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Abstract
We tackle the challenge of efficiently learning the structure of expressive multivariate real-valued

densities of copula graphical models. We start by theoretically substantiating the conjecture that
for many copula families the magnitude of Spearman’s rank correlation coefficient is monotonic
in the expected contribution of an edge in network, namely the negative copula entropy. We then
build on this theory and suggest a novel Bayesian approach that makes use of a prior over values
of Spearman’s rho for learning copula-based models that involve a mix of copula families. We
demonstrate the generalization effectiveness of our highly efficient approach on sizable and varied
real-life datasets.

Key Words: Copulas, Machine Learning, Dependence, Graphical Models, Stochastic Ordering,
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1. Introduction

Learning expressive real-valued multivariate distributions is of central interest in numerous
fields ranging from computational biology to economics to climatology. When the joint
distribution of interest is far from multivariate normal, this modeling task can be a great
challenge. In statistics, copulas [Joe, 1997, Nelsen, 2007] are the central tool for captur-
ing flexible multivariate real-valued distributions by separating the choice of the univariate
marginals and the copula function that links them. Copulas are typically only effective in
low dimensions, and much of the research in the field in fact focuses on the bivariate case.
Accordingly, in the last decade, various high-dimensional constructions that build on a col-
lection of copulas have been suggested, most notably those based on the vine construction
[Bedford and Cooke, 2002, Kurowicka and Cooke, 2002]. These models have proved to
be quite effective for crossing the few variable barrier. However, in the context of many
tens of variables to hundreds and thousands of variables, applications have been few and
involve costly and time-consuming expert elicitation [Hanea et al., 2010].

In machine learning, probabilistic graphical models, and in particular directed Bayesian
networks (BNs) [Pearl, 1988], have become increasingly popular as a flexible and intuitive
framework for modeling multivariate densities based on a qualitative graph structure G that
encodes the independencies in the domain. Graphical models are geared toward the high-
dimensional case and numerous algorithms for estimation, model selection and prediction
using these models have been developed in recent decades [Koller and Friedman, 2009].
Unfortunately, due to computational considerations, real-valued high-dimensional model-
ing using this framework is often limited to a structured multivariate Gaussian model.

In recent years, several works suggested a fusion between copulas and graphical models
[Kirshner, 2007, Elidan, 2010], with the goal of allowing for flexible real-valued modeling
that is practical in the high-dimensional setting. The basic idea is that the joint density is de-
fined via a collection of local copula functions that capture the direct dependence between
a variable and its parents in the graph G, as well as a set of univariate marginals that are
shared across the entire model. As with standard graphical models, the super-exponential
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task of learning the structure of such models from data poses practical difficulties. Specif-
ically, the computational bottleneck of structure learning is the assessment of the quality
of candidate structures, which in turn requires costly estimation of maximum likelihood
parameters. Indeed, even when using a simple greedy procedure to traverse the space of
structures, or when limiting ourselves to tree structured models, structure learning can be
computationally demanding for non-Gaussian models. Our goal in this work is to cope
with this challenge.

Recently, Elidan [2012] suggested a highly efficient approach for learning the structure
of copula-based Bayesian networks. Briefly, the building block of structure learning is the
ranking of the merit of an edge X → Y given M training samples. Using U ≡ FX(x),
V ≡ FY (y) to denote the marginal distributions of these variables and assuming a copula-
based model, they note that the benefit of the edge is asymptotically equal to the negative
differential entropy

−H(cθ(U, V )) =

∫
cθ(u, v) log cθ(u, v)dudv, (1)

where c(·) denotes the (copula) density that corresponds to the joint distribution of X and
Y . They then suggest that −H(cθ(U, V )) is monotonic in the easy to compute Spearman’s
ρs measure of correlation. This in turn facilitates highly efficient structure learning where
simple Spearman’s ρs computations are used to rank candidate edge modifications. The
monotonicity is proved for the Gaussian copula and algebraically simple Farlie-Gumbel-
Morgenstern (FGM) copula family. Based on simulations, they further conjectured that the
result holds for several additional copula families. Finally, they show that the method can
be used to learn the structure of copula-based models that generalize well very efficiently.
The method’s main limitation, other than the gap in theory, is the fact that the same copula
family is used to parameterize all edges in the model.

