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Abstract
One problem of skew normal model is the difficulty in estimating the shape parameter, for which

the maximum likelihood estimate may be infinite when sample size is moderate. The existing
estimators suffer from large bias even for moderate size samples. In this paper, we proposed five
estimators of the shape parameter for a scalar skew normal model, either by bias correction method
or by solving a modified score equation. Simulation studies show that except bootstrap estimator,
the proposed estimators have smaller bias compared to those estimators in literature for small and
moderate samples.

Key Words: Bias-corrected estimators, bias prevention, scalar skew normal, score function, simu-
lations

1. Introduction

The skew normalY ∼ SN(µ, σ, λ) is a class of distributions that includes the normal
distribution (λ = 0) as a special case. Its density function is as follows

f(y; λ, µ, σ) =
2
σ

φ

(
y − µ

σ

)
Φ

(
λ · y − µ

σ

)
,

whereφ andΦ are theN(0, 1) density and distribution function, parametersµ, σ andλ
regulate location, scale and shape respectively. The distribution is positively or negatively
asymmetric, in agreement with the sign ofλ.

Azzalini (1985, 1986) introduced scalar skew normal problem and derived properties of
the scalar skew normal density function. Generalization to the multivariate case are given
by Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999), and Azzalini (2005,
2011). The skewt family has been investigated by Branco and Dey (2001), Azzalini and
Capitanio (2003), Gupta (2003) and Lagos-Álvarez and Jiḿenez-Gamero (2012). Based on
the method introduced by Firth (1993), Sartori (2006) investigated bias prevention of the
maximum likelihood estimate (MLE) for scalar skew normal andt distribution. If the MLE
is subject to a positive biasb(λ) (true for skew normal), Firth (1993) suggested shifting the
score functionU(λ) downward by an amount ofU ′(λ)b(λ) at each point ofλ (illustrated
in Figure 1) to derive a modified score functionU(λ) + U ′(λ)b(λ). It is proved by Firth
(1993) that bias of the MLE could be reduced by modifying the score function.

Bayes and Branco (2007) developed a simple closed form for the bias correction factor
suggested by Sartori (2006) through a rescaled logistic distribution. Azzalini and Arellano-
Valle (2013) formulated a general frame work for penalization of the log-likelihood func-
tion and proposed maximum penalized likelihood estimate (MPLE) to correct some unde-
sirable behavior of the MLE. Genton (2004) gives a general overview of the skew distribu-
tions and their applications.

The existing work of skew normal andt distribution mainly include the bias prevention
estimators: Sartori (2006)’s estimator (callλ̃1), Bayes and Branco (2007)’s estimator (call
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Figure 1: Modifications of the unbiased score function.

λ̃2) and Azzalini and Arellano-Valle (2013)’s estimator (callλ̃3). With a moderate sample
n = 20, and shape parameterλ = 10, the probability that all observations are nonnegative
reaches 52.5%, for which MLE= ∞ and bias is∞ as well. For such situations,λ̃1, λ̃2 and
λ̃3 provided finite solutions for the shape parameterλ, but with large bias. For example,
simulations from Sartori (2006) show that under the setting withλ = 10, n = 20, bias
of λ̃1 reached -5.897. Similar results can be found fromλ̃2 and λ̃3. The bias prevention
estimators work well only for large samples.

In this paper, we proposed five estimators for the shape parameterλ from different per-
spectives: bias correction approach and score function modification approach. This paper
is organized as follows. In Section 2, we give a background review of Sartori (2006)’s bias
prevention estimator, Bayes and Branco (2007)’s approximation estimator and Azzalini and
Arellano-Valle (2013)’s MPLE. In Section 3, we propose five estimators. In Section 4, we
perform simulation studies and compare the proposed estimators with those reviewed in
Section 2. Section 5 gives conclusions.

2. Background

LetZ1, Z2, · · · , Zn be a random sample fromSN(0, 1, λ) and letl(λ) be the log-likelihood
function denoted as

l(λ) = constant+
n∑

i=1

log{2Φ(λZi)}.

Let U(λ) be the score function ofl(λ),

U(λ) =
n∑

i=1

φ(λZi)
Φ(λZi)

Zi.

