be
drawn (Liu and Pitt, 2012). For the Poisson probability function, a model for count data
truncated on the right at k = r can be posited as

Pr(Yi = yi|Yi ≤ r) =
λyi
i(∑r

k=0
λk
i
k!

)
yi!

,

where i = 1, . . . ,m. In the case of the right-truncated Poisson model, the mean and
variance of the distribution are readily shown to be

E[Yi = yi|xi, yi ≤ r] =
λi∑r

k=0
λk
i
k!

r∑
yi=1

λyi−1
i

(yi − 1)!
, (6)

and

V ar(Yi|Xi, Yi ≤ r) =
1∑r

k=0

λk
i

k!

[
λ2
i

r∑
yi=2

λ
yi−2
i

(yi − 2)!
+ λi

r∑
yi=1

λ
yi−1
i

(yi − 1)!

]
−

[
λi∑r

k=0

λk
i

k!

r∑
yi=1

λ
yi−1
i

(yi − 1)!

]2

. (7)

It can be seen from Equations (6) and (7) that the right-truncated Poisson distribu-
tion results in a smaller mean and variance compared to the standard Poisson distribution
(Cameron and Trivedi, 2001). The joint likelihood and log-likelihood functions for the
right-truncated Poisson model parameters are

L(β; yi) =
m∏
i=1

λyi
i(∑r

k=0
λk
i
k!

)
yi!

,

and

l(β; yi) =
m∑
i=1

[
yix

T
i β − ln(yi!)− ln

(
r∑

k=0

ex
T
i βk

k!

)]
.

To obtain the right-truncated Poisson maximum likelihood estimators (RTMLE’s), solve
the first order condition of maximum likelihood for β,

m∑
i=1

xih

yi − ∑r
k=0

ke
xT
i

βk

k!∑r
k=0

e
xT
i

βk

k!

 = 0,

with solutions obtained through nonlinear optimization.
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2.4 Double-Truncated Poisson Regression Models

Double-truncated Poisson data are a combination of the left-truncated and right-truncated
Poisson data. From (Cohen, 1954), the probability mass function for the double-truncated
Poisson random variable y is given by

Pr(Yi = yi|xi, l ≤ yi ≤ r) =
λyi
i

yi!
∑r

k=l
λk
i
k!

, (8)

where λi = exp(xT
i β), and l and r are the lower end and the upper end, respectively, of

the interval in which each Yi can be observed. In the case of the double-truncated Poisson
model, the mean and variance of the distribution are readily shown to be

E[Yi = yi|Xi, l ≤ yi ≤ r] =

∑r
k=l

λk
i

(k−1)!∑r
k=l

λk
i
k!

,

and

V ar(Yi = yi|Xi, l ≤ yi ≤ r) =

∑r
k=l

kλk
i

(k−1)!∑r
k=l

λk
i
k!

−

∑r
k=l

λk
i

(k−1)!∑r
k=l

λk
i
k!


2

.

While the regular Poisson model typically encounters difficulty due to the assumed
equality of mean and variance, the mean and variance of the doubly-truncated Poisson
model are characteristic of underdispersion where the variance is less than the mean. Test-
ing for overdispersion must now take this assumption into account (Gurmu and Trivedi,
1992). This assumed inequality also provides an intuitive reason as to why fitting a regular
Poisson model to truncated data is a fundamental misspecification. The regular Poisson
assumes greater variance than should be expected. The joint likelihood and log-likelihood
functions for the double-truncated Poisson model parameters are

L(β; yi) =
m∏
i=1

λyi
i

yi!
∑r

k=l
λk
i
k!

,

and

l(β; yi) =
m∑
i=1

[
yix

T
i β − ln(yi!)− ln

(
r∑

k=l

λk
i

k!

)]
. (9)

The double-truncated Poisson maximum likelihood estimators (DTMLE’s) are obtained
by solving the following first order condition of Equation (9),

m∑
i=1

xih

yi − ∑r
k=l

ke
xT
i

βk

k!∑r
k=l

e
xT
i

βk

k!

 = 0,

with solutions obtained through nonlinear optimization.
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2.5 Model Misspecification

Misspecification of the distribution of truncated data implies that both the first and sec-
ond conditional moments will also be misspecified. Cameron and Trivedi (1998) verified
that misspecification of the response distribution will result in inconsistent estimators of
the mean parameters β. Liu and Pitt (2012) found that ignoring the left-truncation in count
data leads to bias in the parameter estimates. Similarly, Kalbfleisch and Lawles (1991)
considered issues with modeling right-truncated data. Baud and Frachot (2002) and also
Creel and Loomis (1990) considered truncated modeling in general, and showed that ignor-
ing truncation in general leads to biased estimators, with the bias higher than expected. In
this study the purpose is to empirically investigate the consequences of misspecifying the
response distribution for truncated data of all types.