In this work we extend Elidan [2012] along two important axes. First, we provide a
formal proof of the monotonicity conjecture given a sufficient condition that applies to a
wide range of common copula families, a novel contribution to the theory of copulas on its
own. Second, we tackle the challenge of performing structure learning while also allowing
for a mixed combination of copulas, thereby significantly increasing the expressive power
of the model. Briefly, our theoretical result suggests that the selection between copula
families can be made based on expected likelihood characteristic curves that are computed
once. A natural Bayesian prior is then used to “calibrate” the curves for several families.
Finally, the posterior curves are used to select a copula family for each edge based only on
Spearman’s ρs computations.

We use our speedy model selection (SMS) approach to learn copula-based tree struc-
tured models for several real-life datasets that are quite substantial in size in the context
of structure learning with the number of variables ranging from 100 to close to 900. In
all cases, we demonstrate impressive performance benefits relative to learning a model that
is constrained to using a single copula family. Further, in many instances we show that
our highly efficient approach is competitive with the computationally demanding golden
standard where the best copula for each edge is computed via costly maximum likelihood
estimation for each family.

2. Background

In this section we briefly provide the necessary background on copulas, Spearman’s ρs and
stochastic orders of multivariate distributions.
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2.1 Copula and Spearman’s ρs

A copula function joins univariate marginals into a joint real-valued multivariate distribu-
tion. Formally,

Definition 2.1: Let U1, . . . , Un be random variables marginally uniformly distributed on
[0, 1]. A copula function C : [0, 1]n → [0, 1] is a joint distribution

Cθ(u1, . . . , un) = P (U1 ≤ u1, . . . , Un ≤ un),

where θ are the parameters of the copula function.

Now consider an arbitrary set X = {X1, . . . Xn} of real-valued random variables (typ-
ically not marginally uniformly distributed). Sklar’s seminal theorem [Sklar, 1959] states
that for any joint distribution FX (x), there exists a copula function C such that

FX (x) = C(F1(x1), . . . , Fn(xn)).

When the univariate marginals are continuous, C is uniquely defined.
The constructive converse, which is of central interest from a modeling perspective, is

also true. Since Ui ≡ Fi is itself a random variable that is always uniformly distributed
in [0, 1], any copula function taking any marginal distributions {Fi(xi)} as its arguments,
defines a valid joint distribution with marginals {Fi(xi)}. Thus, copulas are “distribution
generating” functions that allow us to separate the choice of the univariate marginals and
that of the dependence.

To derive the joint density f(x) = ∂nF (x1,...,xn)
∂x1...∂xn

from the copula construction, assuming
F has n-order partial derivatives (true almost everywhere when F is continuous), and using
the chain rule, we have

f(x) =
∂nC(F1(x1), . . . , Fn(xn))

∂F1(x1) . . . ∂Fn(xn)

∏
i

fi(xi)

≡ c(F1(x1), . . . , Fn(xn))
∏
i

fi(xi),

where c(F1(x1), . . . , Fn(xn)), is called the copula density function.

Example 2.2: The Gaussian copula is undoubtedly the most commonly used copula family
and is defined as

CΣ({Ui}) = ΦΣ

(
Φ−1(U1), . . . ,Φ−1(UN )

)
, (2)

where Σ is a correlation matrix, Φ is the standard normal distribution, and ΦΣ is a zero
mean normal distribution with correlation matrix Σ. Figure 2.1 exemplifies the flexibility
that comes with this seemingly limited elliptical copula family.

Copula are intimately connected to many dependence concepts such as Spearman’s ρs
measure of association

ρs(X1, X2) =
cov(FX1 , FX2)

STD(X1)STD(X2)
,

which is simply Pearson’s correlation applied to the cumulative distributions ofX1 andX2.
For the copula associated with the joint FX1,X2(x1, x2), we have

ρs(X1, X2) = ρs(C) ≡ 12

∫ ∫
C(u, v)dudv − 3.

Thus, Spearman’s ρs is monotonic in the copula cumulative distribution function associated
with the joint distribution of X1 and X2. See [Nelsen, 2007, Joe, 1997] for an in-depth
exploration of the framework of copulas and its relationship to dependence measures.

JSM 2014 - IMS

366



Normal marginals Gaussian Mix & Gamma marginals

Figure 1: Samples from the bivariate Gaussian copula with correlation θ = 0.25. (left)
with unit variance Gaussian marginals; (right) with a mixture of Gaussian and Gamma
marginals.

