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Abstract
Complex machine learning tasks arising in several domains increasingly require “big models" to

be trained on “big data". Such models tend to grow with the complexity and size of the training
data, and do not make strong parametric assumptions upfront on the nature of the underlying sta-
tistical dependencies. Kernel methods constitute a very popular, versatile and principled statistical
methodology for solving a wide range of non-parametric modelling problems. However, their stor-
age requirements and high computational complexity poses a significant barrier to their widespread
adoption in big data applications. We propose an algorithmic framework for massive-scale training
of kernel-based machine learning models. Our framework combines two key technical ingredients:
(i) distributed general purpose convex optimization for a class of problems involving very large but
implicit datasets, and (ii) the use of randomization to significantly accelerate the training process as
well as prediction speed for kernel-based models. Our approach is based on a block-splitting vari-
ant of the Alternating Directions Method of Multipliers (ADMM) which is carefully reconfigured
to handle very large random feature matrices only implicitly, while exploiting hybrid parallelism
in compute environments composed of loosely or tightly coupled clusters of multicore machines.
Our implementation supports a variety of machine learning tasks by enabling several loss functions,
regularization schemes, kernels, and layers of randomized approximations for both dense and sparse
datasets, in a highly extensible framework. We study the scalability of our framework on both com-
modity clusters as well as on BlueGene/Q, and provide a comparison against existing sequential and
parallel libraries for such problems.
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1. Introduction

A large class of supervised machine learning models are trained by solving optimization
problems of the form,

f? = argmin
f∈H

1

n

n∑
i=1

V (yi, f(xi)) + λr(f), (1.1)

where,
• {(xi,yi)}ni=1 is a training set with n labeled examples, with inputs x ∈ X ⊂ Rd and

associated target outputs y ∈ Y ⊂ Rm;
• H is a hypothesis space of functions mapping the input domain in Rd to the output

domain in Rm, over which the training process estimates a functional dependency f? by
optimizing an objective function;

• the objective function comprises of a convex loss function V (·, ·) which measures the
discrepancy between “ground truth" and model predictions, and a convex regularizer r(·)
that penalizes the complexity of f in order to prevent the phenomenon of overfitting.
The regularization parameter λ balances the classic tradeoff between data fitting and
complexity control in machine learning, which enables generalization to unseen test data.
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Modern "big data", arising in several domains of significant commercial and academic
interest, is characterized by large training sets (big n) often also in conjunction with high
input and output data dimensionality (big d, big m). It is now well appreciated among
machine learning researchers and practitioners, that imposing strong structural constraints
on the model upfront, e.g. by requiring H to comprise of linear functions, or otherwise
severely restricted in terms of sparsity or smoothness, often limits, both theoretically and
empirically, the potential of big data in terms of delivering higher accuracy models. In
such cases, data tends to exhausts the statistical capacity of the model causing generaliza-
tion performance to quickly saturate. As a consequence, machine learning practitioners
are increasingly turning to highly nonlinear models with millions of parameters, or even
infinite-dimensional models that need to be estimated on very large datasets [1, 2, 3, 4, 5],
often with carefully designed domain-dependent loss functions and regularizers. This trend
is giving rise to new challenges and opportunities at the intersection of statistics, numerical
optimization and high performance computing.

Kernel methods [6] constitute a mathematically elegant framework for general-purpose
infinite-dimensional non-parametric statistical inference . By providing a principled frame-
work to extend classical linear statistical techniques for non-parametric modeling, their
applications span the entire spectrum of machine learning: nonlinear classification, re-
gression, clustering, time-series analysis, sequence modeling [7], dynamical systems [8],
hypothesis testing [9], causal modeling [10] and others. As such, with the growth in data
across a multitude of applications, scaling up kernel methods [11] has acquired renewed
and somewhat urgent significance.

The central object in kernel methods is a kernel function k(x,x′) defined on the input
domain X . This kernel function defines a suitable hypothesis space of functions H with
which (1.1) can be instantiated, and turned into a finite dimensional optimization problem.
However, training procedures derived directly in this manner scale poorly, having training
time that is cubic in n and storage that is quadratic in n, with limited opportunities for
parallelization.

