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Abstract
We consider a grouped autoregressive intensity with momentum (GAIM) model for analysis of

multivariate time series of count data. The model may include observed or latent common factors.
We demonstrate the importance of the momentum factor and application of the proposed GAIM
model via empirical data analysis.
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1. Introduction

Analysis of count data has a long history, e.g., Cameron and Trivedi (2013), Winkelmann
(2010) and the references therein. For serially correlated count data, the literature is also
extensive; see, for example, Zeger (1988), Kedem and Fokianos (2002), Davis, Dunsmuir
and Streett (2003), Davis and Wu (2005), and Jung, Kukuk and Liesenfeld (2006). In recent
years, much work in financial econometrics focuses on autoregressive intensity models
for analysis of positive-valued time series; see Engle and Russell (1998), Heinen (2003),
Hautsch (2012) and the references therein. On the other hand, multivariate time series of
count data is less investigated. Lung, Liesenfeld, and Richard (2011) consider a dynamic
factor model with latent common factors and use efficient important sampling (EIS) in
estimation.

In this paper, we propose a grouped autoregressive intensity with momentum (GAIM)
model for modeling multivariate count data. Our goal is to suggest a multivariate model that
is easy to estimate yet widely applicable. To begin, we start with a univariate autoregressive
intensity model. Let yt be a scalar time series of counts. For instance, yt may represent
the number of trades in a 5-minute time interval of an asset. As another example, yt may
represent the number of hourly visitors to a particular web site. An effective model for yt
is the conditional autoregressive intensity model of Heinen (2003). Let Ft−1 denote the
information available at time t− 1 and λt = E(yt|Ft−1) be the conditional expectation of
yt given Ft−1, then a simple autoregressive intensity model for yt is

yt|Ft−1 ∼ p(λt|θ) (1)

λt = ω + α1yt−1 + γ1λt−1, (2)

where p(λt|θ) denotes a probability mass function (pmf) over the non-negative integers
such that E(yt|Ft−1) = λt, θ represents a constant parameter, ω > 0, 0 ≤ α1, γ1 ≤ 1,
and α1 + γ1 < 1. The model in Equation (2) can be extended to higher-order ones, but we
shall focus on the (1,1) model for simplicity. The condition α1 + γ1 < 1 is needed so that
the unconditional expectation of λt is finite. We entertain three discrete distributions for
p(λt|θ) in this paper. They are

1. Poisson: yt|Ft−1 ∼ Po(λt) with pmf

Po(yt|λt) =
exp(−λt)λytt

yt!
, λt > 0.
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Here E(yt|Ft−1) = Var(yt|Ft−1) = λt.

2. Negative Binomial: yt|Ft−1 ∼ NB(θ, λt) with pmf

NB(yt|θ, λt) =
Γ(yt + θ)

yt!Γ(θ)

(
θ

λt + θ

)θ ( λt
λt + θ

)yt
,

where λt > 0 and θ > 0. Here E(yt|Ft−1) = λt and Var(yt|Ft−1) = λt +
λ2t
θ .

3. Double Poisson: See Efron (1986)

DP (yt|θ, λt) = c(θ, λt)θ
1/2[Po(yt|λt)]θ[Po(yt|yt)]1−θ

= c(θ, λt)θe
−θλt

(
e−ytyytt
yt!

)(
eλt
yt

)θyt
,

where λt > 0, θ > 0, and 1/c(θ, λt) ≈ 1 + 1−θ
12λtγ

(
1 + 1

λtθ

)
. Here E(yt|Ft−1) = λt

and Var(yt|Ft−1) ≈ λt/θ.

Clearly, negative Binomial allows for over-dispersion whereas double Poisson can describe
both under- and over-dispersion. If some explanatory variables xt are available, then the
model can be modified so that

E(yt|Ft−1,xt) = exp(x′tβ)× λt

where λt is given in Equations (1) and (2). For high-frequency stock transaction data, xt
may contain some indicator variables or trigonometric series to describe the diurnal pattern
of trading activity. See, for example, Hautsch (2012).

2. Momentum Factors

While the intensity model in Equations (1) and (2) is widely used, it may encounter some
difficulty in capturing details of the dynamic dependence of yt. To illustrate, let yt be
the number of trades in 5-minute time interval of the stock of Glatfelter Company (GLT)
from January 3 to March 31, 2005. This series is used in Lung, Liesenfeld, and Richard
(2011). Following the prior work, we omit the trading activity from 9:30 AM to 9:45 AM
so that there are 75 observations in each trading day. To handle the diurnal pattern of
trading activity, we employed eight explanatory variables: they are the indicators for the
first four 5-minute intervals from market open and the last four 5-minute intervals to market
close. That is, x1t is the indicator for time interval from 9:45:01 to 9:50 AM and x5t is the
indicator for time interval from 15:55:01 to 16:00 PM. The fitted autoregressive model for
yt with negative Binomial distribution is

λt = 0.483(0.07) + 0.171(0.01)yt−1 + 0.741(0.02)λt−1,

and θ̂ = 4.91(0.20), where the number in parentheses denotes standard error. This model
fits the data reasonably well except that there remain some serial correlations in the stan-
dardized residuals. For instance, the Ljung-Box statistics showQ(20) = 33.97 with p-value
0.027.