2.2 Stochastic Orderings

The vast majority of copula families are parameterized by a dependence parameter θ that
defines a stochastic ordering in the bivariate case. Below we define two such related orders
that will be used in the sequel. In the rest of the paper, we use X, Y to denote bivariate
random vectors with distributions FX(u, v) and FY(u, v), respectively.

Definition 2.3 : Y is said to be more positive quadrant dependent than X, denoted by
X ≤PQD Y, if ∀(u, v) ∈ R2, FX(u, v) ≤ FY(u, v).

Thus, PQD ordering corresponds to a fast accumulation of density. To define the second
ordering, we first need the notion of supermodularity. In what follows we use the following
notation: u ∨ v ≡ min(u, v), u ∧ v ≡ max(u, v).

Definition 2.4: A function Ψ : R2 → R is said to be supermodular if

∀(u, v) ∈ R2,Ψ(u ∨ v) + Ψ(u ∧ v) ≥ Ψ(u) + Ψ(v)

Ψ is submodular when the inequality is reversed.

The supermodular ordering can now be defined:

Definition 2.5 : Y is said to be greater than X in the supermodular order, denoted by
X ≤sm Y, if ∀Ψ such that Ψ is super modular: E[Ψ(X)] ≤ E[Ψ(Y)]

This property is important in our context since, in the bivariate case, we have the following
result due to Shaked and Shanthikumar [2007]:

Theorem 2.6: X ≤PQD Y ⇐⇒ X ≤sm Y.

3. Monotonicity of the Copula Entropy in the Dependence Parameter

As discussed in the introduction, Elidan [2012] suggested that the magnitude of Spearman’s
ρs is monotonic in the negative copula entropy which in turn asymptotically approximates
the expected log-likelihood of a model, thereby giving rise to an efficient structure learning
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procedure. In this section we prove the conjecture for a wide range of copula families and
discuss its relationship to real-valued majorization. In the next section we present a novel
algorithmic approach called speedy model selection (SMS) that builds on this theory and
allows us to efficiently perform structure learning while at the same time choose the local
copula family.

3.1 TP2 Density Implies Entropy Ordering

We now present our central result, namely the identification of a widely applicable sufficient
condition for the monotonicity of the copula entropy in the dependence parameter, and
consequently in Spearman’s ρs.

Recall that X, Y are two bivariate random vectors. Throughout this section let X ∼
Cθ1(u, v),Y ∼ Cθ2(u, v) with θ1 < θ2, where Cθ(u, v) is an absolutely continuous bi-
variate copula family that is increasing in <PQD so that the cumulative distribution of Y
is greater than that of X for all (u, v). Note that essentially all copula families that are
parameterized by a so called dependence parameter θ are PQD ordered.

Before stating the main result, using u∨v ≡ min(u, v), u∧v ≡ max(u, v), we define
the following notion:

Definition 3.1: A function Ψ : R2 → R is TP2 (total positive of order 2) if the following
holds:

∀(u, v) ∈ R2 Ψ(u ∨ v) ·Ψ(u ∧ v) ≥ Ψ(u) ·Ψ(v).

Ψ is called RR2 (reversed regular of order 2) when the inequality is reversed.

Note that the density for many copulas is a TP2 or RR2 function (for example, 8 of the
twelve B1-B12 families defined in Joe [1997] are known to be TP2 and the property may
hold for some of the others).

The following property of TP2 (RR2) functions, easily proved using logarithmic prop-
erties, will be needed:

Observation 3.2 : Given a positive function Ψ(u, v) which is TP2 (RR2), Φ(u, v) =
log(Ψ(u, v)) is supermodular (submodular).

We are now ready for our central result:

Theorem 3.3: If Cθ(u, v) is a copula family that defines a positive PQD ordering, and the
copula density cθ(u, v) is TP2 for all values of θ, then

θ1 < θ2 ⇒ −H(cθ1) ≤ −H(cθ2)

When Cθ(u, v) is RR2 the inequality is reversed.

Proof: Recall that X ∼ cθ1 and Y ∼ cθ2 , and that θ1 < θ2. We will show that the
following holds:

−H(X) =

∫
cθ1(u, v)log(cθ1(u, v))dudv

≤
∫
cθ2(u, v)log(cθ1(u, v))dudv

≤
∫
cθ2(u, v)log(cθ2(u, v))dudv = −H(Y)
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First inequality. Since Cθ(u, v) defines a PQD ordering, we have from Theorem 2.6
that X ≤sm Y. Let Ψ(u, v) = log(cθ1(u, v)). Since cθ1(u, v) is TP2, from Observation 3.2
we have that Ψ(u, v) is super modular, that is E(Ψ(X)) ≤ E(Ψ(Y)). Thus:∫

cθ1(u, v)Ψ(u, v)dudv ≤
∫
cθ2(u, v)Ψ(u, v)dudv.