3. SIMULATIONS

In this section, we present a simulation study to evaluate the impact of incorrectly
specifying Poisson regression models in the context of truncated count data. The perfor-
mances of each of the ordinary Poisson regression model (PRM), the left-truncated Poisson
regression model (LTPRM), the right-truncated Poisson regression model (RTPRM), and
the double-truncated Poisson regression model (DTPRM) are examined based on bias and
standard errors of parameter estimates, and on the power and Type I error rates of Wald
hypothesis tests.

The simulation consists of the following process. Independent variables are randomly
generated according to a uniform (0, 3) distribution. Sample sizes of 30, 50, 100, 150, and
200 will be considered, and 10000 replicates will be used for each condition. Results pre-
sented for all models include average of parameter estimates, empirical parameter estimate
standard errors, proportion correctly detected significant as an estimate of power, and pro-
portion incorrectly detected significant as an estimate of type I error rate. All hypothesis
tests are performed using Wald statistics for individual parameters.

First, left-truncated responses will be simulated using a single predictor, with responses
truncated at l = 2. Two models will be fit using these data: an appropriate LTPRM and a
PRM ignoring the left-truncation in the response. Second, right-truncated responses will be
simulated using a single predictor, with responses truncated at r = 8. Two models will be
fit using these data: an appropriate RTPRM and a PRM ignoring the right-truncation in the
response. Finally, double-truncated responses will be simulated using a single predictor,
with responses truncated according to the interval l = 2 and r = 8. Four models will be fit
using these data: an appropriate DTPRM, a LTPRM that ignores the right-truncation in the
response, a RTPRM that ignores the left-truncation in the response, and a PRM that ignores
all truncation in the response. Each model will include two independent variables, one to
evaluate power and the other to evaluate type I error rate.

3.1 Simulation Results for Left-Truncated Responses

In this section, results are presented for models fit to the left-truncated responses, where
data were simulated with true values β1 = 0.4 and β2 = 0. Table 1 shows the results for
both models. For the LTPRM with appropriately defined left-truncation, the bias for both
parameter estimates decreases with sample size, and power increases with sample size.
Type I error rates remain close to the nominal value of 0.05, with some decrease for large
samples.

For the PRM ignoring the left-truncation in the data, the power increases with sample
size, but at a lower rate than for the correctly specified model. Comparisons of model
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power are displayed in Figure 1. The bias in the estimate for the significant parameter
remains regardless of sample size. The bias in the estimate for the non-significant parameter
decreases, but the type I error rate remains consistently very close to 0, suggesting the
hypothesis tests may be conservative. Comparisons of model type I error rates are displayed
in Figure 2. Overall, misspecifying a PRM such that left-truncation is ignored results in
biased parameter estimates and Type I error rates lower than the nominal level.

Table 1: Models for Left-Truncated Responses
Sample
Size

Parameter
LTPRM PRM

Estimate S.E. Bias Power Type I Error Estimate S.E. Bias Power Type I Error
30 β1 = 0.4 0.4165 0.2132 0.0165 0.5131 0.1677 0.1281 -0.2323 0.171

β2 = 0 -0.0027 0.2006 -0.0027 0.0417 0.0005 0.1274 0.0005 0.0045
50 β1 = 0.4 0.4048 0.1585 0.0048 0.7413 0.1689 0.0974 -0.2311 0.3766

β2 = 0 -0.0032 0.1488 -0.0032 0.0476 9.4e-05 0.0967 9.4e-05 0.0027
100 β1 = 0.4 0.4023 0.1090 0.0023 0.996 0.1698 0.0678 -0.2302 0.7884

β2 = 0 -0.0016 0.1022 -0.0016 0.0498 0.0002 0.0673 0.0002 0.0032
150 β1 = 0.4 0.4028 0.0883 0.0028 0.996 0.1697 0.0551 -0.2303 0.9491

β2 = 0 -0.0008 0.0826 -0.0008 0.0478 0.0002 0.0547 0.0002 0.0029
200 β1 = 0.4 0.4007 0.0762 0.0007 0.9994 0.1693 0.0476 -0.2307 0.9906

β2 = 0 -0.0005 0.0713 -0.0005 0.0464 7.1e-05 0.0473 7.1e-05 0.0041

Figure 1: Power Comparisons, Left-
Truncated Responses

Figure 2: Type I Error Rate Comparisons,
Left-Truncated Responses

3.2 Simulation Results for Right-Truncated Responses

In this section, results are presented for models fit to the right-truncated responses,
where data were simulated with true values β1 = −0.18 and β2 = 0. Table 2 shows the
results for both models. For the RTPRM with appropriately defined right-truncation, the
bias in the estimate for the significant parameter decreases with increased sample size, the
power increases, and the type I error rate remains near the nominal level of 0.05. The bias
in the estimate for the non-significant parameter does not appear to change with sample
size, but remains negligible.