To improve the model, we consider a momentum factor. For a given integer m > 1,
define the momentum factor

fm,t−1 = (yt−1 + · · ·+ yt−m)/m, m > 1.
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We refer to fm,t−1 as a momentum factor because it represents a smoothed version of local
trend. The intensity model is then modified to

λt = ω + α1yt−1 + δfm,t−1 + γ1λt−1, (3)

where δ signifies the momentum effect. Properties of the model in Equation (3) can be ob-
tained from those of higher-order autoregressive intensity models because the momentum
model is simply a constrained model with higher-order coefficients being equal. Such an
idea has been used in the literature, e.g. Duan (2013) and Hosseini, Takemura and Hosseini
(2014) for the conventional time series analysis. In applications, the choice of m can be
selected by information criteria or fixed a priori.

Using m = 15, we obtain a refined model for the yt series of GLT trading:

λt = 0.832(0.14) + 0.197(0.01)yt−1 + 0.13(0.04)fm,t−1 + 0.519(0.07)λt−1,

and θ̂ = 4.93(0.20). The Ljung-Box statistics give Q(20) = 21.60 with p-value 0.36.
It is interesting to see that the momentum coefficient is statistically significant and the
standardized residuals have no serial correlations.

3. The Proposed Model

Turn to multivariate case. Let yt = (y1t, . . . , ykt)
′ be a k-dimensional vector of count data.

In most applications, the components of yt can be classified into subgroups, depending on
their characteristics. Let yg,t be the gth subgroup and kg be the dimension of yg,t. Then,∑G
g=1 kg = k and kg > 0 and we write the ith element of yg,t as yg,it. In addition, let

f t = (f1t, . . . , frt)
′ be a r-dimensional vector of common factors. Here fit may be latent

or observable. An example of observable common factor is the momentum factor of the
yg,it component as defined in Section 2. A dynamic multivariate model for yt is then

E(yt|Ft−1,xt,f t) = exp(βxt + δf t)� λt (4)

λg,it = ωg,i + αg,iyg,i,t−1 + γg,iλg,i,t−1, (5)

where β and δ are matrices of parameters with dimensions k × d and k × r, respectively,
with d being the dimension of xt, � denotes component multiplication. Furthermore, we
assume that conditioned on Ft−1, xt, and f t, elements of yg,t are independent and follow
the same marginal distribution. The marginal distributions may differ for different groups,
but they are conditionally independent between groups. The model in Equations (4) and (5)
is relatively hard to estimate when f t contains latent common factors. In such situations,
one needs to apply either efficient important sampling methods or Markov chain Monte
Carlo methods in estimation because the likelihood function of the data involves high-
dimensional integration over the latent variables.

To simply the estimation, we propose a grouped autoregressive intensity with momen-
tum (GAIM) model for yt. The GAIM model is a special case of the dynamic model in
Equations (4) and (5) with f t consisting of the momentum variables of each component of
yt. More specifically, for a given m > 1, we define

f t = (fm,1,t−1, . . . , fm,k,t−1)
′, fm,i,t−1 = (yi,t−1 + · · ·+ yi,t−m)/m.

Under the GAIM model, the cross-dependence among elements of yt is governed by the
explanatory variables in xt and the momentum variables in f t. On the other hand, the in-
dividual intensity λg,it of Equation (5) does not depend on other components of yt. Since
f t consists of momentum factors, the GAIM model is a special case of multivariate autore-
gressive intensity model as such properties of the GAIM can be deduced from those of the
latter.
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Table 1: Descriptive Statistics of the Numbers of Transactions within 5-Minute Intervals
for Five Stocks on New York Stock Exchange During the First Quarter of 2005.

Statistics GLT WPP EDE NU WR
Mean 5.80 7.90 3.47 10.41 9.61
Var 16.76 34.18 9.66 34.42 34.90
Median 5 7 3 9 9
Min 0 0 0 0 0
Max 54 43 25 48 59
Skew 1.70 1.23 1.70 1.29 1.36
Kurt 7.46 1.98 4.84 2.80 4.16
Q(20) 2549 5026 1909 3927 5942

4. Application

In this section, we demonstrate the proposed GAIM model via analyzing the 5-dimensional
count data of Lung, Liesenfeld, and Richard (2011). As mentioned in Section 2, the sample
period of the data is from January 3 to March 31, 2005 for 61 trading days. Since each
trading day consists of 75 observations, the sample size is 4575. The five stocks used are

1. GLT: Glatfelter Company

2. WPP: Wausau Paper Corporation

3. EDE: Empire District Electric Company

4. NU: Northeast Utilities

5. WR: Westar Energy, Inc.

Figure 1 shows the time plots of the first three components of yt whereas selected summary
statistics of yt are given in Table 1. Clearly, the Poisson distribution is not adequate for the
data due to over-dispersion. It turns out that negative Binomial distribution fares better so
that we only provide results for GAIM models with negative Binomial distributions.