The first inequality follows by substitution of Ψ.
Second inequality. The difference between the two sides of the second inequality is∫

cθ2(u, v) [log(cθ1(u, v))− log(cθ2(u, v))] dudv

The result follows by noting that this is simply the Kullback-Leibler divergence between
the two densities cθ2 and cθ1 , and the fact that this divergence is always non-negative [Cover
and Thomas, 1991].

Note that the above theorem is stated for positively PQD ordered copula families. For
negatively ordered families (e.g., Gumbel-Barnett) a reverse monotone relationship holds,
as can be similarly proved.

The following is an immediate consequence of Theorem 3.3 and the known monotonic-
ity of ρs in the dependence parameter θ for PQD ordered families:

Corollary 3.4: If the copula density cθ(u, v) is TP2/RR2 for all θ, then the magnitude of
Spearman’s ρs is monotonic in the copula entropy.

Note that, phrased in terms of the magnitude of ρs, the result also holds for PQD
families such as the Gaussian copula that are TP2 for one side of the parameter values
(0 ≤ θ ≤ 1) and RR2 otherwise (−1 ≤ θ ≤ 0).

A similar result holds for families who are negatively ordred, for example, Gumbel-
Barnett is negatively ordered. The proof is similar to the above and for sack of completeness
we state it here:

Theorem 3.5: Let Cθ(u, v) be an absolutely continuous bivariate copula, and let X, Y be
two bivariate random vectors such that X ∼ Cθ1(u, v),Y ∼ Cθ2(u, v) and Cθ(u, v) is de-
creasing in <PQD . In addition assume that cθ(u, v) (i.e. the copula density) is RR2 (TP2)
(for all θ). Then :−H(X) ≤ −H(Y), i.e. the negative entropy is monotonic increasing
(decreasing) in θ.

Proof: Take Ψ(u, v) = −log(cθ1(u, v)) and repeat the same way as in the former case.

3.2 Examples of TP2/RR2 Copulas

As discussed, the density of many copulas is a TP2/RR2 function making our theoretical
result widely applicable. Table 1 lists some of these copula families and provides their
corresponding distribution functions.

Since the density function of all these families is TP2/RR2 [Joe, 1997], their corre-
sponding negative entropy function is monotonic in the copula dependence parameter, θ,
and consequently in the magnitude of Spearman’s ρs.

3.3 Other Copula Families

For completeness, we now discuss another sufficient condition for the monotonicity of the
entropy in the dependence parameter and its relation to the TP2 condition. To the best of
our knowledge, other than the work of Elidan [2012] that formulated the conjecture proved
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Family CDF condition
Normal Φθ(Φ

−1(u),Φ−1(v)) 0 ≤ θ ≤ 1

FGM uv + θuv(1−u)(1−v) −1 ≤ θ ≤ 1

Gumbel e−[(û)θ+(v̂)θ)]1/θ 1 ≤ θ ≤ ∞,
û = −log(u)

Frank −1
θ log

(
1− τ(u)τ(v)

τ(1)

) 0 ≤ θ ≤ ∞,
τ(x) = 1− e−θx

Clayton max
(
u−θ+v−θ−1, 0

)− 1
θ θ∈[−1,∞], 6= 0

Joe
1−

(
ūδ + v̄δ − ūδ v̄δ

) 1
δ δ ∈ [1,∞),

ū = 1− u
AMH uv

1−θ(1−u)(1−v) −1 ≤ θ ≤ 1

GB uve−θln(u)ln(v) 0 ≤ θ ≤ 1

Table 1: TP2/RR2 Copula families.

above, the only work that sheds theoretical light on the relationship between the copula
dependence parameter θ and the entropy is that of Joe [1987]. The relevant details are
summarized below.

If f, g are two n-dimensional densities, then f is said to be majorized by g, denoted
by f � g, iff

∫
Φ(f)dx ≤

∫
Φ(g)dx for all convex functions Φ. In particular, since

Φ(x) = xlog(x) is convex, then letting X,Y be two n-dimensional random vectors, such
that X ∼ f1, Y ∼ f2, and f1 is majorized by f2, we have that

−H(X) ≡
∫
f1log(f1)dX

≤
∫
f2log(f2)dY ≡ −H(Y).