Recently, randomization has emerged as a key algorithmic device with which to dramat-
ically accelerate the training of kernel methods. Randomized methods replace the nonlinear
modeling problem (1.1), with a linear modeling problem of the form,

argmin
W∈Rs×k

1

n

n∑
i=1

V
(
yi,W

T z(xi)
)

+ λr(W) (1.2)

where W are coefficients of a linear model to be estimated from the training data. The
function z(·) is a nonlinear random transformation of the data that replaces the original
input point x with a point in a higher-dimensional nonlinear random feature space, z(xi) ∈
Rs. This transformation has the property that with high probability z(x)T z(x′) is close to
the kernel function k(x,x′) for all x,x′ in the data domain.

Figure 1.1 motivates this paper. It is observed that in order to build state-of-the-art
machine learning models in problems of interest (in this case, speech recognition), a very
large number of random features are needed. The transformed data matrix – Z – whose
rows are z(xi), becomes terascale even though the original data matrix X is relative small.
We refer to problems of the form in (1.2) as implicit optimization problems, involving "big
data" which is implicitly actually a function of smaller data.

We are now in a position to state our contributions.
• We develop a highly scalable algorithmic framework and software implementation for

kernel methods, for distributed-memory computing environments. Our framework com-
bines randomization with a distributed optimization method based on the Alternating
Directions Method of Multipliers (ADMM) [12]. This framework orchestrates local
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Figure 1.1: Performance of Randomized Kernel Methods. The largest model below is
trained on BlueGene/Q, on an 8.7 terabyte dataset using implicit distributed optimization
methods implemented in this paper for high-performance computing environments.

102 103 104 105

Number of Random Features

0

20

40

60

80

100

Ac
cu

ra
cy

Classification Accuracy on TIMIT
Accuracy
state of the art

102 103 104 105
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Me
mo

ry 
Re

qu
ire

me
nt

s (
GB

)

Memory (GB)

models estimated on a subset of examples and random features, towards the solution of
(1.2). Our approach builds on the block-splitting ADMM framework proposed by [13],
but we reorganize its update rules to extract greater efficiency.
• Our framework is designed to be highly generalizable. In particular, a user needs to

only supply certain proximal operators associated with a custom loss function and the
regularizer. Our ADMM wrapper can then immediately instantiate a solver for (1.2) for
a variety of choices of kernels and learning tasks.
• We benchmark our implementation in both supercomputing environments as well as

commodity clusters. Results indicate that our approach is highly scalable in both set-
tings, and is capable of returning state of the art performance in machine learning tasks.
Comparisons against sequential and parallel libraries for Support vector Machines shows
highly favorable accuracy-time tradeoffs for our approach.

2. Distributed Learning with ADMM Block Splitting and Hybrid Parallelism

We assume the following setup:
• A distributed computing environment comprising of a cluster of N compute nodes, with
T cores per node. We assume that each node has M GigaBytes of RAM.
• The training data X,Y are distributed by rows across the nodes. This is a natural as-

sumption in machine learning since rows have the semantics of data instances which are
typically collected or generated in parallel across the cluster to begin with.
• X,Y fit in the aggregate distributed memory of the cluster, but are large enough that

they cannot fit on a single node, and cannot be replicated in memory on multiple nodes.
• The matrix Z does not fit in aggregate distributed memory because n and s are both

simultaneously big. This assumption is motivated by empirical observations shown in
Figure 1.1.
• The matrix Z cannot be stored on disk either, because of space restrictions or because

the IO cost of reading Z by blocks in every iteration is more expensive than the cost of
recomputing blocks of Z on the fly from scratch as needed, respecting per-node memory
constraints.
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We build on a block-splitting variant of the Alternating Direction Method of Multipliers
(ADMM) [13] which is well suited to these considerations. This approach assumes the
data matrix is partitioned by both rows and columns. Independent models are estimated on
each block in parallel and orchestrated by ADMM towards the solution of the optimization
problem. A common pattern in these algorithms are the following operators.