U ′(λ) can be derived as follows,

U ′(λ) = −λ
n∑

i=1

φ(λZi)
Φ(λZi)

Z3
i −

n∑

i=1

(
φ(λZi)
Φ(λZi)

)2

Z2
i .
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Based on Firth (1993), Sartori (2006) modified the usual score equationU(λ) = 0 by
adding an order O(1) termM(λ) = E{U ′(λ)b(λ)} (the expected value is used to remove
the first-order bias of̂λ), so that the modified score equation is

U(λ) + M(λ) = 0. (1)

Sartori’s estimator̃λ1 is the solution of Equation (1) after replacingM(λ) by M1(λ) as
follows,

M1(λ) = −λ

2
· a42(λ)
a22(λ)

,

whereakh(λ) = E

{
Zk

(
φ(λZ)
Φ(λZ)

)h
}

, and the expected values need to be numerically

computed.
Bayes and Branco (2007)’s estimator is the solution of Equation (1) after replacing

M(λ) by

M2(λ) = −3λ

2

(
1 +

8λ2

π2

)−1

,

whereM2(λ) is a simple closed form aprroximation ofM1(λ) using a rescaled logistic
distribution.

Azzalini and Arellano-Valle (2013) proposed MPLẼλ3. They replaceM(λ) in Equa-
tion (1) by

M3(λ) = −2C1C2
λ

1 + C2λ2
, (2)

whereC1 = 0.875913, C2 = 0.856250. It is easy to see thatM1(λ) ≈ M2(λ) ≈ M3(λ) =
O(λ−1). Hence, the finite solution ofλ exists for all of the three methods. It can be shown
that forλ̃1, λ̃2 andλ̃3, E(λ̃i − λ) = O(n−2).

3. Bias reduction techniques for scalar skew normal

All the three estimators̃λ1, λ̃2 andλ̃3 suffer from large bias when sample size is small or
moderate. One intuitive way is to estimate the bias and subtract the bias from the estimator.
Also notice the systematic negative bias of the three estimators from simulation studies,
we propose adjusting the score function to offset the systematic trend. We also examined
jackknife and bootstrap bias correction methods for comparison purpose.

3.1 Bias correction for MLE and λ̃3

For a general MLÊλ, it is well known that̂λ is consistent with asymptotic distribution
√

n(λ̂− λ) d→ N(0, i(λ)−1), n →∞,

wherei(λ) is the expected Fisher information for a single observation. Consider the second
order expression for the mean of the limiting distribution ofλ̂,

0 = U(λ̂) = U(λ) + (λ̂− λ)U ′(λ) +
1
2
(λ̂− λ)2U ′′(λ) + Op(n−

1
2 ). (3)

Taking expectations through (3), we obtain

E(λ̂− λ)E
{
U ′(λ)

}
+ cov(λ̂, U ′(λ))

+
1
2
E(λ̂− λ)2E{U ′′(λ)}+

1
2

cov{(λ̂− λ)2, U ′′(λ)}
= O(n−

1
2 ).
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Let l2 be the log-likelihood for one single observation. For convenience, define

Krs(λ) = E[{l′2(λ)}r{l′′2(λ) + i(λ)}s].

We can show that
E{l′′′2 (λ)} = −3K11(λ)−K30(λ),

cov{λ̂, U ′(λ)} = o(n−1),

and
cov{(λ̂− λ)2, U ′′(λ)} = o(n−1).

For detailed derivation of the above equations in this section, please refer to (Cox and
Hinkley, 1974, page 309) and Cox and Snell (1968). Some manipulation then gives

b(λ) = E(λ̂− λ) = −K11(λ) + K30(λ)
2ni2(λ)

+ o(n−1)

=
1
2
· λa42(λ)
na2

22(λ)
+ o(n−1).

The proposed bias-corrected MLE takes the form of

λ̂bc = λ̂− b(λ̂), (4)

with b(λ) = λa42(λ)/2na2
22(λ). If the MLE doesn’t exist, the bias prevention estimatorλ̃1

will be used instead.
Now, we consider bias correction of the estimatorλ̃3. Recall thatλ̃3 is the MPLE

proposed by Azzalini and Arellano-Valle (2013). Let

U∗(λ) = U(λ) + M3(λ), (5)

whereM3(λ) is defined as in Equation (2). Take derivative ofU∗(λ), we have

U∗′(λ) = U ′(λ) + M ′
3(λ),

whereM ′
3(λ) = −2C1C2(1− C2λ

2)/(1 + C2λ
2)2. It is easy to show thatM3(λ) =

O(λ−1) andM ′
3(λ) = O(λ−2). Apply Taylor theorem forU∗(λ̃3) at the neighborhood

of λ, we have
0 = U∗(λ̃3) = U∗(λ) + U∗′(λ)(λ̃3 − λ). (6)

ReplaceU∗′(λ) by E{U∗′(λ)} and use the fact thatni(λ) = −E{U ′(λ)}, λ̃3 − λ can be
expressed as the following,

λ̃3 − λ = − U∗(λ)
E{U∗′(λ)} (7)

=
U(λ) + M3(λ)
ni(λ)−M ′

3(λ)
.