With some additional technical details (see [Joe, 1987]), it is possible to show that for
all elliptical copula families the dependence parameter θ implies a majorization ordering,
which in turn implies monotonicity of the entropy in the absolute value of Spearman’s ρs.

Thus, the monotonicity of the entropy in the correlation parameter for a bivariate Gaus-
sian copula can be proved via majorization or Theorem 3.3. However, majorization does
not hold for the other families which have a TP2 density. Conversely, the t-copula ellipti-
cal family defines a majorization ordering but its density is neither TP2 nor RR2 for some
degrees of freedom [Allan.R.Sampson, 1983].

Finally, the widely used Plackett family of copulas has a density that is neither a TP2
function, nor does it define a majorization ordering. However, as the simulations of Elidan
[2012] suggest, the monotonicity of the entropy in the dependence parameter also holds for
this copula family. Identification of the conditions necessary for the monotonicity relation-
ship to hold remains a future challenge.

4. A Bayesian Approach for Learning Expressive Copula Trees

Base on the theoretical developments presented in the previous section, we now present a
speedy model selection (SMS) approach for learning the structure of copula-based graphi-
cal models while allowing for different copula families within the same model. For clarity
and simplicity of exposition, we focus on the case of copula trees where the relationship
between the theory and practice is most direct. As we shall see in Section 5, even in this
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Figure 2: (left) expected log-likelihood vs. Spearman’s ρs for the normal, Gumbel and
Clayton copula families. (right) expected posterior vs. Spearman’s ρs.

seemingly simple setting, our approach offers significant generalization benefits. We start
with a brief review of a copula tree model and how Spearman’s ρs can be used to learn its
structure for a single copula family.

4.1 Structure Learning using Spearman’s ρs

We now we briefly review the idea put forth by Elidan [2012] for using Spearman’s ρs to
learn the structure of a copula network, an idea whose theoretical substantiation has been
greatly increased by the developments in the previous section.

In a tree structured copula model [Kirshner, 2007, Elidan, 2010], the joint density is
represented as a product of bivariate copula densities corresponding to the edges of the tree
T and the univariate marginals:

fX (x1, . . . , xn) =
∏

(i,j)∈T

cij(Fi(xi), Fj(xk))
∏
i

fi(xi).

When learning the structure of a model, we seek a graph for which the (penalized) max-
imum likelihood function is highest. Since the likelihood function itself decomposes, the
building block of learning is the evaluation of the merit of an edge X → Y , independently
of all other edges. In the case of the copula parameterization the relevant term is

Score(X,Y ) ≡
M∑
m=1

log cθ̂(FX(x[m]), FY (y[m])),

where θ̂ are the estimated parameters, the sum is over training instances, and the marginal
terms that do not depend on the graph’s structure have been dropped.

Evaluation of Score(X,Y ) can be computationally difficult. However, all that we
really need to identify the optimal tree is a ranking of the scores for all possible edges. If
we assume that the data is generated from the copula, then as M →∞ we have that

Score(X,Y )→ −H(Cθ(U, V )),

where U, V are the ranks of X,Y , respectively.
Thus, having proved that |ρs| is monotonic in −H(Cθ(U, V )), we can simply use an

easy to compute empirical estimate of ρs to rank candidate edges, and find the optimal tree
with respect to this measure using a simple maximum spanning tree algorithm.
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4.2 Choosing From Multiple Copula Families

The above approach, suggested by Elidan [2012] allows for efficient structure learning of
a copula based model that makes use of a single copula family. Obviously, not all pairs of
variables share the same dependence characteristics and while the interaction between one
pair of variable be be Gaussian, the interaction between another pair may be heavy-tailed
and exhibit, for example, a behavior that is close to a Gumbel distribution. As an example,
for the Crime census domain described in Section 5, the optimal tree includes around 41%
edges parameterized by a Gaussian copula, 48% edges parameterized by a Gumbel copula,
and 11% edges parameterized by a Clayton copula. Obviously, the need for a mix of copula
families is real.

We now present an efficient approach for learning copula-based graphical models while
allowing for a mix of copula families while retaining the lightning-speed efficiency of learn-
ing that is based on Spearman’s ρs empirical evaluation. Naively, since the expected log-
likelihood is monotonic in Spearman’s ρs, the following procedure may seem reasonable:

• Simulate the characteristic curve of expected log-likelihood for each copula family (note
that this needs to be carried out only once).