Definition 1 (Proximity Operator) The Proximity (or Prox) operator associated with a
function f : Rd 7→ R is a map proxλf : Rd 7→ Rd given by

proxf [x] = argmin
y∈Rd

1

2
‖x− y‖22 + f(y) (2.1)

Definition 2 (Projection Operator) The Projection operator associated with a convex con-
straint set C is the map projC : Rd 7→ Rd given by

projC [x] = argmin
y∈C

1

2
‖x− y‖22 (2.2)

Hence, projC = proxIC where IC denotes indicator function of the set C i.e. assuming
the value 0 on C and∞ otherwise.

For a variety of common loss functions and regularizers, the proximal operator admits
fast closed-form solutions. In addition to the proximal and projection operators, the block-
splitting approach also needs the following definition.

Definition 3 (Graph Projection Operator over Matrices) The Graph projection opera-
tor associated with an n×dmatrix A is the map projA : (Rn×k,Rd×k) 7→ (Rn×k,Rd×k)
given by,

projA[(Y,X)] = argmin
V,U

1

2
‖V −Y‖2fro +

1

2
‖U−X‖2fro,

subject to : V = AU

where Y,V ∈ Rn×k,X,U ∈ Rd×k. The solution is given by:

U = [ATA + I]−1(X + ATY) (2.3)

V = AU (2.4)

The above computation is preferred when d� n. When d is larger, the solution may be
rewritten in terms of an n× n linear system involving AAT instead (see [13]). However,
the d� n case is more relevant for our setting.

To adapt this approach to our setting, we assume an implicit logical block partitioning
of the matrix Z into R × C blocks, where R and C denote row and column splitting
parameters respectively.

 X1
...

XR

 →
...
→


Z11 Z12 . . . Z1C

...
...

...
...

ZR1 ZR2 . . . ZRC

 ,

 Y1
...

YR

 (2.5)

We assume that Xi,Yi,Zij have ni rows where
∑R

i=1 ni = nwhile Zij has sj columns
where

∑C
j=1 sj = s. We assume thatR parallel MPI processes are invoked on theN nodes,

each spawning t < T threads that collectively own the parallel computation related to the
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C blocks of Zij , j = 1 . . . C. Each Zij is a function of the corresponding Xi, and hence we
exploit shared memory parallelism for computations across the column blocks of Z. Thus,
each of the C column blocks is assigned to one of the t threads, and blocks assigned to a
single thread are processed sequentially.

To interpret the block-splitting ADMM algorithm, it is convenient to setup the fol-
lowing semantics. Let Wij ∈ Rsj×m denote local model parameters associated with
block Zij . We require each local model to agree with the corresponding block of global
parameters, i.e., Wij = Wj . The partial output of the local model on the block Zij
is given by Oij = ZijWij ∈ Rni×m. The aggregate output across all the columns is
Oi =

∑C
j=1Oij = (ZW)i.

Let the set of ni indices in the ith row block be denoted by Ii. We denote the local loss
measured by ith MPI process as,

li(Oi) =
1

n

∑
j∈Ii

V (yj ,oj), i = 1 . . .M

where oTj , j ∈ Ii are rows of the matrix Oi. Similarly, we assume that the regularizer r
in (1.2) is separable over row blocks, i.e. r(W) =

∑C
j=1 rj(Wj) where Wj ∈ Rsj×m

is the conforming block of rows of W. This assumption holds for l2 regularization, i.e.,
rj(Wj) = ‖Wj‖2fro.

With the notation setup above, it is easy to see that Eqn. 1.2 can be equivalently rewrit-
ten over blocks as follows,

argmin
W∈Rs×k

R∑
i=1

li(Oi) + λ
C∑
j=1

rj(Wj) (2.6)

+
∑
i,j

IZij (Oij ,Wij)

subject to C1 : Wij = Wj , (2.7)

C2 : Oi =
N∑
j=1

Oij (2.8)

for i = 1 . . . R, j = 1 . . . C, with IZij (O
j
i ,W

i
j) = 0 if Oj

i = ZijW
i
j and ∞ otherwise.