For the PRM ignoring the right-truncation in the data, the bias remains in the estimates
for both parameters, regardless of sample size. The power increases at a slightly lower rate
as compared to the appropriately defined model, with a comparison presented in Figure 3.
The type I error rate remains lower than the nominal level, with estimated values close to
.02. Comparisons of type I error rates are displayed in Figure 4. Overall, misspecifying a
PRM such that right-truncation is ignored results in biased parameter estimates and type I
error rates that are lower than expected. However, the effects do not appear to be as severe
as those observed when left-truncation is ignored.

JSM 2014 - Biometrics Section

460



Table 2: Models for Right-Truncated Responses
Sample
Size

Parameter
RTPRM PRM

Estimate S.E. Bias Power Type I Error Estimate S.E. Bias Power Type I Error
30 β1 = −0.18 -0.1874 0.1095 -0.0074 0.4014 -0.1259 0.0879 0.0541 0.2692

β2 = 0 -1.3e-05 0.1077 -1.3e-05 0.0453 -1.9e-05 0.0879 -1.9e-05 0.0195
50 β1 = −0.18 -0.1838 0.0824 -0.0038 0.6147 -0.1266 0.0669 0.0534 0.4719

β2 = 0 -0.0009 0.0813 -0.0009 0.0510 -0.0002 0.0666 -0.0002 0.0185
100 β1 = −0.18 -0.1824 0.0571 -0.0024 0.8969 -0.1262 0.0466 0.0538 0.8173

β2 = 0 -0.0003 0.0563 -0.0003 0.0464 0.0005 0.0465 0.0005 0.0177
150 β1 = −0.18 -0.1820 0.0463 -0.0020 0.9804 -0.1259 0.0378 0.0541 0.9478

β2 = 0 -0.0005 0.0457 -0.0005 0.0477 -1.9e-05 0.0377 -1.9e-05 0.0176
200 β1 = −0.18 -0.1811 0.0399 -0.0011 0.9961 -0.1259 0.0327 0.0541 0.9892

β2 = 0 0.0007 0.0394 0.0007 0.0484 -1.1e-05 0.0326 -1.1e-05 0.0167

Figure 3: Power Comparisons, Right-
Truncated Responses

Figure 4: Type I Error Rate Comparisons,
Right-Truncated Responses

3.3 Simulation Results for Double-Truncated Responses

In this section, results are presented for models fit to the double-truncated responses,
where data were simulated with true values β1 = 0.4 and β2 = 0. Table 3 shows the results
for all four models. For the DTPRM with appropriately defined double-truncation, the bias
for both parameter estimates decreases with sample size, and power increases with sample
size. Type I error rates remain close to the nominal value of 0.05.

For the LTPRM ignoring the right-truncation but accounting for the left-truncation in
the data, the bias appears to increase in magnitude in the estimates for the significant pa-
rameter, and remain in the estimates for the non-significant parameter. The power increases
with sample size and remains similar to the power for the correctly specified DTPRM.
Comparisons of power for all four models are displayed in Figure 5. The type I error rate
remains close to the nominal value of .05. Comparisons of type I error rates for all four
models are displayed in Figure 6.

For the RTPRM ignoring the left-truncation but accounting for the right-truncation in
the data, the bias in both parameter estimates remains, regardless of sample size. Power
increases with sample size, but at a lower rate than the DTPRM and the LTPRM. The type
I error rate is lower than the nominal level of 0.05, remaining close to 0. In fact, both the
power and type I error rate for the RTPRM are similar to those of the PRM.

For the PRM ignoring both the left and right-truncation in the data, the bias in both
parameter estimates remains regardless of sample size. Power increases with sample size,
but at a lower rate than seen in the correctly specified model. The type I error rate is lower
than the nominal level, with values remaining close to 0.
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Overall, fitting a LTPRM that ignores the right-truncation of double-truncated responses
results in biased parameter estimates, but has little effect on the power and type I error rates
of hypothesis tests. On the other hand, fitting either a RTPRM or a PRM that ignored the
left-truncation of double-truncated responses results in biased parameter estimates, lower
power and type I error rates that remain below the nominal error rate. It appears that failing
to account for left-truncation in count data is accompanied by more severe consequences
than failing to account for right-truncation in count data.