Use the result in Equation (7) and take expectation through Equation (6), we have

0 = E{U∗(λ)}+ E{U∗′(λ)}E(λ̃3 − λ) + cov{U∗′(λ), λ̃3 − λ}
= M3(λ) + {M ′

3(λ)− na22(λ)}E(λ̃3 − λ)

+
1

na22(λ)−M ′
3(λ)

{−n(λa42(λ) + a33(λ))}.
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Therefore, the bias of̃λ3 is

E(λ̃3 − λ) =

λna42(λ) + na33(λ)
na22(λ)−M ′

3

−M3

M ′
3 − na22(λ)

= −λna42(λ) + na33(λ) + M ′
3M3 − na22(λ)M3

(M ′
3 − na22(λ))2

.

The proposed bias-correctedλ̃3 takes the form of

λ̃sc = λ̃3 − b(λ̃3), (8)

with b(λ̃3) = −{λna42(λ) + na33(λ) + M ′
3M3 − na22(λ)M3} /(M ′

3 − na22(λ))2.

3.2 Adjusted estimator

Consider Figure 1,U(λ) cross the x-axis whenZis are with opposite sign numbers (λ̂
exists); andU(λ) approaches x-axis without crossing it whenZis are all positive or all
negative (̂λ = ±∞). For λ̂ = ±∞ cases, the bias prevention idea is to shift the score
function by an amount of{−U ′(λ)b(λ)} to force it cross the x-axis to obtain a finite MLE.
From simulation studies, we have noticed systematic negative biases of the three estimators
λ̃1, λ̃2 andλ̃3. This means that the amount of shift{−U ′(λ)b(λ)} is too large for the three
estimators. Therefore it should be reduced by a certain amount to allow the score function
U(λ) cross the x-axis but produce less bias. We propose addingM4(λ) to the score function
U(λ), so that

U(λ) + M4(λ) = 0, (9)

where

M4(λ) = − n

n + dλ
· λa42(λ)
2a22(λ)

.

Define a constantc such as

c = sup{d|U(λ∗) + M4(λ∗) = 0, where λ∗ has negative bias}. (10)

We can see that for any fixedd andλ, |M4(λ)| < |M1(λ)|, i.e. the shifted amountM4(λ)
of the score function is smaller than that ofλ̃1. As n → ∞, n/(n + dλ) → 1, hence
M4(λ) −→ M1(λ). Equation (10) indicates thatd ∈ [0, c], and that we are looking for a
constantc such thatλ∗ has smallest negative bias (close to the true value). The proposed
adjusted estimator̃λad is naturally follows as the solution of Equation (11),

U(λ) + M5(λ) = 0, (11)

with M5(λ) = − n

n + cλ
· λa42(λ)
2a22(λ)

. The following theorem can be derived.

Theorem 1. The adjusted estimator̃λad has the following properties: (1)̃λad has finite
solution; (2) Bias(λ̃ad) = O(n−2); and (3)λ̃ad converges in probability to Sartori (2006)’s

estimatorλ̃1 asn →∞, i.e.,λ̃ad
p→ λ̃1.

Proof. Proof follows from Sartori (2006).
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3.3 Jackknife and Bootstrap Bias Correction

Follow Lagos-́Alvarez et al. (2011) for bias correction in the Type I generalized logistic
distribution, we consider jackknife and bootstrap bias correction. The jackknife was in-
troduced by Quenouille (1949, 1956) to reduce bias of estimators. Shao and Tu (1995)
discussed several forms of the jackknife. The bootstrap was introduced by Efron (1990)
for estimating the sampling distribution of a statistic and its characteristics. Both jackknife
and bootstrap are popularly used since then. In the following, we will consider delete-1
jackknife and bootstrap bias correction of the estimatorλ̃3.