Viewed as a convex constrained optimization problem, one can follow the derivation of
block-splitting ADMM [13] by introducing new consensus variables Wj ,Wij ,Oi,Oij

corresponding to Wj ,Wij ,Oi,Oij and associated dual variables µj ,µij ,νi,νij . Fur-
thermore, the projection onto the constraint sets C1 and C2 turn out to have closed form
averaging and exchange solutions. [13] note that νij can be eliminated since νij turns
out to equal −νi after the first iteration. Similarly, Wij = Wj and hence Wij can also
be eliminated. These simplifications imply the final modified update equations derived in

JSM 2014 - Section on Statistical Computing

381



[13]:

Oi = prox 1
ρ
li

[
Oi − νi

]
(2.9)

Wj = prox 1
ρ
rj

[
Wj − µj

]
(2.10)

(Oij ,Wij) = projZij [Oij + νi,Wj − µij ] (2.11)

Wj =
1

R+ 1

(
Wj +

R∑
i=1

Wij

)
(2.12)

Oij = Oij +
1

C + 1

Oi −
C∑
j=1

Oij

 (2.13)

Oi =
∑
j

Oij (2.14)

µj = µj + Wj −Wj (2.15)

µij = µij + Wij −Wj (2.16)

νi = νi + Oi −Oi (2.17)

where i runs from 1 to R and j from 1 to C.

2.1 Modularity

Note that the loss function and the regularizer only enter the ADMM updates via their prox-
imal operator. Thus a user needs to only specify a sequential proximal operator function,
for the ADMM wrapper to immediately yield a parallel solver. While our current imple-
mentation supports squared loss, l1 loss, hinge loss and multinomial logistic loss, our ex-
periments will focus on the hinge loss case that corresponds to the support vector machine
(SVM) model. The proximal operator for the hinge loss has a closed form solution [12].

2.2 Generating Random Transforms On-the-Fly

We assume that the block ADMM procedure is given a transform operator T which when
applied to Xi given a block id j, produces the output Zij , i.e.,

T[Xi, j] = Zij

This transform function is used to generate Zij as needed in the optimization process,
used and discarded in each iteration. The construction of these transform operators will be
discussed in section 3

2.3 Caching

The graph projection step (2.11) requires the computation of (2.3) with A = Zij , i.e.,

Wij = Qij [Wj − µij + ZTij(Oij + νi)] (2.18)

Oij = ZijWij (2.19)

where
Qij = [ZTijZij + I]−1. (2.20)

The matrix Qij (or the Cholesky factors of the inverse above) can be cached during the
first iteration and reused for faster solves in subsequent iterations. The cache requires

JSM 2014 - Section on Statistical Computing

382



O(
∑C

j=1 s
2
j ) memory, or assuming that sj = s

C , O( s
2

C ) memory. Thus increasing the
column splitting reduces the memory footprint. It also reduces the total number of floating-
point operations required for (2.18), to O( s

2

C ).

2.4 Memory Requirements, Variable Elimination and Parallel Execution

In the form presented in [13], the block splitting ADMM algorithm is not scalable in our
setting despite the high degree of parallelism in it. This is because a naive implementation
of the algorithm requires each node/process to hold theC local matrices Oij ,Oij for a total
memory requirement which grows as 2niCm. This can be quite substantial for moderate
to large values of the product Cm since ni is expected to still be large. As an example, if
C = 64 is set as the number of threads on BG/Q, for a 100-class classification problem,
the maximum number of examples that a node can hold before the entire 16-GB memory
is consumed by just one of these variables alone, is barely 335000. The presence of these
variables conflicts with the need to increase C to reduce the memory requirements and
increase parallelism for solving the Graph projection steps in (2.18),(2.19). Fortunately,
the materialization of these variables can also be avoided as follows, by noting the form of
the solution of Graph projection and exploiting shared memory access of variables across
column blocks.