We start with a 2-dimensional case in which yt = (NUt,WRt)′. First, we assume that
the two stocks have the same conditional marginal distribution, i.e. the number of group is
G = 1. With m = 15, the fitted GAIM model shows that the fitted loading matrix of the
common factors is

δ =

[
0.0051(0.0063) 0.0005(0.0021)
−0.0060(0.0023) 0.0065(0.0076)

]
, θ = 7.71(0.21),

where standard errors are in parentheses, and the individual equations for λit are

λ1t = 1.20 + 0.19y1,t−1 + 0.66λ1,t−1

λ2t = 0.70 + 0.21y2,t−1 + 0.71λ2,t−1,

where all estimates are highly significant. The estimates of β are not shown for simplic-
ity. To check the model, we consider the individual standardized residuals. The Ljung-Box
statistics giveQ(50) = 61.13 (0.13) andQ(50) = 55.48(0.28), respectively, for the two stan-
dardized residual series, where the number in parentheses denotes p-value. It is interesting
to see that WRt depends significantly on the momentum of NUt.
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Figure 1: Number of transactions in 5-minute intervals for stocks GLT, WPP, and EDE.
The sample period is from January 03 to March 31, 2005 and the intraday time span is from
9:45AM to 16:00 PM, Eastern Time.

Next, we assume that the two stocks have their own conditional marginal distributions.
Again, with m = 15, the fitted GAIM model shows that the loading matrix of the common
factors is

δ =

[
0.0048(0.0060) 0.0005(0.0021)
−0.0061(0.0025) 0.0052(0.0076)

]
, θ =

[
8.83(0.35)
6.70(0.25)

]

and the individual equations for λit are

λ1t = 1.18 + 0.20y1,t−1 + 0.66λ1,t−1

λ2t = 0.66 + 0.21y2,t−1 + 0.72λ2,t−1.

The Ljung-Box statistics for the individual standardized residuals showQ(50) = 61.72(012)
and Q(50) = 56.48(0.25), respectively. Again, the model fits the data well and the two
series shows some minor cross-dependence. In this particular instance, the fitted values of
θ̂ for the negative Binomial distributions are close so that there is no significant difference
between use of one or two subgroups.

Finally, we entertain simultaneously all five series but divide the components into two
groups with Group 1 consisting of GLT, WPP, and EDE. The fitted GAIM model provides
a loading matrix as

δ =


.044(.008) .003(.003) .008(.007) −.004(.004) .002(.003)
.004(.005) .026(.006) −.013(.007) −.014(.003) .003(.003)
.001(.006) −.010(.004) .049(.017) −.003(.004) .008(.003)
−.006(.004) −.005(.002) .014(.005) .017(.004) .003(.002)
−.011(.004) −.001(.002) .012(.006) −.006(.003) .031(.006)

 ,

where the number in parentheses denotes standard error. The parameters for the marginal
negative Binomial distributions are

θ =

[
4.62(0.12)
8.66(0.27)

]
.
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Table 2: Parameter Estimates for Individual Intensity Equations and Ljung-Box Statistics
of Standardized Residuals for the 5-Dimensional GAIM model.

Par. GLT WPP EDE NU WR
ω 1.22 1.38 0.61 1.80 1.60
α1 0.13 0.21 0.16 0.16 0.17
γ1 0.54 0.57 0.60 0.58 0.57
Q(50) 47.0(.59) 67.5(.05) 44.2(.71) 67.1(.05) 44.9(.68)
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Figure 2: ACF of the observed and standardized residuals for NU stock. The residuals are
from a 5-dimensional GAIM model.

Parameters for the individual intensity equation and the Ljung-Box statistics for the stan-
dardized residuals are in Table 2.

Figures 2 and 3 show that sample autocorrelation functions of the observed series and
the standardized residuals for NU and WR stocks, respectively. The residuals are from
the 5-dimensional GAIM model. Similar plots hold for the other three components of yt.
Clearly, the fitted GAIM model is capable of handling the dynamic dependence between
the 5-dimensional series.

Finally, the GAIM model is estimated by R code available from the author’s web: fac-
ulty.chicagobooth.edu/ruey.tsay/research/.
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Figure 3: ACF of the observed and standardized residuals for WR stock. The residuals are
from a 5-dimensional GAIM model.
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