• For each value of Spearman’s ρs choose the family that offers the highest expected log-
likelihood score.

Unfortunately, such a procedure can fail since the theoretical result guarantees monotonic-
ity within a copula family and not between copula families. In fact, as Figure 2(left) shows,
the expected log-likelihood vs. Spearman’s ρs is highest for Clayton copula family through
much of the range of ρs values. Using the naive approach would lead us in this case to
over-favor the Clayton copula.

An intuitive explanation to the above phenomenon is that while characteristic curves
indeed capture the behavior given Spearman’s ρs for a particular family, they do not take
into account the likelihood of seeing a particular value of ρs within each family. In fact,
we can expect the density of ρs (which is always in the range [−1, 1]) to be quite different
between the normal copula family whose dependence parameter is in the range [−1, 1] and,
for example, the Clayton copula family whose parameter has infinite support.

Given the above, we would like to somehow take into account a prior density over ρs
for each copula family. Using C to denote the set of copula families and fc(ρs) to denote
the density of ρs for a copula family c ∈ C, we will then choose the copula family that
maximize the expected posterior

argamaxc∈CE (log c(F (x), F (y); ρs) + logfc(ρs) (3)

Importantly, this approach still relies on precomputed (posterior) characteristic curves and
thus is as efficient as learning with a single copula family, regardless of the number of
copula families considered.

The obvious question is how to choose the prior fc(ρs) for each copula family. In
depth exploration of this question is left to future work and in here we use a straightforward
approach which, as will be seen in Section 5, proves quite effective in practice. We choose
a prior that, while taking into account the range of dependence parameter for each copula
family, assigns higher density to the independence model where ρs = 0. Appealingly, this
is both uninformative while at the same time ensuring that we do not encourage dependence
that is due to finite data noise.

Concretely, in this paper we consider the normal copula and the most popular Archimedean
copula families, namely the Clayton, Frank, and Gumbel copula families. For the normal
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Figure 3: (left) Average log probability per instance over 10 folds. Compared are the
Gaussian copula model, the model with a mix of copula families using our SMS method,
and the golden standard of learning using exact maximum likelihood computations. Shown
are results for the Crime, SP500, and Gene datasets. (right) comparison of our approach
to the Gaussian copula baseline for all repetitions for the SP500 domain.

copula, the above translates into a standard truncated Laplace (also known as double ex-
ponential prior). For the Gumbel copula we use a shifted by unity exponential distribution
(according to dependence parameter support) and for Clayton we take exponential distribu-
tion with parameter λ = 4. The resulting characteristic curves are shown in Figure 2(right)
where it is clear that different copula families are preferred (highest) in different regions.
In the next section we will show that using this curve to automatically choose the copula
family based on empirical Spearman’s ρs evaluation results in competitive models that are
learned very efficiently.

We note that the characteristic curve for the Frank copula family is missing from this
graph because of its similarity to that of the normal copula family. The implication of this
similarity is that our method cannot be used to separate these two copula families. This
should not come as a great surprise since the symmetric Frank density, while not Gaussian,
is much more similar to the normal distribution than, for example, the asymmetric heavy-
tailed Gumbel one. While this may sound problematic, due to the similarity of densities,
the practical implications of wrongly choosing between the Frank and Gaussian copulas
are relatively small, as confirmed in preliminary experiments (these are not shown here for
clarity of exposition).

5. Experimental Evaluation

In this section we demonstrate the practical benefit of our speedy model selection (SMS)
method for learning expressive real-valued copula graphical models. As noted, we focus
on tree structures where the learning task decomposes into the bivariate evaluation of the
merit of each edge in the network individually. The significant generalization advantage of
copula-based graphical models over the standard Gaussian BN has been demonstrated in
the past [Kirshner, 2007, Elidan, 2010] (and confirmed for our datasets). For clarity, in here
we focus on the additional advantage over models that involve only a single copula family.

For each edge we allow for a Gaussian, Clayton or Gumbel copula, with the prior
for each family as defined in Section 4. As a baseline we consider learning only with a
Gaussian copula, which is the strongest of all single family baselines. We also compare
to the golden standard of learning using exact maximum likelihood computations. For the
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Figure 4: (left) Average fraction of edges that overlap between the model learned using
our SMS method and the golden standard model learned using exact maximum likelihood
computations. (middle) average fraction of edges, among those common to the two models,
that agree on the copula family. (right) average speedup factor of our SMS method over
learning with exact computations.

univariate marginals in all cases, we use standard kernel-based approach [Parzen, 1962]
with the common Gaussian kernel [Bowman and Azzalini, 1997].