First, the variable Oij only contributes to a running sum in (2.14) and appears in the
Graph projection step (2.11), (2.18) in the context of the product ZTijOij . These steps,
together with the update of Oij in (2.13) can be merged while eliminating each of the
C variables, Oij , as follows. We introduce an s × k variable Ui ∈ Rs×m and instead
maintain Uij = ZTijOij ∈ Rsj×m. A single new variable ∆ ∈ Rni×m tracks the value of
Oi −

∑C
j=1Oij which is updated incrementally as Oij is generated from (2.19). Eqn.2.13

implies the following update,

ZTijOij = Uij +
1

C + 1
ZTij∆

which can be used in (2.18). The update in (2.14) can also be replaced with Oi =
1

C+1

∑C
j=1Oij + C

C+1Oi. Thus the updates can be reorganized much more efficiently
with no more than one (expensive) call to the random features transform function T. These
modified update equations are given in Algorithm 2.1, which is what is executed by an MPI
process with t OMP threads. Note that since the loss term li is separable over the ni data
points, step A can be parallelized over multiple threads. Similarly for step B involving the
prox operator computation with respect to the regularization function r.
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Algorithm 2.1: BLOCKADMM(i,Xi,Yi, li, r,T)

Initialize : O,O,ν, ∆̄ = 0 ∈ Rni×m,
W,W′µ′,µ,U = 0 ∈ Rs×m

if i = 0, Initialize : W = 0 ∈ Rs×m
for iter = 1 . . .max
A. O = prox 1

ρ
li

[
O− ν

]
(1)

if i = 0 :

B. Wj = prox 1
ρ
rj

[
Wj − µj

]
, j = 1 . . . C

C. BROADCAST(W)
∆ = O

O = C
C+1O

// thread t executes the following
D. for j = (t−1)C

T + 1 . . . tCT
E. Zij = T[Xi, j]

if iter = 0, setup cache: Qij (2.20)
F. A = 1

C+1Z
T
ij∆̄

G. W′
j = Qij [Wj − µ′j + Uj + A]

H. O′ = ZijW
′
j

∆ = ∆−O′ // synchronized
I. Uj = ZTijO

′

O = O + 1
C+1O

′ // synchronized
µ′j = µ′j + W′

j −Wj

∆̄ = ∆
if i = 0 :

J. µ = µ + W −W

K. W = 1
R+1REDUCE(W′)

L. W = W + 1
R+1W

M. ν = ν + O−O

Memory Requirements: Assuming sj = s
C , the total memory requirements per node

can be computed as follows:

4nim+ 5sm+ nid+ nim+
Tnis

C
+
sm

C
+ nimT +

s2

C

where the terms can be associated with the variables (O,O,ν, ∆̄), W,W′µ′,µ,U; the
data Xi,Yi; the materialization of the block Zij across the T threads; temporary variables
to implement step D; and the factorization cache. Thus increasing the column splitting
C and reducing the number of threads T provide knobs with which to satisfy memory
constraints.

Computational Complexity: In terms of computation, the prox operator computation
in steps A and B parallelize over multiple threads and have linear complexity. The three
dominant computational phases are:
• Cost of invoking the transform T[Xi] in Step E, which tends to be the cost of right matrix

multiplication of a random d×sj matrix against Xi, i.e. O( ndS
TCN ). For certain transforms

this can be accelerated as discussed in section 3.
• O( s

2m
TC ) cost of Graph Projection step G.

• O(nsmTN ) Cost of matrix multiplications against blocks of Z in steps F,H and I.
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Communication: The cost of broadcast and reduce operations in step C and K costs
grow as O(s m log N).

3. Randomized Kernel Maps

We now discuss the role of the random feature transforms z(·) in our distributed solver.
Since the initial work of Rahimi and Recht, several alternative mappings have been sug-
gested in the literature. These different mappings tradeoff the complexity of the transforma-
tion on dense/sparse vectors, kernel approximation, kernel choice, memory requirements,
etc. Our algorithm essentially operates on z1, . . . , zn which are defined by zi = z(xi). So,
once we have selected a z(·) it can be treated as a black-box as all other steps of the algo-
rithm are the same. This gives a lot of flexability to our algorithm to operate on different
kernels, and different kernel maps. The choice of z(·) also encapsulates different treatment
for sparse or dense input – as all maps produce dense zs, different treatment of sparse and
dense input appears solely in the application of z(·).