Recall thatZ1, Z2, · · · , Zn is a random sample fromSN(0, 1, λ). Let λ̃3(i) be the
solution of the equation

U(λ) + M3(λ) = 0, (12)

with observationZi deleted. Definē̃λ3 =
∑n

i=1 λ̃3(i)/n. The jackknife bias is defined as

b̂iasjack = (n− 1)(¯̃λ3 − λ̃3) and the jackknife bias-corrected estimator ofλ is

λ̃jack = λ̃3 − b̂iasjack = nλ̃3 − (n− 1)¯̃λ3. (13)

For bootstrap bias correction, we use nonparametric bootstrap to approximate the bias
of λ̃3. First, we drawB independent bootstrap samples fromZ1, Z2, · · · , Zn with replace-
ment. LetZ(i)

1 , Z
(i)
2 , · · · , Z

(i)
n , i = 1, · · · , B, be theith bootstrap sample, and̃λ(i)

3 be the
solution of equation (12) with theith bootstrap samples. The bias can be estimated as
follows

b̂iasboot =

B∑
b=1

λ̃
(i)
3

B
− λ̃3.

The bootstrap bias-corrected estimator ofλ is

λ̃boot = λ̃3 − b̂iasboot = 2λ̃3 −
B∑

b=1

λ̃
(i)
3 /B. (14)

4. Simulation Studies

In this section, a small simulation study was conducted to evaluate the five proposed es-
timators. We consider the shape parameterλ = 5 andλ = 10, and generate 2000 skew
normalSN(λ) samples with sizesn = 5, 10, 20, 50 and100. For each generated sample,
the following estimators and their bias were computed:λ̃1 (Sartori (2006)),̃λ2 (Bayes and
Branco (2007)),̃λ3 (Azzalini and Arellano-Valle (2013)),̂λbc (bias-corrected MLE),̃λsc
(bias-corrected̃λ3), λ̃ad (adjusted estimator),̃λjack (jackknife bias-corrected estimator)
andλ̃boot (bootstrap bias-corrected estimator). The adjusted estimatorλ̃ad is calculated as
the solution of (9) withd = 2, which is found by a comparison of several numbers ofd
in reducing the bias and was used to approximate the constantc in (10). Empirical mean
bias, mean variance and mean MSE (mean square error) are reported by Tables 1, 2 and 3
respectively. Notice that the three estimatorsλ̃1, λ̃2 andλ̃3 perform similarly without any
noticeable difference in bias and variance.

Tables 1, 2 and 3 show that except bootstrap method, all the four proposals work very
well for small and medium samples (n ≤ 20) in bias reduction. For large samples, the ex-
isting methods work better. We also notice that bias correction is more needed for samples
with large shape parameter. From MSE perspective, onlyλ̃sc is admissible for small and
moderate samples. We think that there is still room to improveλ̃ad. In simulation study,
we usedd = 2 to approximate the constantc defined in (10). Future research may consider
looking for a better approximation of the constantc.
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Table 1: Bias comparison among eight estimators:λ̃1 (Startori 2006),λ̃2 (Bayes and
Branco 2007),̃λ3 (Azzalini and Reinaldo 2013),̂λbc (bias-corrected MLE),̃λsc (bias-
correctedλ̃3), λ̃ad (adjusted estimator),̃λjack (jackknife estimator) and̃λboot (bootstrap

estimator). The last two columns are the estimated percentage ofλ̂ < ∞ samples and the
theoretical percentage respectively.

Bias Comparison
λ n λ̃1 λ̃2 λ̃3 λ̂bc λ̃sc λ̃ad λ̃jack λ̃boot (λ̂ < +∞) Theoretical

% %
5 5 -3.8367 -3.8378 -3.8169 1.5487 -2.8557 -0.6169 -3.0074 -3.837029.45 27.70

10 -2.9321 -2.9799 -2.9317 2.2052 -1.9755 0.1329 -1.4557 -3.024649.30 47.73
20 -1.7206 -1.7886 -1.6813 1.5455 -0.5224 -0.0725 0.2866 -1.912574.45 72.68
50 -0.2506 -0.4367 -0.3167 0.8166 0.7034 0.3035 0.6606 -0.895095.20 96.10
100 0.0130 -0.0455 -0.0139 0.2286 0.6055 0.1164 0.1411 -0.513899.85 99.84

10 5 -8.7893 -8.8078 -8.7728 -2.0213 -7.7877 -4.2517 -7.8898 -8.782114.70 14.88
10 -7.7206 -7.8064 -7.6863 -0.4815 -6.6637 -3.4285 -5.8375 -7.835227.85 27.55
20 -5.9499 -6.0674 -5.8859 0.7907 -4.3533 -2.6139 -2.8286 -6.135147.65 47.52
50 -2.5310 -2.8728 -2.5830 0.6848 -0.3144 -0.5205 1.3768 -3.096881.40 80.05
100 -0.5412 -0.7596 -0.5230 0.7716 1.3282 0.2560 0.6022 -1.340795.90 96.02