We consider three varied real-life datasets:

• Crime (UCI repository). 100 variables relating to crime ranging from household size to
fraction of children born outside of a marriage, for 1994 communities across the U.S.

• SP500. End of day changes of the value of the 500 stocks (variables) comprising the
Standard and Poor’s index (S&P 500) over a period of 2000 trading days (samples).

• Gene. A compendium of gene expression experiments used in [Marion et al., 2004]. We
chose genes that have at most one missing experiment. This resulted in 765 variables
(genes) and 1088 samples.

Results for all datasets are reported over 10 random equal splits of the originL dataset
into train and test samples.

We start by considering the average test log probability per instance, shown in Fig-
ure 3(left). The superiority of the mixed family model (white bars) over the Gaussian
copula model (gray bar) is clear. Further, in the two bigger datasets, our highly efficient
SMS approach improves substantially over the baseline both when taking into account the
maximum likelihood golden standard and in absolute terms of bit per instance improve-
ment. Appealingly, as the domain becomes more complex and the number of variable
grows, so does our advantage. Figure 3(right) shows a typical more detailed comparison of
performance for the SP500 domain. As can be clearly seen, our superiority is consistently
substantial over all random repetitions.

Next, we consider the qualitative ability of our SMS approach that is based on Spear-
man’s ρs evaluation to correctly identify both the structure and the best copula family for
each edge. Figure 4 (left) shows for each of the datasets the average percentage of edges,
over the 10 random runs, that are common to the model learned by our SMS method and the
one learned using exact time-consuming computations. As can be clearly seen, the overlap
between the trees learned is nontrivial considering the size of the domain the fact that our
structure learning approach only relies on simple empirical Spearman’s ρs estimates. To
evaluate the ability of our approach to also correctly choose the right parameterization for
each edge, Figure 4 (middle) shows the average percentage of edges that, in addition to
being in both the SMS model and that learned using exact computations, also agree on the
copula family. Again, given the inherent difficulty of model selection, the similarity be-
tween the two models is appealing. The least favorable overlap for the crime domain also
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explains why our log-probability performance for the crime domain is the least impressive.
Still, even in this case, performance is superior to the baseline Gaussian copula only model.

Finally, we consider the speedup factor of our SMS method when learning a mixed
family copula model relative to learning using exact computations. Figure 4(right) shows
the average speedup factor. For all three domains the speedup is quite impressive at around
two orders of magnitude. Learning the SP500 model, for example, takes only minutes on a
single CPU making structure learning a significantly more accessible task than in the past.
We note that the growth rate of both our SMS method and the exact one as a function of the
number of variables is similar, and that the difference is in the dependence on the operations
that have to be carried our for each training instance. The speedup reported confirms this
since, for example, the Gene dataset has almost half the samples of the Crime dataset.
Thus, while achieving impressive speedups even for the modest datasets considered here,
our SMS method is particularly suited to handle a substantial number of training samples.

6. Summary and Future Work

In this paper we addressed the computationally demanding challenge of structure learn-
ing for real-valued domains in the context of expressive copula-based models. First, we
significantly extended the result of Elidan [2012] and substantiated the conjecture of the
monotonic relationship between the magnitude of Spearman’s ρs and the expected like-
lihood of an edge in the network. Second, we suggested a novel Bayesian approach for
performing structure learning while also allowing for the selection of a different copula
family for each edge, without incurring any computational cost. Third, we demonstrated
the effectiveness of our SMS approach on varied real-life domains.

Importantly, the domains considered are quite sizable by structure learning standards
and dramatically so for copula models. Further, to the best of our knowledge, ours is the
first method for automated learning of multivariate copula-based models that allows for a
mix of different copula families.

An obvious open theoretical question is the identification of necessary conditions for
the monotonicity relationship between Spearman’s ρs and the copula entropy. Another
important and practical avenue of research is the exploration of appropriate priors for the
density of ρs for different copula families. More generally, it would be useful to find other
efficient proxies for speedy model selection, e.g., based on other dependence measures such
as the Schwizer-Wolff sigma [Schweizer and Wolff, 1981].
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