Our block splitting scheme uses at each point of time, on a given node, only some of
the zs, and in each one of them, only a part of the vector. The former is easily addressed
by applying z(·) only to the xs of interest. To achieve the latter, given a known scheme for
generating kernel maps, we construct our kernel map z(·) as follows

z(x) =
1√
s

[
√
s1z1(x) . . .

√
sCzC(x)]T

where zj : Rd 7→ Rsj , j = 1, . . . , C is a feature map generated independently. That is, we
use of Monte-Carlo approximation. We can then use zj to generate blocks Z1j ,Z2j , . . . ,ZRj
for j = 1, . . . , C.

We now describe the various kernel mapping we implemented in our solver, and the im-
plementation issues that arise. In the description we describe how to construct a z : Rd 7→
Rs with the intention that this scheme is used to compute z1(·), . . . , zC(·) as explained
above.

• Random Fourier Features: This the mapping suggested by Rahimi and Recht [15].
It is designed for the Gaussian kernel k(x, z) = exp(−‖x − z‖22/2σ2) (for some
σ ∈ R) 1 The mapping is z(x) = cos(ωTx + b)/

√
s where ω ∈ Rd×s is drawn

from an appropriately scaled Gaussian distribution, b ∈ Rs is drawn from a uniform
distribution on [0, π), and the cosine function is applied entry-wise. For dense input
x is Tz(x) = O(sd), and for sparse input x is Tz(x) = O(s nnz(x)). When applied
to a group of inputs collected inside a matrix (as in generating Zij from Xij), most
of the operations can be done inside a single GEMM, which gives access to highly
tuned parallel BLAS implementations.

Notice that naively representing z(·) on a machine requires O(sd) memory (storing
the entries in ω), which can be rather costly. We avoid this by keeping an implicit rep-
resentation in terms of state of the pseudo random number generator, and generating
parts of the ω on the fly as needed.

• Fast Fast Random Fourier Features: Also called Fastfood in [19], this approach
targets the same class of kernels and uses a similar scheme as Random Fourier Fea-
tures. An accelerated approach is used for generating ω as a multiplication of random
diagonal matrices, permutation matrices, and FFT matrices. As such, the vector ωTx

1The construction suggested by Rahimi and Recht actually spans a full family of shift-invariant kernels.
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can be computed much faster in O(s log d) time. Sparsity cannot be exploited to
yield faster running time, as can be done for random Fourier features. In terms of
approximation quality, it is slightly worse than random Fourier features, but not in a
significant manner.

The use of the widely used FFT operation allows access to highly tuned implemen-
tations of that operation. On the flip side, matrix-matrix operations (i.e. FFT on the
columns/rows of a matrix) are not as well tuned and effective in the use of the cache
hierarchy as level-3 BLAS operations.

Extensions of these constructions for other classes of kernels have also been proposed,
e.g. the Random Laplace Features of [20] for non-negative domains, and TensorSketch
method of [21] for approximating the polynomial kernel.

4. Experimental Evaluation

Datasets: We report experimental results on two widely used machine learning datasets:
MNIST (image classification) and TIMIT (speech recognition). MNIST is a 10-class digit
recognition problem with training set comprising of n = 8.1M examples and a test set
comprising of 10K instances. There are d = 784 features derived from intensities of
28× 28 pixel images. TIMIT is 147-class phoneme classification problem with a training
set comprising of 2, 251, 569 examples and a test set comprising of 115934 instances. The
input dimensionality is d = 440.

Cluster Configuration: We report our results on two distributed memory computing
environments: a BlueGene/Q rack (1, 024 nodes, 16-cores per node and 4-way hyperthread-
ing), and a 20-node commodity cluster TRILOKA with 8 cores per node. The latter is repre-
sentative of typical cloud-like distributed environments, while the former is representative
traditional high-end HPC machines.

Default parameters and Metrics: Unless otherwise mentioned, we report results with
Gaussian kernels and Hinge Loss (SVMs). We use Random Fourier Feature maps, and
store the input dataset using a dense matrix representations. We report speedups, running
times for fixed number of ADMM iterations, and classification accuracy obtained on a test
set.