Table 3: Models for Double-Truncated Responses

Sample
Size

Parameter
DTPRM LTPRM RTPRM PRM

Estimate S.E. Bias Power Type I Error Estimate S.E. Bias Power Type I Error Estimate S.E. Bias Power Type I Error Estimate S.E. Bias Power Type I Error
30 β1 = 0.4 0.4165 0.2129 0.0165 0.4953 0.4003 0.2131 0.0003 0.4775 0.1746 0.1331 -0.2254 0.1712 0.1677 0.1281 -0.2323 0.1481

β2 = 0 0.0044 0.2065 0.0044 0.0440 -0.0010 0.2013 -0.0010 0.0397 -0.0008 0.1318 -0.0008 0.0025 0.0005 0.1274 0.0005 0.0029
50 β1 = 0.4 0.4048 0.1629 0.0048 0.7397 0.3974 0.1590 -0.0026 0.7275 0.1733 0.1006 -0.2267 0.3697 0.1689 0.0974 -0.2311 0.3557

β2 = 0 0.0017 0.1535 0.0017 0.0486 0.0015 0.1498 0.0015 0.045 -0.0011 0.0997 -0.0011 0.0037 9.4e-05 0.0967 9.4e-05 0.0038
100 β1 = 0.4 0.4028 0.1121 0.0023 0.9644 0.3946 0.1095 -0.0054 0.9597 0.1739 0.0701 -0.2261 0.7857 0.1698 0.0678 -0.2302 0.7539

β2 = 0 0.0013 0.1051 0.0013 0.0503 -0.0019 0.1027 -0.0019 0.0431 -0.0001 0.06946 -0.0001 0.0044 0.0002 0.0673 0.0002 0.0018
150 β1 = 0.4 0.4023 0.0907 0.0028 0.9945 0.3919 0.0886 -0.0081 0.9956 0.1727 0.0569 -0.2273 0.9427 0.1697 0.0551 -0.2303 0.9414

β2 = 0 0.0007 0.0849 0.00077 0.0480 -0.0003 0.0833 -0.0003 0.0459 -0.0004 0.0564 -0.0004 0.00345 0.0002 0.0547 0.0002 0.0027
200 β1 = 0.4 0.4007 0.0781 0.0007 0.9997 0.3927 0.0765 -0.0073 0.9994 0.1735 0.0491 -0.2268 0.9901 0.1693 0.0476 -0.2307 0.9899

β2 = 0 0.0003 0.0731 0.0003 0.0494 -0.0002 0.0717 -0.0002 0.0476 -0.0001 0.0487 -0.0001 0.0036 7.1e-05 0.0473 7.1e-05 0.0023

Figure 5: Power Comparisons, Double-
Truncated Responses

Figure 6: Type I Error Rate Comparisons,
Double-Truncated Responses

4. CONCLUSIONS

Count data are common in practice, and often observed counts are truncated on the left,
the right, or both. When count data are truncated it is important to properly account for
the truncation in any Poisson regression model fitted to the data. While it is common for
researchers to account for left-truncation in the specific context of zero-truncated counts,
there is a lack of discussion in the literature of general truncation. In this paper we have
presented the likelihood functions associated with each type of truncation along with the
accompanying maximum likelihood processes. We have discussed the issue of incorrectly
specifying a Poisson regression model such that truncation of some kind is ignored, and we
have presented a simulation study to examine the empirical results of failing to properly
account for truncation in count responses.

Ignoring truncation of any kind in a Poisson regression model results in biased param-
eter estimates and a reduction in power of hypothesis tests using Wald statistics. Power
is more noticeably affected when left-truncation is ignored than when right-truncation is
ignored. Similarly, type I error rates are more noticeably affected when left-truncation is
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ignored than when right-truncation is ignored. Specifically, when left-truncated count re-
sponses are fit with an ordinary Poisson regression model the type I error rate tends to be
close to 0, far below the nominal level.

For double-truncated count responses, the effects of failing to properly account for left-
truncation are more severe than the effects of failing to account for right-truncation. In fact,
it appears the performance of a Poisson regression model that accounts for left-truncation
but ignores right-truncation in double-truncated data is similar to the performance of an
appropriately defined double-truncated Poisson regression model. While some bias in pa-
rameter estimates remains, power remains high and the type I error rates are close to the
nominal level. Similarly, the performance of a model that accounts for right-truncation but
ignores left-truncation is poor, comparable to an ordinary Poisson regression model that
fails to account for any type of truncation. Bias remains in parameter estimates, power is
reduced and type I error rates remain close to 0. It is evident that left-truncation is the more
important data characteristic to account for.

This research addressed the issue of misspecifying the response distribution in Poisson
regression models by ignoring types of truncation. However, we did not address the issue
of specifying truncation according to an incorrect limit, or of specifying a distribution other
than the Poisson such as the Negative Binomial or overdispersed Poisson distributions. The
results of this study should be treated as a general warning against ignoring left-truncation
in count responses, even if the data re not simply truncated at zero. However, future studies
may consider specific effects of misspecifying the truncation limit or extending to general-
ized linear models other than the traditional Poisson model.
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