Table 2: Variance comparison among eight estimators:λ̃1 (Startori 2006),̃λ2 (Bayes and
Branco 2007),̃λ3 (Azzalini and Reinaldo 2013),̂λbc (bias-corrected MLE),̃λsc (bias-
correctedλ̃3), λ̃ad (adjusted estimator),̃λjack (jackknife estimator) and̃λboot (bootstrap
estimator).

Variance Comparison
λ n λ̃1 λ̃2 λ̃3 λ̂bc λ̃sc λ̃ad λ̃jack λ̃boot

5 5 0.0733 0.0675 0.0781 49.9059 0.1746 32.115 0.4369 0.0778
10 0.3078 0.2815 0.3002 52.8567 0.7884 39.1468 2.5469 0.3582
20 1.1035 0.9790 1.1616 42.6702 2.7217 16.1576 8.3396 1.2477
50 3.3111 2.4887 2.7447 15.4587 5.6216 8.5271 16.6452 2.7521
100 2.5556 2.2694 2.5770 3.9826 3.7198 3.0563 8.9424 2.4476

10 5 0.0567 0.0569 0.0570 60.5340 0.1472 45.0309 0.3815 0.0625
10 0.3970 0.2752 0.3695 69.2983 0.9511 47.9203 2.9509 0.4101
20 1.3551 1.2935 1.5519 65.8202 4.2194 34.7103 10.7657 1.7632
50 6.6020 5.0796 6.1174 41.4082 14.0655 27.7209 40.6141 7.2765
100 11.4856 10.5395 10.8033 27.2896 23.5940 20.3222 37.6914 13.2780
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Table 3: MSE comparison among eight estimators:λ̃1 (Startori 2006),λ̃2 (Bayes and
Branco 2007),̃λ3 (Azzalini and Reinaldo 2013),̂λbc (bias-corrected MLE),̃λsc (bias-
correctedλ̃3),λ̃ad (adjusted estimator),̃λjack (jackknife estimator) and̃λboot (bootstrap
estimator).

Mean Square Errors Comparison
λ n λ̃1 λ̃2 λ̃3 λ̂bc λ̃sc λ̃ad λ̃jack λ̃boot

5 5 14.7938 14.7969 14.6470 52.2797 8.3296 32.4795 9.4817 14.801
10 8.9050 9.1615 8.8955 57.6934 4.6910 39.1449 4.6647 9.5066
20 4.0637 4.1777 3.9881 46.4340 2.9933 16.1548 8.4176 4.9049
50 3.3722 2.6783 2.8437 16.1178 6.1136 8.6150 17.0733 3.5518
100 2.5545 2.2703 2.5759 4.0328 4.0847 3.0684 8.9534 2.7092

10 5 77.3094 77.6356 77.0203 64.5895 60.7964 63.0859 62.6313 77.1880
10 60.0059 61.2160 59.4488 69.4955 45.3560 59.6515 37.0267 61.8014
20 36.7557 38.1067 36.1955 66.4125 23.1692 41.5257 18.7614 39.4021
50 13.0050 13.3305 12.7865 41.8565 14.1574 27.9780 42.4897 16.8631
100 11.7729 11.1113 11.0714 27.8714 25.3464 20.3776 38.0165 15.0624

5. Conclusions

The difficulty of the shape parameter estimation in a scalar skew normal model lies in the
fact that there is a considerable percentage of samples in which MLE goes to infinity. The
bias prevention estimators in literature are based on large sample properties, therefore they
don’t work well for small and moderate samples. In this research, we have studied this
problem from different perspectives, such as bias correction approach and score function
modification approach. Simulation studies show thatλ̂bc (bias-corrected MLE),̃λsc(bias-
correctedλ̃3),λ̃ad (adjusted estimator) and̃λjack (jackknife bias-corrected estimator) are
all effective in reducing bias for small and moderate samples. However, the price paid
for reduced bias is the relatively large variance. For scalar skew normal shape parameter
estimation, if sample size is large, the existing estimatorsλ̃1, λ̃2, λ̃3 all work well, there is
no need to perform bias correction; if sample size is small or moderate, we suggest using
the proposed estimators̃λscsince it has smaller bias and MSE.
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