4.1 Strong Scaling Efficiency

Evaluating strong scaling in our setup should be approached with caution. The standard
notion of strong scaling is to take a fixed problem size and study the speedup obtained as the
number of processing elements are increased. It is generally assumed that parallelization
accelerates a sequential algorithm, but does not change too much (or at all) the results and
their quality. Thus, the focus is on the computational gains and communication overhead
tradeoffs.

While it possible to fix the amount of work in our algorithm by fixing n, d and the
number iterations, we are not guaranteed to provide same quality results as the number of
row split increase (i.e., as we use more processors). ADMM guarantees only asymptotic
convergence to the same solution, irrespective of data splitting. This introduces statistical
tradeoffs since in practice, machine learning algorithms rarely attempt to find very high-
precision solutions to the optimization problem, since the goal is to estimate a model that
generalizes well, rather than solve an optimization problem (indeed, it can be rigorously
argued that optimization error need not be reduced below statistical estimation errors [22]).
Increased row splitting implies that ADMM coordinates among a larger number of local
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Figure 4.1: Strong-scaling experiments.
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models, each of which is statistically weaker, so we expect some slow down of learning
rate in a strong scaling regime. Thus, our experiments also evaluate how row splitting
affects the classification accuracy.

Results of our strong scaling experiments are shown in Figure 4.1.
MNIST: The number of random features is set to 100K, and we use 200 column parti-

tions. On TRILOKA we use n = 200K while varying the number of processors from 1 to
20. We observe nearly ideal speedup. On BG/Q we use n = 250K, and vary the number
of nodes from 32 to 256. We measure speedup and parallel efficiency with respect to 32
nodes. We observe nearly ideal speedup on 64 nodes. With higher node counts the parallel
efficiency start to decline, but it is still pretty good (57%) on 256 nodes. The increased row
splitting causes non-significant slowdown in learning rate

TIMIT: We use the entire dataset and experiment only on BG/Q. The number of ran-
dom features is set to 176K, and we use 200 column partitions. Speedup is not far from
linear, and parallel efficiency is 40% for 256 nodes. In terms of learning rate, accuracy
curve declines and the slowdown is apparent, implying that more iterations are required to
yield similar quality model.

4.2 Weak Scaling Efficiency

The weak scaling regime of interest is one in which the number of random features and
number of iterations stay constant, and the number of examples grows with the number of
processors2. Contrary to a strong scaling regime, in such a regime we expect the classifi-
cation accuracy to increase as more parallel resources are pulled in. In fact, this regime is
more interest as the main purpose of our solver to allow scalable learning on many exam-
ples.

Results are reported in Figure 4.2. On TRILOKA , number of examples is increased at
the rate of 10K examples per node. On BG/Q (MNIST only), the number of examples
is increased at the rate of 250K per node. Results show nearly constant running time. In
terms of improvement in classification accuracy, we see significant improvement of mod-
els trained on TRILOKA as the number of examples increase. The gains are modest for
BG/Q runs since the baseline model trained on 250K examples already has high accuracy.

2Although we caution that there are non-trivial interaction between the various parameters, so in fact, one
may want to increase the number of random features and number of iterations when more examples are used.
However, exploring these interactions is not the scope of this article
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Figure 4.2: Weak Scaling experiments
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Figure 4.3: Effect of Column Splitting
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4.3 Effect of Column Partitions

Figure 4.3 shows the effect of increasing the number of column splits, C, when using 100K
random features for both MNIST and TIMIT. Increasing C reduces memory requirements
and improves the running time of Graph projections. This comes with the tradeoff that the
rate of learning per iteration can be significantly slowed, e.g. with C = 1000. At the same
time, the plot shows that C = 50, 100, 200 perform similarly, and hence the optimization
admits lower memory execution with little loss in terms of quality of the results.

As a rule of thumb, we advocate setting C to roughly s/d, since that ensures the ability
to accommodate the memory requirements as long as the input matrix does not use more
than 1/t of the available memory.

4.4 Performance Breakdown for training big models

Table 4.4 shows the performance breakdown of a model learnt on the full TIMIT dataset,
with 528K random features on BG/Q with 256 nodes. This model returns state of the
art accuracy (see Figure 1.1). Note that if we materialize Z explicitly, 8.7-terabytes of
memory will be required. As Table 4.4 shows, the Graph projection loop, in particular the
feature transformation step and the matrix multiplication against blocks of Z, dominate the
running time (which includes prediction on the test set at every iteration). The proximal
operator costs is minimal because of closed form solutions that is embarrassingly parallel
over multiple threads. The communication costs are also non-significant for reducing and
broadcasting model parameters which in this case are buffers of size 0.6 GB. To reduce the
overall time per iteration further, we plan to investigate a stochastic version of the algorithm
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where only a random subset of blocks are updated.

Step Min Time Max Time Avg Time Percentage
Communication (C,K) 81 396 381 5%

Transform (E in D) 2175 2185 2180 29.4%
Graph Projection Loop (D) 6464 6548 6512 88%
Proximal Operators (A,B) 0.19 0.21 0.20 0%

Barrier 0 55 54 0.7%
Prediction 417 501 453 6%

Total 7419 7419 7419 100%

4.5 Comparison against Sequential and Parallel Solvers

Here we provide a sense of how our solvers compare with two other solvers. The first one,
LibSVM [23]3, is widely acknowledged to be the state-of-the-art sequential solver. The
other one, PSVM [24], is an open source MPI-based parallel SVM code. PSVM computes
in parallel a low-rank factorization of the Gram matrix via Incomplete Cholesky and then
uses this factorization to accelerate a primal-dual interior point method for solving the SVM
problem.

We compiled a multithreaded version of LibSVM. Since PSVM only supports binary
classification, we created versions of MNIST and TIMIT by dividing their classes into a
positive and negative class. A comparison is shown below for an SVM problem with Gaus-
sian kernels (σ = 10) and regularization parameter λ = 0.001. We use 20 TRILOKA nodes
with 6 cores for PSVM and our solver. LibSVM, with its default optimization parameters,
requires more than a day to solve the binary MNIST problem and about 22 hours to solve the
binary TIMIT problem. The testing time is also significant particularly for TIMIT which
has a large test set with more than 115K examples. The main reason for this slow predic-
tion speed is that the number of support vectors found by LibSVM is not small: 15, 667
for MNIST and 45, 071 for TIMIT, making the evaluation of the kernel expansion com-
putationally expensive. This problem is shared by PSVM though its prediction speed is
faster due to parallel evaluation. However, PSVM runtimes rapidly increase with its rank
parameter p. For p =

√
n, advocated by the accompanying paper [24], the estimated model

provides a much worse accuracy-time tradeoff than our solver, which can work with much
larger low-rank approximations that are computed locally and cheaply. On both datasets,
our solver approaches the LibSVM classification accuracy.

Table 1: Comparison on MNIST-binary (200k)
Libsvm PSVM (n0.5) BlockADMM

Training Time 108720 194.15 178.82
Testing Time 169 8.45 1.63

Accuracy 98.51% 72.14% 97.55%

5. Conclusion

Our goal in this paper has been to resolve scalability challenges associated with kernel
methods by using randomization in conjunction with distributed optimization. We noted

3http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 2: Comparison on TIMIT-binary (100k)
Libsvm PSVM (n0.5) BlockADMM

Training Time 80355 47 42
Testing Time 1295 259 2.9

Accuracy 85.41% 73.1% 83.47%

that this combination leads to a class of problems involving very large implicit datasets.
To handle such datasets in distributed memory computing environments where we also
want to exploit shared memory parallelism, we investigate a block-splitting variant of the
ADMM algorithm which is reorganized and adapted for our specific setting. Our approach
is high-performance both in terms of scalability as well as in terms of statistical accuracy-
time tradeoffs. The implementation supports various loss functions and is highly modular.
We plan to investigate a stochastic version of our approach where only a random selection
of blocks are updated in each iteration. We also plan to investigate methods to sketch the
data so as to improve the memory requirements of our algorithm with respect to number of
output coordinates.
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